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The Lowell Wakefield Symposium Series
The University of Alaska Sea Grant College Program has been sponsoring
and coordinating the Lowell Wakefield Fisheries Symposium series since
1982. These meetings are a forum for information exchange in biology,
management, economics, and processing of fish species and complexes,
as well as an opportunity for scientists from high latitude countries to
meet and discuss their work.

The symposium series had its origin in the Americanization of the
fisheries off Alaska in the late 1970s. At that time a lack of information on
target species impeded the ability to make good management decisions.
In 1979 the North Pacific Fishery Management Council Scientific and Sta-
tistical Committee (SSC) recommended that scientists meet to look at the
pandalid shrimp resource, in circumpolar countries where the shrimp was
commercially important. The meeting was held that year and a proceed-
ings with 42 papers was published by Alaska Sea Grant. In 1980 the SSC
suggested a meeting to provide information on herring. The meetings
evolved into a series named in honor of Lowell Wakefield, who founded
the Alaska king crab industry.

Wakefield recognized the two major ingredients necessary for the fish-
ery to survive were ensuring that a quality product was available to the
consumer, and that a viable fishery could be maintained only through sound
management practices based on the best scientific data available. Lowell
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Wakefield and Wakefield Seafoods played important roles in the develop-
ment and implementation of quality control legislation, in the preparation
of fishing regulations for Alaska waters, and in drafting international agree-
ments for the high seas. Toward the end of his career, Lowell Wakefield
joined the faculty of the University of Alaska as an adjunct professor of
fisheries, where he influenced the early directions of the university’s Sea
Grant Program. Four Wakefield symposia are planned for 1999-2001.
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Review of the Symposium
Reviews in Fish Biology and Fisheries 8:113-115, 1998. Reprinted by per-
mission of the editorial team of Reviews in Fish Biology and Fisheries.

Conference Report

15th Lowell Wakefield Fisheries Symposium

Fishery Stock Assessment Models for the 21st Century:
Combining Information from Multiple Sources.
Having worked with fish stock assessment models for more than 20 years,
I often ponder the limitations of current techniques for resolving the real
problems of fishery management. Frequent reports of declining fish stocks
do not inspire confidence. Obviously mindful of these problems, colleagues
in Alaska organized the 15th Lowell Wakefield Fisheries Symposium on
the topic: “Fishery stock assessment models for the 21st century: combin-
ing information from multiple sources.” During four sunny October days
in Anchorage, 167 participants from 19 countries debated the merits of a
wide spectrum of assessment techniques.

The Lowell Wakefield symposia have a distinguished history of gath-
ering fishery expertise on specialized topics. Proceedings have been pub-
lished for each meeting, and the 1992 symposium on “Management
strategies for exploited fish populations” went through a second printing
to meet the demand. Brenda Baxter, at the University of Alaska Fairbanks,
deserves particular credit for coordinating this run of 15 successful meet-
ings. She explained to me that her approach stems from an innate Alaskan
sense of hospitality. Living in splendid isolation among mountains and
glaciers, Alaskans seek perspective by inviting outsiders to visit and share
their knowledge. She’s right. The Alaskans make great hosts, and the isola-
tion stimulates an intense scientific exchange.

This symposium was organized into four theme sessions: data con-
flicts and model specification, stage structured populations, ocean eco-
systems, and harvest policy. Talks never ran concurrently. Thus, the
opportunity to hear them all was limited only by a participant’s mental
energy and preoccupation with interesting hallway conversations. Central
issues came up repeatedly in each of the four sessions. Is stock assess-
ment really possible; that is, do the available data really allow us to infer
stock abundance and potential yield? Do ancillary data add or detract
from the assessment results? In particular, can the influence of climate
data be detected convincingly in modern assessment models? Recogniz-
ing that ecosystems are complex, do simple or complex models lead to
better understanding? Above all, what aspects of the analysis contribute
to sound, useful advice for managers and stakeholders? How can this ad-
vice be communicated in ways that draw attention to risk and the need for
risk management?
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The opening keynote talk by Keith Sainsbury (Hobart, Tasmania) fo-
cused particularly on management issues, challenging many of the classi-
cal approaches to assessment. For example, fishery scientists need to
examine broader control options than mere quota recommendations. In a
later talk, Chris Francis (Wellington, New Zealand) reviewed the concept of
risk. He observed that fisheries management objectives are often conflict-
ing. Thus, the measure of risk varies with the objective. Chris also provid-
ed summary comments at the close of the meeting, after an exhausting
four days. Even then, had it not been for flight departures and other per-
sonal reasons, I’m sure that participants would have peppered him with
questions. Such was the enthusiasm and intensity of the meeting.

Not surprisingly, the discussion often focused on statistical methods.
Bayesian inference clearly dominates the modern analyses, in contrast
with typical analyses 20 (or even 10) years ago. Furthermore, Bayes poste-
rior sampling methods, such as the Markov Chain Monte Carlo (MCMC),
have captured some people’s attention. At one point in the discussion, I
mentioned a very readable book on MCMC methods (Gilks et al. 1996). To
my surprise, Ken Newman (University of Idaho, Moscow, Idaho) actually
had a copy in hand at that moment. The book’s cover, with distinct shades
of red, yellow, and green, could easily be recognized across the room.
This small example illustrates the common thread of new analytical tech-
niques being pursued independently by fishery scientists worldwide. On
the other hand, Saul Saila (University of Rhode Island, Narragansett, Rhode
Island) demonstrated his usual flair for complete originality by present-
ing analyses based on fuzzy logic and fuzzy regressions. Who can say
what statistical methods will dominate analyses 20 years in the future?

I take a particular interest in statistical theory, and an encounter at
the meeting shed some light on its practical consequences. During a talk I
presented, I cited an example in which frequentist and Bayes approaches
give different interpretations of the risk of a low stock biomass. Later, at
an evening gathering for wine and pizza, Kevin Sullivan (Wellington, New
Zealand) pointed out that this seeming anomaly actually motivates two
schools of thought in managing New Zealand fisheries.

Computer software came up repeatedly in the talks. Several speakers
reported positively on the use of AD Model Builder, a generic model devel-
opment tool available from Otter Research Ltd. The author of this soft-
ware, David Fournier (Nanaimo, British Columbia), attended the meeting
and appeared as coauthor on three of the presentations. Other speakers
had used Stock Synthesis, a software package designed explicitly for catch-
age analyses with auxiliary data. Richard Methot, the author of Stock Syn-
thesis, also attended the meeting and appeared as coauthor on one of the
talks. Still other speakers preferred relatively simple analyses that could
be implemented in spreadsheets. It wasn’t difficult to get involved in pas-
sionate discussions about software preferences, which correlate to some
extent with views about model complexity.
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Numerous talks described modern complex models designed to cap-
ture the information from multiple data sources. Examples included: (1)
eastern Bering Sea walleye pollock data linked with oceanographic data,
(2) nine data sources for California bocaccio, in which the age composi-
tion data are ultimately rejected, and (3) British Columbia sablefish catch-
age data linked with tag recovery data. One speaker (David Sampson,
Newport, Oregon) conducted an experiment on the Stock Synthesis model
itself, using simulated data to test the model’s sensitivity to various sources
of error.

Not everyone, however, proposed models with high complexity. For
example, Daniel Pauly (University of British Columbia, Vancouver) discussed
a mass balance approach to food web ecosystems. Based on data from
various species, the mass balance concept implies a relatively straightfor-
ward calculation of biomass requirements to sustain the web. Participants
were certainly sympathetic to “back of the envelope” calculations. In fact,
a few fishermen attended the meeting and made serious efforts to follow
the bookkeeping in complex catch-age models.

In this brief report, I’ve only sampled topics that were discussed. In-
terested readers can consult the full published proceedings planned for
the fall of 1998. Perhaps a final story can portray the candid spirit that
characterized the meeting. Patrick Sullivan (Seattle, Washington) gave a
thought-provoking talk describing recent changes in the model for Pacific
halibut. These have resulted in substantially revised estimates of stock
status. His analysis illustrated the variety of interpretations possible for
most fishery data. He closed with a quotation from Edmund Burke, “No-
body makes a greater mistake than he who does nothing because he could
only do a little.” Not surprisingly, I found participants ready to debate
even that point.

References
Gilks, W.R., S. Richardson, and D.J. Spiegelhalter. (1996) Markov Chain Monte Carlo

in Practice. London, UK, Chapman & Hall, 486 pp.

—Jon Schnute
Pacific Biological Station, Nanaimo, British Columbia
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Living Marine Resource
Assessment for the 21st Century:
What Will Be Needed and How Will
It Be Provided?
Keith Sainsbury
CSIRO (Commonwealth Scientific and Industrial Research Organisation)
Division of Marine Research, Hobart, Australia

Introduction
It is not often that one gets the opportunity to look broadly at the likely
circumstances and needs of the next generation of fishery assessment
practitioners, and to consolidate the lessons of our experience. The twenty-
first century is only three years away, but in this talk I will look mainly to
the circumstances and needs of about 50 years hence in the mid-twenty-
first century. By that time even the youngest of the present assessment
practitioners are unlikely to be still practicing, but we will have left our
mark—a legacy of assessment methods and assessment approaches, and
the health of the world’s living marine resources.

Here I will be drawing a long and speculative bow, with the aim of
providing food for thought going into this symposium [Fishery Stock As-
sessment Models for the 21st Century, Anchorage, Alaska, Oct. 8-11, 1997].
It is a personal view, recognizing that this is just one view among many
and that the track record of such views is not good. Thomas Huxley (in
Smith 1994), for example, stated in 1883 that “…all the great sea-fisheries
are inexhaustible; that is to say nothing we can do seriously affects the
number of fish.” Huxley was right for about thirty years, but this view did
not prepare the fishing industry, fishery managers, or fishery scientists
well for what was to follow.

In this paper I will first look at the circumstances and expectations of
marine living resource assessments in the mid-twenty-first century, the
issues that are likely to be important, and their effects on the assessment
themselves. This is a mixture of some things that I hope will happen and
some things that I fear will happen. I will then look at whether there will
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have to be a paradigm shift from present approaches, based on a brief
examination of how well present approaches have performed. And finally
I will address the question: If there is to be a paradigm shift, what will it be
toward? In answering this question I will identify the major developments
needed to address the likely circumstances and expectations of assess-
ments in the mid-twenty-first century, and will illustrate developing ap-
proaches in present assessments.

Circumstances and Expectations of
Assessments in the Mid-Twenty-First Century
More change in the external circumstances affecting assessments can be
expected in the next 50 years than occurred in the last 50 years. Expected
key changes in circumstances are

Globally an increased requirement for food and other environmental sup-
port for human life and activities. This will be driven both by increased
human population and increased aggregate economic affluence. It is also
likely that there will be an increased disparity in the distribution of wealth
both within and between countries. The economically affluent groups will
create a strong market demand for seafood products and for marine envi-
ronmental use (e.g., recreation, coastal urban development, and effluent
disposal). The less advantaged groups will variously make demands for
subsistence food; increasingly this will involve “resource mining” for short-
term advantage, illegal fishing, and use of black markets. The two groups
will compete strongly for fish and environmental use, and activities such
as resource mining and black marketing will be indirectly driven by the
affluent groups. The increased economic power of the affluent groups,
combined with increased desperation among the less affluent, will greatly
increase the difficulty of implementing management measures for some
national and most internationally shared marine living resources.

Increased use of the marine environment and the effects of non-fisheries
activities. This includes increased coastal zone development and urban-
ization, increased nutrient and sediment loads resulting from catchment
land use patterns, and increased waste and effluent disposal to the sea. In
addition the marine system will be significantly used by industries such
as tourism and recreation, aquaculture, oil and gas production, and min-
erals production. This increased use will generate competition between
alternate users for space and resources, will increase levels of nutrients,
toxins and heavy metals, and will extensively modify some marine habi-
tats—with these effects being particularly strong in coastal and continen-
tal shelf regions. These changes will significantly affect fisheries
production.
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Increased role of business interests in political structures and in achieving
sustainability. There will be a much stronger use of property rights in the
management of fisheries (and other marine-based industries), with rights
including access to space as well and to the marine living resources them-
selves. A range of industries, not just the commercial fishing industry,
and some non-commercial interest groups such as recreational users, in-
digenous peoples and conservation interests, will have such property rights.
There will be an increase in the influence and participation of business
and companies in research, management decision-making, and implemen-
tation of management measures. With this increase will come a close link
between assessment of performance at the industry level and manage-
ment decisions. Performance accreditation and standards will be commonly
used by both industry and management groups. Product “ecolabeling” and
accreditation regimes such as the International Standards Organisation
(ISO)14000 will be common and powerful tools for marketing and achiev-
ing sustainability in commercial fishing, through their ability to inform
affluent consumers about the sustainability of the industry (i.e., its bio-
logical production base, ecological effects, and the management process).

Greatly increased industry access to the marine system. Increased technol-
ogy has arguably been the major factor driving fishery impacts and re-
source assessments in the last 50 years. This will remain a major driver of
change in the next 50 years. Greatly improved sensors, deployed every-
where from vessels to satellites, will provide extensive data on the ocean,
seabed habitats, biological productivity, and the spatial distributions of
fishery target species. Real-time analysis and assimilation of these data
will routinely be used by commercial fishing vessels. Capture technology
will improve. Product processing technology will also improve, to the point
where commercial products can be made from most species. The com-
bined effect will be extremely effective and flexible targeting of fishing
effort, plus the ability to economically harvest both further down the food
chain and on highly dispersed resources (e.g., small to medium sized
oceanic fish and squid).

Greatly increased capacity to monitor the marine system. The same tech-
nological developments used to improve fishery targeting will also revo-
lutionize fishery and environmental monitoring. Developments will include
use of automated vessel tracking and catch monitoring methods, exten-
sive electronic tagging experiments, and direct observations of the ma-
rine system by remote sensing, vessels of opportunity, and moored sensor
arrays. Very diverse and extensive data sets on the marine system and
human activities will be available for resource assessments.

Recognition that the marine system does not follow a stationary process.
Systematic change and quasi-periodic fluctuations in global climate and
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oceanography will occur and be recognized during the next 50 years. These
changes will greatly affect oceanographic patterns of spatial interconnec-
tion and interannual variability, and consequently the spatial and temporal
patterns of biological production. These changes will have significant ef-
fects on regional fishery resources and industries. In addition there will
be significant recoveries of some top predator populations, including
whales, seals, some sharks, and seabirds. The large tunas could be in this
category of significantly recovered populations, but I doubt that the nec-
essary catch controls and reductions will be made in time to give that
level of recovery by the mid-twenty-first century.

With these changes in circumstances will come several major changes
in the social and political expectations of the fishery assessment and man-
agement process. Expected changes in expectations include

A demand for greater social responsibility, and in particular a demand for
greater equity in decision-making processes and a lower risk to food supply,
jobs, and generation of economic wealth.

Increased concern for maintenance of biodiversity. This will be motivated
both by increased recognition of the intrinsic value of biodiversity and by
use of biodiversity as an indicator of ecosystem health and resilience, and
the sustainability of fishery production. Some fish species will join the
ranks of the “charismatic megafauna” and so become the subject of signif-
icant public interest and concern in their own right.

Increased range of interest groups and users in assessment and decision-
making processes. This will come from increased interaction among dif-
ferent uses of the marine environment and more frequent use of property
rights. The impact of decisions made in one use sector on the rights of
other user sectors will result in an expectation of broader equity and par-
ticipation in the fishery management decision-making process. The inter-
est groups and sectors that are likely to be involved are commercial
fisheries, recreational use, indigenous subsistence use, aquaculture, tour-
ism, mineral extraction, oil and gas production, conservation groups, an-
imal welfare groups, and governments.

The first two of these changed expectations will support adoption of
precautionary approaches in management decision-making, increased con-
sideration of species that are dependent or associated with the harvested
species, and decreased acceptance of high bycatch and discard rates in
fisheries. Unfortunately these changed expectations of fishery assessment
and management will come the hard way—as a result of repeated fishery
failures, large and small, contrasted with a few successes—rather than
from foresight and inspired leadership.

These changed expectations will have a major effect on the focus of
scientific fishery assessment in the mid-twenty-first century. The assess-
ments will have a strong emphasis on delivery of sustainable economic
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and social benefits through maintenance of ecosystem integrity. They will
need to evaluate use of spatially zoned property rights for environmental
access and resource use, including marine protected areas or reserves.
They will increasingly be conducted through integrated regional manage-
ment structures and arrangements, including arrangements that integrate
domestic with international management and arrangements that integrate
watershed with coastal marine ecosystem management.

These changed expectations will cause some major changes to the
scientific advisory groups within the management structures. The scien-
tific advisory groups will contain very diverse interest-stakeholder group
representation, will be under increased political scrutiny and pressure,
and will provide assessments that are very contentious and contestable.
They will use large and diverse data inputs, and will assess a wider range
of environmental impacts than just fishery impacts.

The changed management circumstances and expectations will also
cause major changes in the analyses undertaken. Expected key changes in
analyses will be

Stationarity or constancy will not be an acceptable default assumption in
population and observation process models. This will apply to processes
such as growth, productivity, recruitment, natural mortality, population
spatial dynamics, fishing efficiency and fishing selectivity.

Commercial catch per unit of fishing effort will not be accepted as a default
simple index of abundance that is proportional to stock size. Catch per unit
effort will still be used in assessments, but default interpretations will be
based on a range of possible relationships between fish abundance and
catch per unit effort.

Assessments will be spatially explicit so as to deal with the increased use of
spatial zoning and management controls. Spatial signals and statistical
contrasts in the observational data will become important in model pa-
rameter estimation.

Data sets available for analysis will contain orders of magnitude more ob-
servations.

Ecosystem, food-chain, and habitat effects will be frequently included in
the assessment models.

Precautionary management will require the identification and use of pre-
cautionary interpretations of the available data, based on hypotheses that
may not be specifically identifiable or justifiable in the available data.

The combination of these changes will mean that assessment models
will be considerably more complex, and many alternative hypotheses about
system dynamics and the observation process will have to be carried into
the assessments.
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Will There Have to Be a Paradigm Shift?
Given the likely major changes in the circumstances and expectations of
assessments of marine living resources, the question arises as to how well
current assessment approaches would deal with them and whether there
will need to be a shift in the assessment paradigm.

The paradigm of the last about half century has been based on six
major elements:

1. A predictive approach, based on simple models of biological process-
es and a simple interpretation of objectives such as maximum sus-
tainable yield.

2. An adaptive approach in which assessments are updated regularly as
additional data becomes available. The structure of this adaptive sys-
tem is ad hoc, however, in that no specific attention is usually given to
the design and performance of the adaptive feedback loop that is be-
ing implicitly used in management decision-making.

3. Assessments are highly spatially aggregated, to the extent that space
is usually not explicitly included in analyses other than via a broad
statement indicating the area occupied by the stock and across which
statistics are aggregated.

4. Assessments are focused on single species, and population dynamics
are internally driven (i.e., population abundance or density is the prin-
cipal control variable, with external ecosystem and environmental ef-
fects being ignored or internalized through heuristic functions for
natural mortality and recruitment).

5. Assessments are focused on a single use of marine living resources
(i.e., commercial fisheries).

6. Assessments assume stationarity of many dynamical processes (i.e.,
that the parameters of the dynamical process models are assumed to
not vary through time).

It is clear that changes in the approach to items 3-6 above will be
required in resource assessments to meet the circumstances and expecta-
tions of assessments in the mid-twenty-first century. Items 1 and 2 above
sound reasonable—they describe in principle a predictive and adaptive
assessment scheme—but how well has this actually performed?

Much has been written lately about the poor performance of fisheries
management, and I do not intend to belabor the point here. However, the
judgment, based on management outcomes, is that the fishery assess-
ment and management process is arguably unsuccessful or at best weakly
successful. There is considerable evidence for this.

For example:
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• Fishery status reports by country and internationally. About 40% of
U.S. fisheries are overexploited or recovering. Almost all ICES man-
aged fisheries are being harvested well above their maximum sus-
tainable levels. About 20% of Australian fisheries are overexploited,
and Australian fisheries have a relatively short history of commer-
cial exploitation. As a whole the global catch is at or beyond maxi-
mum sustainable yield (Garcia and Newton 1997).

• Ludwig et al. (1993) question whether sustainable use, including
the conclusions of the Bruntland Report and the UNCED (WCED 1989)
which resulted in the widespread acceptance of sustainable devel-
opment as an achievable goal, can be achieved even in principle,
and question our ability to reliably estimate sustainable harvest lev-
els. Like Rosenberg et al. (1993), I agree with their conclusions about
the difficulty in estimating sustainable harvest levels, but disagree
with their criticism of the Brutland Report and their conclusion that
sustainable resource use is unachievable in principle. There is a
level of living resource use that is sustainable—it may not be a sta-
ble or constant level of use as has often been assumed in the past, it
may not be sensible to try to maximize our use and extract the
absolute most from the resource that is possible, and we may have
difficulty estimating what a sustainable harvest level is at any point
in time—but a sustainable level of resource use does exist.

• Holmes (1994), Hutchings and Myers (1995), Walters and Maguire
(1996), and several others have examined the causes of the recent
collapse of the northwestern Atlantic cod stocks, and while several
factors were involved it is clear that incorrect stock assessment ad-
vice was at least partly responsible.

• Mangel et al. (1996) provided a detailed review of the performance
and principles of management of wild living resources generally,
and revealed widespread failure to achieve sustainable use. In most
cases the main difficulties are the demands of human population
and economic expansion that require permanent changes to popu-
lations, habitats, and ecosystems. For example the clearing of for-
ests for agriculture, in which the forestry harvest supports a
transitional industry. In this example the aim is alteration rather
than sustainable use. However, they also cite many cases where sus-
tainable use was intended but not achieved.

• Johannes (1998) and Munro (1987) examined the performance of
sustainable use of tropical inshore fisheries, particularly in South-
east Asia and the Pacific Island nations. They concluded that perfor-
mance is dismal. Johannes goes on to conclude that a major
contribution to this poor performance is resource managers wait-
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ing for quantitative resource analysis to underpin their decisions—
the kind of assessments expounded in text books and development
courses. Johannes calls for a stop to the wait for quantitative re-
source analysis for these fisheries. He points out that such analyses
cannot be expected because of the complexity of the resources, the
complexity of the usage patterns, and the paucity of the monitoring
and analytic capacity that is necessary for the scientific assessment-
based approach to be successful. He recommends instead an imme-
diate start on the application of management that is strongly
precautionary and that can succeed in data-free (although not infor-
mation-free) situations. This call is essentially for management that
is robust to the constraints on scientific observation, scientific anal-
ysis, and management capacity in a particular situation. A similar
conclusion was reached by Isaac et al. 1998 (this symposium) from
consideration of South American fisheries assessment and manage-
ment.

• Mace (1996) provided an excellent review of the performance of the
world’s fisheries and their management, and found that there is a
general failure to achieve sustainable harvest levels for many indi-
vidual fisheries. She pointed particularly to the gross overcapital-
ization of the world’s catching capacity, achieved through extensive
government subsidy, as providing a major impediment to imple-
menting sustainable harvest levels. However, she also recognized
that incorrect scientific assessments of the productive capacity of
fish resources have contributed significantly to the failure to achieve
sustainability.

• Perhaps the most significant evidence for failure of the recent ap-
proaches to assessment and management of marine living resources,
and the one that will move the social and political expectations for
improvement, is the increased frequency of negative public media
articles, documentaries, and reports. They describe an irresponsi-
ble fishing industry that is managed inadequately on the basis of
insufficient understanding. This “bad press” is a worldwide phe-
nomenon, and the present approaches to assessment (and also the
present approaches to management and industry decision-making)
will not be sustainable for very long under such exposure.

However, the picture is not all doom and gloom. There are successes.
There are fisheries such as the western Australian rock lobster, the Falk-
land Islands squid, the Pacific halibut, and the North Pacific walleye pol-
lock which have been sustained for long periods in comparison to the
lifetime of the target species. A significant fraction of the world’s fisheries
are reported to be at or near their sustainable levels (e.g., 20% for the U.S.;
30% for Australia). And there have been stock recoveries—for example
some whales, seals, and U.S. Atlantic striped bass—although it is notable
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that very major changes in the harvest levels have been necessary to achieve
these recoveries.

Furthermore, it is also clear that often it is not the scientific assess-
ments that are at fault. Management decision-making processes are often
dominated by short-term considerations, which in effect favors develop-
ment over conservation goals. Management decision-making also often
shows a remarkable asymmetry in the vigor of response to good and bad
scientific news. A scientific recommendation to increase catches typically
receives little scientific scrutiny and is rapidly enacted, while a recom-
mendation to reduce catches is likely to be scientifically reviewed or judged
in need of further research support. It may be acted upon some years
later. Two good examples of this delay in management action can be pro-
vided from Australia.

The first concerns the southern bluefin tuna. In the late 1970s Mur-
phy (1977) recommended an increase in the Australian catch of juvenile
tuna on the basis of a yield-per-recruit argument that assumed recruit-
ment would not be affected by fishing. Within two years the industry had
expanded its catch and capacity by more than an order of magnitude.
Murphy then called for restraint, raising the prospect that catches at that
level could affect recruitment. It took about ten years to reduce the catch-
es again, and to this day many in the fishing industry cite incorrect scien-
tific advice as the cause of the Australian contribution to overfishing of
southern bluefin tuna.

The second example concerns the Australian southern shark fishery.
In 1989 scientific agreement within the stock assessment process was
reached that catch levels were unsustainable and needed to be reduced.
Catch reductions were resisted by industry and the management agency
agreed to an external scientific review to be conducted by an industry
consultant (Prof. Carl Walters). The review disagreed with the original find-
ings and recommended further research to clarify matters. After seven
years of additional research, at a cost of about A$250,000 per year, it has
recently been concluded that catch cuts of almost exactly the magnitude
originally recommended are needed. These catch cuts are in the process
of being implemented. The main, and critical, difference between the
present and past assessments is that now there is much greater support
for the decision among fishing industry participants.

To return to the question “will there need to be a paradigm shift in
living marine resource assessment?” The answer is yes. Under continued
use of the current paradigm there will be too many fishery failures and
too many indications of broad deterioration in resources, ecosystems,
and social benefits to maintain the social and political (let alone scientific)
support for this approach. The scientific assessments will not be solely
responsible for the failures. However they will be in part responsible for
the failures, and will be recognized as being inadequate to the task. As
mentioned earlier, the assessment task will get more complex as issues of
food-chain dynamics, spatial dynamics, multiple use interactions, and non-
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stationarity need to be addressed. It is debatable whether or not improved
data and technology will arrive in time to support improved scientific
assessments to meet these additional demands, but it seems to me that
the additional demands will arrive first. And these additional demands
will make the inadequacy of the present approach even more obvious
than it is now.

So there will be development of a new paradigm. But before looking at
what the new paradigm might contain, there is a need to look more care-
fully at why we are having such difficulty with the old one. What are the
lessons and what needs to be changed?

What Are the Fishery Assessment Lessons of
the Late 20th Century?
I think there are four main scientific lessons, or reasons for failure, in the
recent assessment paradigm.

1. The assessment models do not adequately represent the real world.

2. The inability to correctly identify models and to accurately estimate
parameters.

3. The uncertainties in assessments are not well recognized or treated
by science or management.

4. Assessments are not evaluated and designed in the context of their
use in the management system.

1. The Assessment Models Do Not Adequately Represent
the Real World
It is widely recognized by assessment practitioners that the models used
are simplifications of the real world, yet there is little emphasis in stock
assessments and stock projections on the resultant effects on the man-
agement advice given. There is usually very little explicit recognition or
analysis based on a broader range of more complex dynamics, or even
analysis based on variants of the simple model structures commonly used.
Sensitivity tests and confidence intervals are routinely calculated, but these
are highly constrained by the simplified underlying assessment model
and do not represent the uncertainty due to model specification. For ex-
ample a retrospective analysis shows that the actual changes in southern
bluefin tuna abundance over the last ten years has been consistently out-
side the range of predictions made on the basis of simple models after as
little as two years after the prediction is made (Klaer et al. 1996). The
common result is that the assessment models used cannot capture many
of the very interactions and complexities that have caused assessment
failures in the past. Usually this weakness due to use of oversimplified
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models is not even “hedged” by examination of a range of alternative sim-
ple models.

In addition to these ecological process simplifications, there are two
important aspects of the fishery management system that are treated in-
adequately in assessments and predictions. The first of these is the pro-
cess by which observations (data) are collected, interpreted via intermediate
analyses, and reported. This is a complex process in itself, much moreso
than the simple statistical treatment provided by most assessments, which
can greatly affect assessment results. The fact that this symposium has
the treatment of conflicting data sources as a major subtitle is simply an
indication that we often do not view and model the observation process
properly. There is only one reality and if we have conflicting signals from
it then we have not correctly specified the observation process model.
The second is implementation uncertainty. The difficulty in implement-
ing management decisions and controls as intended is legend in fisheries
management, and has been a major contributor to stock collapses; and
considerable scientific effort goes into trying to correct fishery data from
implementation failures of the past. Yet projections of future population
size in stock assessments usually assume perfect management implemen-
tation and very rarely include management implementation as a source of
uncertainty.

2. The Inability to Correctly Identify Models and to
Accurately Estimate Parameters
This point could almost be two separate points, one focusing on the diffi-
culty of learning about the dynamics of nonlinear systems generally and
the other focused on the data available from fisheries in particular. Both
are major issues in marine living resource assessment, and they conspire
together to make scientific assessment of fisheries very difficult.

First it is widely recognized that ecological systems are highly nonlin-
ear systems, and that linear approximations do not perform well. Nonlin-
ear in this sense means that the dynamics of a population of interest cannot
be reasonably approximated by a linear function of its own abundance,
the abundance of other observable populations, or environmental condi-
tions. This nonlinearity sets some very strong and unpleasant constraints
on stock assessments. In particular the results obtained in one circum-
stance do not generalize well—the observations made at one place, at one
population size, under one set of environmental conditions, and under
one composition of the surrounding ecological community are not easily
generalized to accurately predict the effects of a change in any of these
factors. And in fisheries assessment there is usually a lack of the controls
and replicates that would provide the usual scientific hope for dealing
with such circumstances. The result is that, to a major extent, each fishery
is tackled as a separate and new learning experience. Consequently, for
each new species or population encountered, empirical observations are
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needed across a range of population sizes (and environmental conditions
and community compositions) to characterize the dynamics of that spe-
cies or population. In practice the state of the environment and communi-
ty composition are usually very poorly observed while observations of
the target population are being made, which may well be a major cause of
the non-stationarity seen in simple population models and the poor suc-
cess of generalizations.

The extent to which nonlinear processes and interactions influence
living marine resource assessment is yet to be fully determined. It is clear
that they provide a major influence and constraint on generalizing re-
sults, but at a coarse level there are some features that can be extracted
from the collective experience. For example the basic population parame-
ters, food consumption rates, and general ecological role can be coarsely
predicted from species taxonomy, morphology, and geographic location.
There is also some indication that the same may be true in a broad sense
for stock-recruitment parameters (e.g., Myers et al. 1995). These “meta-
analyses” are very useful and address the real nature of the scientific un-
derstanding that experts bring to a particular problem. But so far they
indicate that, while very broad patterns may be generalizable, the predic-
tions made are not sufficiently precise to be used as the basis of a re-
source assessment. We are left to a large extent with the curse of the
nonlinear system, and the resulting need to establish and track events
locally. Ironically it seems that aspects of management system may be
more reasonably generalized than those of the biological system. It may
transpire that the structure and parameters of management feedback con-
trol procedures generalize better than do the structure and parameters of
the nonlinear systems they are designed to control.

The second major issue is the data available from which to infer the
state of the ecological system. Marine living resource assessment is es-
sentially an observation-limited activity at present, with the population
abundance and dynamical processes being close to unobservable. In most
cases nothing is measured either accurately or precisely.

In most fishery assessments, data from the fishery operations them-
selves (e.g., the catch, fishing effort, fishery discards, and the nature and
location of fishing operations) is the major source of information about
stock size. Unfortunately fisheries usually do not provide accurate and
precise data on their own operations. For some fisheries there are also
independent surveys of resource abundance, and there is no doubt that
the availability of such surveys greatly improves the rigor and confidence
in resource assessments. However these surveys are often greatly limited
in their coverage by cost (usually survey effort is many orders of magni-
tude lower than fishery effort) and the competency of survey fishers to
catch fish can be questioned. And so overall survey precision is low, bias
in catch results remains an issue, hypotheses relating to potentially im-
portant small-scale spatial-temporal events in which survey and industry
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data contradict cannot be resolved, and the fishery catch data remains the
most abundant source of data.

As a result considerable scientific effort goes into trying to correct
fishery and survey data for bias—and in attempting to draw conclusions,
despite the high level of measurement error. Inability to correct biased
and imprecise data from the fishery has been a significant factor in some
assessment failures. The quality of information from a fishery is poten-
tially under management control. However exercising this control by top-
down control methods is very costly, and attempts to improve the data
quality by education and collaboration with the fishing industry can be
expected to take many years of effort (and probably a generation or so in
some cases) to bring results.

To make matters worse the information content, with respect to sta-
tistical properties of interest, of the data available from fisheries is also
low. This is partly a reflection of the low precision and accuracy of mea-
surements, but is also a result of fisheries not providing a good experi-
mental design with respect to the properties of interest. For example, a
fishery operates so as to generate strong correlation between fishing ef-
fort and the abundance of the target and associated species in the ecosys-
tem. Consequently there is often low statistical contrast in the data across
the supposed independent variables of interest in an analysis, and so the
data available from fisheries is often not informative for the identification
of cause and effect or for the estimation of key parameters in process
models.

It is becoming widely recognized that the information required for
scientific assessment of marine living resources is considerably greater
than that currently being provided. Interestingly this is being recognized
simultaneously and separately in both developed and developing coun-
tries. The reality is that in both situations the dynamics of the marine
resources are very weakly observable, and the accuracy and precision of
resource assessments are very weak and inadequate as a result. A corol-
lary of this is that only large assessment and management errors are de-
tectable in both developed and developing nations, and even large errors
are usually detected only when they start to cause serious social or eco-
logical disruption. If this global generality is to be changed then the qual-
ity of information available for scientific assessment of marine resources
will need to be improved, and improved in a specifically targeted and
intelligent manner.

3. The Uncertainties in Assessments Are Not Well
Recognized or Treated by Science or Management
To date the call for management to be based on the “best scientific ad-
vice,” a phrase repeated in many policy and international convention doc-
uments, has been interpreted as meaning a consensus point estimate or
“base case” analysis decided by the scientists involved. Under this ap-
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proach uncertainty is not well reflected in the scientific advice provided
to management, if is reflected at all, despite there usually being a consid-
erable range of scientifically valid interpretations that could be drawn
from the data. Typically a huge number of decisions are made by the
assessment practitioners in the process of selecting the point estimate or
base case to consider or present. Often these decisions are essentially
arbitrary restrictions on model structure, parameter estimates, or the
domain and form of Bayesian prior distributions. The application of age-
structured assessment models involves scores of such decisions. In the
majority of cases these restrictions are made without fully examining their
consequences or documenting the selections made. The result is that un-
certainties in the assessments, and the consequences of those uncertain-
ties, are poorly understood both by those providing and receiving the
scientific management advice.

Recently there has been increased effort to provide a more objective
and transparent treatment of the uncertainties in the stock assessment
advice. This has caused difficulties in both the scientific and management
arenas, as scientists try to determine what information to provide and
managers try to develop appropriate ways of responding to the strange
world of scientifically analyzed uncertainty. This is an area that I expect
will provide developments with great impact on the science of living re-
source management in the next few decades.

The response of science to this challenge has been mixed to date. In
some cases the uncertainties continue to be ignored and point estimates
or base case analyses are provided (perhaps with a few variants to meet
questions of sensitivity). In other cases distributions of predictions are
provided, leading to risk analysis and decision tables which aim to pro-
vide probability of achieving outcomes of management interest given cer-
tain management decisions. Risk analysis and decision tables are provided
in the hope that they clearly outline the consequences of different man-
agement actions across the uncertainties in the assessment, so that the
managers can select the balance of risk across the (inevitably conflicting)
management objectives. As discussed below the experience with this ap-
proach has generally been disappointing.

An increasingly recognized point is that scientific assessment analy-
ses and management advice cannot be totally objective—scientific assess-
ments are not value-free analyses even given the best intentions and effort
(see Sainsbury et al. 1997b). No analysis can consider all possible inter-
pretations, no matter how good the software and how dedicated the ana-
lyst, and selection of the hypotheses to include involves some level of
subjective selection. Within many assessments considerable effort is put
into formulating the uncertainties so that they are as accessible as possi-
ble to statistical and other observation-based methods of analysis. But
this cannot deal with all issues and alternative interpretations, and there
remain subjective judgments about the interpretations to include and fa-
vor (i.e., give greater or lesser weight) in an analysis.
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Subjectivity in a scientific process is not surprising, and this is well
recognized in the general philosophy of science (e.g., Chalmers 1976).
However, it carries with it several important implications in the scientific
assessment process that have not been well recognized or acted upon by
scientists in their search for the single best answer to provide to resource
managers. The most obvious implication is that the receivers of the scien-
tific assessment advice should be made aware of the subjective judgments
made by scientists in conducting the assessment. Less obvious are a num-
ber of fundamental implications that arise from the use of the scientific
advice in a decision context. These implications:

• Blur the separation usually sought between the scientific and man-
agement input to decision-making.

• Challenge the common use of Occam’s razor in scientific selection
of hypotheses (i.e., acceptance of the simplest, most parsimonious
model that can explain the data).

• Call into question the scientific focus on type I error as the most
appropriate criterion for accepting or rejecting a hypothesis. (Type
I error is the probability of rejecting a true hypothesis and type II
error is the probability of accepting a false hypothesis.)

In a decision context it can be very important to carry a hypothesis
through the assessment analysis and examine its management implica-
tions—even if that hypothesis has a low probability of being correct. A
hypothesis that is rejected as being improbable on the basis of the usual
scientific criteria could and should remain in a decision analysis if it has
particularly important management implications. And the judgment to
include or exclude the hypothesis from analysis is made on a combination
of the probability of the hypotheses being correct (the stuff of science)
and the importance of the management implications (the stuff of manage-
ment utilities). The scientific and management considerations are intimately
connected. They cannot be treated separately if scientific uncertainty in
assessments is to be treated seriously in a decision-making context, and
any attempt to separate them is flawed in the logic of decision theory.

With this, two major difficulties come into play. The first is that the
management utilities that determine the importance of the management
implications, and hence influence which hypotheses should be included
in the analysis, are not readily accessible to description and analysis. These
utilities are complex, mostly qualitative, change with economic and polit-
ical circumstances, and vary across individuals. The second difficulty is
that potentially important hypotheses may not be identifiable in the data.
This difficulty will increase as the non-stationarity of ecological system
dynamics is increasingly accepted, and management increasingly accepts
the need for precautionary approaches to confront uncertainty. But this
will raise difficult questions for assessment analysts. Should the analysis
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include hypotheses with no data support, or hypotheses that are not ob-
servable even in principle, but that have dramatic management implica-
tions? Should the analysis include complex elaboration of hypotheses,
with potentially important management implications, when simple inter-
pretations are sufficient to explain the available data? Some scientists would
be inclined to conclude that an analysis using such hypotheses and hy-
pothesis selection methods is not a scientific one. But such selection meth-
ods are necessary to reflect uncertainty in the scientific assessment and
to evaluate the management consequences of the hypothesis selections
made by scientists. The scientific expedient of Occam’s razor is not ap-
propriate in a decision context. Put in Bayesian terms, Occam’s razor am-
putates the Bayesian priors carried into an analysis, and once the domain
of a Bayesian prior distribution has been restricted then strictly speaking
it cannot be recovered in a posterior distribution no matter what any sub-
sequent data indicate. Zero values in a Bayesian prior distribution should
only be used if there is sufficient information to conclude that the rele-
vant hypothesis is impossible and can be completely dismissed from all
future consideration. This would require a very high level of scientific
proof, which is lacking in most resource assessments. Yet individual re-
source assessments usually contain many such arbitrary restrictions on
the domain of the hypotheses considered—usually made on the basis of
the expertise of the analyst and with little consideration of the manage-
ment implications of the restrictions made. Type II error is highly relevant
in the context of decision analysis, but it is not the main focus of research
science or resource assessment.

Application of Occam’s razor and the focus on type I error in scientific
hypothesis testing brings a very strong and largely unrecognized condi-
tioning into the scientific assessments. But if these tools cannot be used,
then where does one stop? If hypotheses can be constructed, elaborated,
and carried into the analysis without data support, and if the criteria for
inclusion of hypotheses extend to the inaccessible and varying utilities of
managers, then how does the analysis avoid becoming arbitrary? The sci-
entific assessment approaches of the past 50 years have been very mixed
in their response to these issues. There is an indecision apparent between
embracing uncertainty and its implications as fully and objectively as
possible, on the one hand, through to using informal scientific discussion
and personal judgments to select a single base case or central point esti-
mate on the other. Current approaches are not satisfying in either a scien-
tific or management decision context.

The response of managers to scientific uncertainty in the assessments
has been similarly mixed, but three general responses are apparent.

1. Under one management response the uncertainty essentially has no
effect on management decision-making, with only the central point
estimates or base case being used. This approach relies on the skill of
the assessment scientists to come up with advice that will achieve the
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desired balance of management objectives given the analysis avail-
able—with that balance being essentially decided among scientists in
the selection of what is reported to managers. This is the “ignorance is
bliss” approach by managers to decision-making under uncertainty
(although more formally and impressively described as the certainty
equivalent approach). The ignorance is indeed bliss, until something
goes wrong—at which time the ignorance is recognized for what it is
but there is always the option of blaming the problem on the (by then)
demonstrably incorrect selections made within the scientific assess-
ment process. However, the underlying cause of the failure is a man-
agement process that does not use, or even actively filters out,
uncertainty in the scientific assessment.

2. A different management response is for uncertainty to trigger a con-
servative and precautionary approach to decision-making, in which
the risk of error due to uncertainty is borne primarily by constraints
on the resource user groups rather than by the resource. Catch is
forgone because of the uncertain effects of the harvest. This approach
is probably most fully developed by the processes adopted by the
Commission for the Conservation of Antarctic Marine Living Resourc-
es (CCAMLR); it is a weak developed element in the deliberations of
many fisheries management bodies, but it appears to be increasingly
considered. For example it is a key element in precautionary and re-
sponsible fishing as recommended by FAO (FAO 1995a,b), and the
North Pacific Fishery Management Council has very strong limits on
total allowable catches that relate to generic considerations of uncer-
tainty.

3. Another, very common, management response to uncertainty in re-
source assessments is to regard the science as providing broad bounds
of possible outcomes, with the management decisions then being ne-
gotiated on other grounds. The outcomes selected by managers may
or may not be within the bounds provided by the assessment. Gener-
ally, however, outcomes at the optimistic end of the assessment range
will be selected, because the high level of uncertainty is interpreted
as meaning that the scientific analysis provides little basis for select-
ing management actions across a wide range of possible actions. In
the perceived absence of a scientific basis for decision other criteria
dominate decisions.

The responses of scientific groups to providing management advice
under uncertainty is similarly mixed, and ranges from ignoring uncertain-
ty through to providing detailed risk and scenario assessments. However
a very common response relates closely to management approach (1) de-
scribed above. This view is that scientists have both a right and a respon-
sibility to attempt to integrate the risk across competing hypotheses and
uncertainties in the assessment, and that scientists are in the best posi-
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tion to understand and to do this integration. Under this view failure to
provide strong direction in the advice to managers is seen as an abdica-
tion of responsibility.

A key point is that while scientific and management groups must deal
with uncertainty in the resource assessments, and are increasingly at-
tempting to do so, the responses of the two groups are largely disconnect-
ed. Amazingly this applies even to the scientific and management groups
operating within the same fishery management arrangement. Very little
attention has been paid to how the approaches developed and used by the
scientists and the managers relate to one another. And some truly awful
combinations have occurred; combinations in which delivery and expec-
tations on both sides do not match, giving destructive combinations that
actually prevent one group or the other from making progress in the treat-
ment of uncertainty where otherwise the will and capacity for progress
exists.

And this is a fitting introduction to the fourth lesson from assess-
ments of the recent past.

4. Assessments Are Not Evaluated and Designed in the
Context of Their Use in the Management System
The main methods that are currently used to communicate uncertainty
from the assessment process to the management processes are risk anal-
ysis and decision table analysis (e.g., Hilborn and Walters 1992, FAO 1995b).
These approaches typically present the consequences of different pro-
spective management actions across a range of hypotheses about resource
dynamics. The consequences are expressed in terms of the measures of
management interest, such as the long-term yield or the size of the re-
source population. Risk assessments and decision table analyses are usu-
ally presented after each annual resource assessment, and the managers
use these to select management measures for the following year.

These methods are clearly a step in the right direction, in that some-
thing of the uncertainty in the assessment is transmitted to the manage-
ment process, but it does not appear to be particularly effective. There are
several problems, including mutual understanding of the analysis, and
the complexity of presentation for all but a very truncated range of hy-
potheses and management options. An important issue is the rather ab-
stract nature of the risk and consequences presented to managers in risk
analysis and decision tables. This is in stark contrast to the tangible “here
and now” consequences of management decisions on political and eco-
nomic interests. A 50% chance of the population falling below the nomi-
nated limit reference point (intended to reflect a biological safety level) in
the next ten years may seem of less concern than the Minister on the
phone expressing a view or a group of industry members at the door de-
manding continuation of their jobs. This combination of immediate pres-
sures and abstract measures of risk tends to result in decision-making
being dominated by short-term interests, and in population limit refer-
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ence points effectively becoming targets rather than population levels to
be strenuously avoided.

Risk assessment and decision table presentations appear to actually
encourage short-term tradeoff and ad hoc decision-making. This is proba-
bly because these analyses emphasize that there is uncertainty in the out-
comes, and so the situation may not get bad and if it does then the problem
will be confronted some time in the future. But probably the main issue is
that where risk analyses and decision tables are used they are used re-
peatedly and almost independently year after year in an ad hoc manner. A
high risk catch level may be chosen in some years and a low risk catch
level may be chosen in others, in a mix that depends on the pressures on
the management process. But there is little understanding, among either
the scientists or the managers, of the ultimate effects of this repeated ad
hoc annual decision-making where the degree of risk in individual deci-
sions varies according to fluctuating political and economic circumstances.
Ironically, as they are presently used, risk assessments and decision ta-
bles appear to encourage ad hoc and short-term decision-making without
improving understanding of the long-term consequences of the ad hoc
management strategy that is implied.

This raises the question of whether a particular management strategy
(that is the combination of monitoring, assessment and analysis, and man-
agement decision and implementation) can succeed even in principle. Based
on the performance of just the assessment methods, as one component of
the strategy, it is clear that we should not expect 100% success. For exam-
ple the F0.1 strategy is commonly used to provide scientific recommenda-
tions from a stock assessment, and is widely regarded as being risk averse
with respect to the resource conservation. However, a review by Mace and
Sissenwine (1993) found that F0.1 was higher than the replacement fishing
mortality (as measured by Frep) for 12% of the stocks they examined, and
so use of an F0.1 strategy could result in declining stock abundance in a
significant fraction of fisheries just because of the performance of the
assessment method.

Figure 1 describes a framework of the management system that can
be used to evaluate the performance of a management strategy in the
context of the whole management system (see Sainsbury 1993). There are
three broad components within the evaluation: the management objec-
tives from which measurable performance criteria are derived, the biolog-
ical system dynamics (coupled with the economic system dynamics, which
for simplicity are not shown in Fig. 1), and the management process (in-
volving information collection, assessment and analysis, the management
decision, and the management implementation of the decision).

The whole system in Fig. 1 can be simulated to examine its likely
performance, where performance is measured by the extent to which pol-
icy objectives are achieved. Uncertainty is treated through the use of one
or more “deep” or operating models that reflect the uncertainties of con-
cern in various parts of the system. For example, a range of operating



20 Sainsbury — Keynote

Figure 1. A general framework of the management system that can be used for
evaluation of the performance of resource assessments in the context of
the broader management objectives and processes (Sainsbury 1993).

models could be used that reflect different hypotheses about resource
dynamics, the observation process, and the implementation process. The
assessment model within the framework need not (and usually will not)
be the same as the biological dynamics model; one question of interest is
the performance of the assessment method across the range of stock dy-
namics models, in the context of the whole management processes. The
simulation results are then used to give the range of management out-
comes that could occur from use of any particular management strategy,
and the extent to which the strategy is likely to succeed despite the uncer-
tainties in resource dynamics and management implementation. Manage-
ment strategies that robustly achieve the management objectives despite
the uncertainties can be sought. The simulation results can also be used
to identify hypotheses of particular management importance under the
chosen management strategy, and so to provide a focus for targeted re-
search or monitoring to determine whether these troublesome hypothe-
ses occur in the real world.

This framework has been used by a few researchers to examine whether
the management strategies being used could be reasonably expected to
succeed using common assessment approaches. The results have not been
encouraging. In several fisheries it was found that under quite reasonable
(common) levels of uncertainty some assessments did not provide the
outcomes they had been explicitly designed to give. For example for the
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Australian eastern gemfish population, Smith et al. (1996) evaluated a
number of common assessment and management strategies. They found
that an FMSY strategy results in overfishing and the population biomass
being below BMSY in well over 50% of simulations. They also found that a
F0.2 strategy is needed to achieve the target biomass of an F0.1 strategy in
this fishery; that is, catches had to be set according to an F0.2 strategy so as
to achieve the stock reduction levels theoretically associated with F0.1.
Similar behavior of the F0.1 strategy has been found in simulations of other
fisheries (Punt 1993). In another example Francis, Smith and Wayte (Pers.
comm., NIWA, N.Z.) have evaluated an orange roughy management strate-
gy that was intended to be risk averse. The strategy was based on a repeat-
ed annual assessment in which forward population projections under a
number of catch levels are calculated, and the catch for the year is select-
ed to give a low estimated probability of violating a limit reference point.
This is an approach used in many fishery assessments. Repeated simula-
tion of this strategy across some reasonable uncertainties gave much more
frequent violation of the limit reference point than was intended and that
was specifically built into the method of selecting the annual catch levels
from the projection results. The desired level of risk aversion could be
achieved relatively easily by use of a modified (and somewhat more com-
plex) catch control rule. However, the important points from this example
are that the bias was not intuitively apparent before the simulation test-
ing was done and such simulation testing of fisheries management strat-
egies as a whole is very rarely done.

The exact reasons for the poor performance of the tested manage-
ment strategies vary between examples and are not totally clear in some
examples. However, the failures generically relate to uncertainties in the
assessment, and how these interact with the flow of data from the fishery
and the incremental catch decisions applied to the fishery.

The International Whaling Commission (IWC) used an approach and
framework very similar to that in Fig. 1 to evaluate its New Management
Procedure (NMP, de la Mare 1996). The NMP was adopted by the IWC in the
1970s; it represented the pinnacle of the classical assessment approach
and included use of a catch control rule and reference points. The assess-
ment was based on a maximum sustainable yield (MSY) concept, and re-
quired estimation of three parameters: the current level of depletion, the
MSY catch level, and the stock carrying capacity (K of the logistic popula-
tion growth model; the population size at MSY was assumed to be 0.6 K ).
The catch control rule set the total allowable catch to zero if the popula-
tion was estimated below 0.54 K, and to the MSY catch level if the popula-
tion was estimated to be above 0.6 K (Fig. 2). At the time of its development
there was confidence that the parameters could be estimated from avail-
able data with sufficient accuracy to allow reasonable application of the
approach. However, two related difficulties quickly emerged. First it was
not possible in the adversarial processes of the scientific committee of
the IWC to obtain scientific consensus on a value for these parameters,
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Figure 2. The catch control rule and stock production model used by the Interna-
tional Whaling Commission during the 1960s and 1970s. The total allow-
able catch was zero if the stock was estimated to be depleted to below
0.54 of the carrying capacity, and set equal to the Maximum Sustainable
Yield if the stock was estimated to be above 0.6 of the carrying capacity.
This was found to perform poorly (de la Mare 1996).

from either biological or catch history information. Second, simulation
tests of the management strategy across a reasonable range of uncertain-
ties about the data and stock dynamics showed that the strategy pro-
duced total allowable catches which varied greatly from year to year and
gave a high chance of low stock size (de la Mare 1996).

The lesson from the IWC evaluation, and the other simulation tests
mentioned, is that it is not sufficient simply to have reference points and
catch control rules that seem reasonable. There appears to be a common
misconception at present that just having defined and quantitative refer-
ence points and catch control rules is enough to ensure resource sustain-
ability and other management objectives. It is not. There is a need to
specifically evaluate the performance of the management strategy across
a reasonable range of uncertainties about resource dynamics and in the
context of the particular monitoring and management arrangements of
the fishery. It is worth observing that the problem with the NMP was not
with the much (and I think mistakenly) criticized concept of maximum
sustainable yield—rather that the particular approach chosen to implement
the concept was neither achievable nor robust across key uncertainties.



Symposium on Fishery Stock Assessment Models 23

Overall it is very likely that commonly applied management strate-
gies have much weaker performance, in principle, than is presently recog-
nized. To date most simulation studies to examine the performance of
management strategies have considered only a few of the uncertainties
and constraints that really exist and so are likely to underestimate the
extent of the problem. For example they have not fully reflected the real
uncertainties in the coupled nonlinear and stochastic dynamics of biolog-
ical systems in a non-stationary world, the uncertainties and asymmetric
constraints on management decisions, and uncertainties and biases in
implementation of management decisions. These are the issues that will
have to be grappled with for success in the assessment of fisheries for the
twenty-first century.

The New Paradigm?
Given the four major sources of problem with the present and recent ap-
proaches to fisheries assessment in the previous section of this paper,
what new paradigm for the mid-twenty-first century could overcome them?
The present problems are caused by a constellation of issues, rather than
a single weakness, and the new paradigm will need to encompass all of
them.

The new paradigm will integrate and be based on developments in
three major areas:

1. Concepts and methods for treatment of uncertainty.

2. Modeling and statistical methods to assimilate large and diverse data
sets.

3. Design of robust feedback strategies for the whole fishery manage-
ment system.

1. Concepts and Methods for Treatment of Uncertainty
This is the methodology and philosophy for science in social decision-
making. It is facing some critical trials at present as socially undesirable
outcomes are seen, there is a demand for greater transparency in scientif-
ic input to management decisions, and the precautionary approach to
management develops. Occam’s razor and the focus on type I error have
served science well. However, in decision-making type II error is highly
relevant, but its consideration makes necessary the specification of alter-
natives to the null hypothesis, including the more complex hypotheses
excluded by Occam’s razor and hypotheses for which there are at present
no pertinent data.

What hypotheses should be included in an analysis, and what are the
objective criteria for their selection? To what extent should an analysis
include hypotheses without specific data support, or more complex elab-
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orations of simpler hypotheses with specific data support, that have im-
portant management implications if those hypotheses were true? How
much precaution is reasonable? These are the questions that will be the
focus in the new assessment paradigm.

These issues go to the limit of what is scientifically knowable. In prac-
tice the interaction between the range of hypotheses to include and their
social utility is usually explored through an informal trial and error ap-
proach, in which decision makers are made aware of the implications of
hypotheses (often through scientific reports and sometimes via the me-
dia) and they provide feedback on the areas of particular concern and
requirements for more detail. In this way an accepted balance is estab-
lished between the scientific and management groups, but it is not a bal-
ance based on an objective or scientific method.

Approaches to development of more objective approaches can be seen
in Bayesian decision theory and in the Bayesian-frequentist debate in ap-
plied statistics (for example Punt and Hilborn 1997 and the papers in Eco-
logical Applications 6(4) give a good coverage of the views). Bayesian
methods, and especially the empirical Bayes methods, provide one way of
achieving objectivity, but strictly interpreted they contain an underlying
philosophy and interpretation that is not acceptable to some scientists.
Others, including myself, are using the methodology to address the need
without necessarily accepting all of the underlying philosophy. The Baye-
sian methods are capturing something of what is needed even if the basis
of their derivation is not fully accepted by all. But the Bayesian-frequentist
debate is engaging the issues and providing a crucible for paradigm change.
A more coherent and accepted body of theory and methods can be expect-
ed to emerge. I expect a major development in this area for the new para-
digm of the twenty-first century.

For the present my personal preference is to use empirical Bayesian
type methods for the treatment of hypothesis credibility and updating, to
document the process of hypothesis selection and weighting fully, to de-
fine prior distributions from meta-analyses that summarize previous stud-
ies as far as possible, and to ensure close interaction between scientists,
managers, and resource users in the selection of alternative hypotheses.
A useful hierarchical checklist to aid the selection and documentation of
hypotheses (see Sainsbury et al. 1997b) is:

a. The strength of support for the hypothesis in the data from the spe-
cies or fishery in question.

b. The strength of support for the hypothesis from similar species or
fisheries.

c. The strength of support for the hypothesis from any species or fish-
ery.

d. The strength of support for the hypothesis on theoretical grounds.
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2. Modeling and Statistical Methods to Assimilate Large
and Diverse Data Sets
This is probably the most active area of development at present, and many
of the papers presented at this symposium relate to these developments.
The development of computer technology is allowing analyses that were
computationally prohibitive just a few years ago. Modern computers have
made possible the development and application of algorithms that allow
efficient estimation of large numbers of parameters (e.g., AD Model Build-
er, Fournier and Hampton 1996), that provide numerical estimates of com-
plex Bayesian posteriors (e.g., Rubin 1988, Hastings 1970), that allow
structured time series modeling of processes such as natural mortality
and fishery selectivity, and that allow data assimilating models of physi-
cal and coupled physical-biological systems (e.g., Morrow and De Mey 1995).
These developments will have a major impact on modeling for resource
and environmental assessment, in that they will provide greatly improved
tools for analysis of complex systems. The growing ability to model the
coupling between physical and biological oceanography will be particu-
larly important.

At present most of the development of improved modeling and statis-
tical techniques for resource assessment is focused on the dynamics of
single species. However, this focus will increasingly expand to include
spatial dynamics (and oceanographic processes in particular), habitat dy-
namics, and food-chain dynamics. Even with advances in modeling and
statistical methods the analysis of these aspects of resource dynamics are
strongly limited by poorly developed theory and observational data. There
will need to be significant developments in the observational technology
employed in marine research and assessment before the modeling and
statistical advances can be fully exploited—technological developments
that can accurately and cheaply measure key features of the marine bio-
logical system. The development of these technologies will have the same
impact on ecological modeling as satellite observations have had on ocean-
ographic modeling.

Even with improved modeling and statistical methods, it is likely that
resource assessment models used in decision-making in the mid-twenty-
first century will be of intermediate complexity, rather than of high com-
plexity, because of the basic limitations of the observational data. This
point can be illustrated by considering the treatment of food-chain dy-
namics. A suggested food web structure surrounding the toothfish popu-
lation at Macquarie Island is shown in Fig. 3a. It is very unlikely that models
of this complexity will be used in fishery assessments and decision-making
even by the mid-twenty-first century. However, simplified “minimum real-
istic models” of such food webs will be used in decision-making, and a few
are already being used (e.g., Punt and Butterworth 1995). An important
feature of these models will be treatment of uncertainty in the structure
and linkages in the simplified food webs. So for example Fig. 3b gives a
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Figure 3a. The suggested food web for the marine system around Macquarie Island,
in the sub-Antarctic, which is subject to the developing fishery for tooth-
fish (Dissostichus eleginoides).

Figure 3b. A simplified food web thought to capture the gross dynamics of the ef-
fects of the imposition of the fishery. The major uncertainties are ex-
pressed by construction of alternative models through two changes to
the web—treating the squid as either one or two compartments, and in-
clusion or exclusion of consumption of squid by mesopelagic fish.
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simplified “minimum realistic model” of the Macquarie Island food web.
In this simplification alternative models are created, through two changes
to the web, that are thought to encompass the main uncertainties in pre-
dicting the gross effects of the fishery—the first change being treating the
squid as either one or two compartments and the second being inclusion
or exclusion of consumption of squid by mesopelagic fish.

Such approaches, combining simplified food webs with uncertainty
in their structure, will be increasingly common in fishery assessment. The
motivation will be both to improve the assessment of the fished stocks
and to address the broader ecosystem effects of fishing. These considera-
tions will quickly lead to the development and use of precautionary refer-
ence points and strategies designed to protect marine food-chain integrity.
An early example of this is the adoption by CCAMLR of a strategy based on
precautionary reference points to protect the predators or prey of the
fishery target species (de la Mare 1996). The approach is pragmatic and
motivated by a desire to limit reduction of the target species, to protect
ecosystem integrity, and to leave sufficient escapement to support the
food chain. By recognizing that the information to accurately determine
these requirements will not be easily obtained, the strategy consists of a
precautionary reference point and decision rule. The decision rule oper-
ates on the results of two calculations. The first calculation (Fig. 4a) ad-
dresses the level of reduction of the target population associated with
different exploitation rates. It involves calculating the fixed proportion of
the population that can be caught each year while ensuring that the spawn-
ing biomass has less than a 10% chance of being below 20% of the median
unexploited level of spawning biomass during a 20-year period. The sec-
ond calculation (Fig. 4b) addresses the amount of escapement of the tar-
get species from the fishery; escapement that is then available to support
food chain integrity and dependent predator populations. It involves cal-
culating the fixed proportion of the population that can be caught each
year while ensuring that the median spawning biomass over a 20-year
period is equal to either 50% or 75% of the unexploited median level; 75%
is used for designated key prey species and 50% is used for all other spe-
cies. The fixed proportions obtained from these two calculations are then
multiplied by an estimate of the biomass to give a corresponding catch
level, and the precautionary decision rule then selects the lower of the
resulting two catch levels. This precautionary strategy was tested by sim-
ulation. It attempts to account for predator-prey interactions without
engaging the full complexity, or requiring extensive information on mech-
anisms, of the real marine food web.

This strategy was initially developed by CCAMLR for the Antarctic
krill resource, but has now also been applied to some fish stocks, so as to
protect dependent predator populations.

This approach will become more common during the twenty-first cen-
tury. Specifically it will involve development and use of default and pre-
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Figure 4a. The first part in calculation of the CCAMLR precautionary catch level for
krill intended to protect dependent predator species. Simulation is used
to generate the distribution of population sizes by year without fishing
(distribution A) as a result of such things as recruitment variability, and
the distribution of population sizes with a certain fishery exploitation
rate (distribution B). The exploitation rate that gives a 10% probability of
the population being below 20% of the unexploited median level in a 20-
year period is calculated and is the first part of the decision rule to deter-
mine the precautionary catch level (from de la Mare 1996).

cautionary reference points and decision rules to protect habitats, food
chains, and ecosystem integrity. Initially these will be based on simula-
tion tests that use relatively simple models of spatial dynamics, habitat
dynamics, and food-chain dynamics. Improvements in the ability to effec-
tively use complex models with large and diverse data sources are already
clear. The element that is lagging in its development, and which will be
necessary to realize the potential of the analytic developments, is im-
proved technology and methods for observing the ocean and its biologi-
cal system.

3. Design of Robust Feedback Strategies for the Whole
Fishery Management System
The third major area of paradigm shift will be increased involvement of
science and scientists in the design and evaluation of management strat-
egies that incorporate the whole fishery management system. Presently
this task is seen primarily as the domain of the policy and management
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specialists in government bureaucracies, with science having a role in the
implementation of the selected strategies but not being central to strate-
gy design and evaluation. If there is to be significant progress in the effec-
tiveness of living marine resource assessments in the twenty-first century
this omission will have to change, and there will be need for change among
policy, management, and science specialists so as to accommodate and
integrate their different skills. Mace (1996) identifies the key elements for
future success in managing marine resources as being stakeholder devel-
opment of global conservation standards and guidelines, holistic national
policies that integrate environmental and economic sustainability, and
strengthened fishery management plans based on the precautionary ap-
proach. I totally agree with her in this conclusion, but amplify the point
that scientists are stakeholders with a contribution to make to each of
these three key elements and a responsibility to evaluate whether man-
agement plans are likely to achieve their intended objectives.

A key attitudinal shift required is acceptance that it is appropriate for
science to play a central role in the design and performance of the whole
management system. Scientists have a unique perspective and skill base
for comment—not the only one and not necessarily the most relevant one

Figure 4b. The second part in calculation of the precautionary catch level for krill.
The distribution of krill abundance after 20 years of fishing at a certain
exploitation rate is calculated by simulation (distribution C). The exploi-
tation rate that results in the median of the distribution being 75% of the
median of the unfished distribution (distribution A) is calculated. The
precautionary catch level for krill is then calculated using the lower of
the exploitation rates from Figs. 4a and 4b (de la Mare 1996).
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at all times, but one that should be utilized. It is appropriate for scientists
to comment on the design of the resource management system as a whole,
and the strategies it employs, and to engage in debate about the perfor-
mance and implications of the whole system and its strategies (e.g., Kerr
and Ryder 1997, Hutchings et al. 1997). This can be a difficult and contro-
versial task as the comments from scientists are not always welcome,
particularly if they arise during crises with major political or social im-
pact. It is an appropriate and valuable input nonetheless, particularly if it
makes use of basic scientific procedures—documenting the observations
used, documenting the methods and logic used to draw conclusions, and
peer review. Organizational and methodological difficulties aside, resource
assessment scientists of the twenty-first century will have to look beyond
their “assessment box” of Fig. 1 to be effective. Their assessments must
examine whether what is in the assessment box, when combined with the
rest of the management system, can meet the overall management objec-
tives. This will include consideration of social and economic outcomes, in
addition to the state of the ecological resources, and evaluation of various
economic and social instruments for resource management.

Paralleling and supporting this attitudinal shift is development of two
practical and tangible areas of scientific activity, and the beginnings of
development in each of these closely related areas are already in evidence.

The first is development of practical and measurable objectives and
success indicators for marine resource management. It is common for
fishery policy and management objectives to be stated very vaguely, mak-
ing the qualitative evaluation of the likely success of different implemen-
tation strategies difficult and scientific evaluation impossible. The
development of international standards and default objectives and refer-
ence points was the starting point of Mace’s (1996) suggestion for im-
proved fishery management. Increasingly scientific input is being used
alongside that of other groups in the development of practical and mea-
surable objectives. Some recent examples are the definitions of overfish-
ing for U.S. fisheries, the development of the FAO Code of Conduct for
Responsible Fishing (FAO 1995a), the FAO guidelines for use of the pre-
cautionary approach in fisheries (FAO 1995b), and recent efforts to devel-
op coherent environmental sustainability indicators for assessment of both
resource management and state of the environment. There is a long way
to go before such developments give internationally accepted and mea-
surable conservation standards for marine resources and ecosystems, but
scientific development in this area is necessary for the new fisheries man-
agement paradigm and it will receive increasing attention.

The second is the design and evaluation of robust feedback strategies
for management as a whole. This brings together and addresses a number
of issues and failings of the present approaches to resource assessment,
and will be the core of the new paradigm. It will use elements of the adap-
tive management framework of Walters, Hilborn, Ludwig and others (e.g.,
Walters 1986, Hilborn and Walters 1992), and has been referred to as a



Symposium on Fishery Stock Assessment Models 31

Management Oriented Paradigm (a MOP for untidy fisheries) by de la Mare
(in press). A key change in the focus of the science under the new para-
digm is in the attitude to uncertainty; the focus moves from a preoccupa-
tion with finding the “one true model” and instead attempts to quantify or
bound the uncertainty through explicit identification of alternative hy-
potheses. These alternative hypotheses are then used to examine the dis-
tribution of outcomes likely under any given management strategy. The
scientific assessment process under this new paradigm will focus on the
identification and weighting of alternative hypotheses, on determining
system performance as measured by the achievement of management
objectives, and on the design of feedback strategies which can use obser-
vations from targeted real world monitoring to detect departures from
intended management outcomes and guide their correction.

The new paradigm is based on examining the management strategy as
a whole, where the strategy consists of:

• Operational management objectives.

• Quantifiable performance measures based on these objectives.

• Specification of the measurements and monitoring that will be made
and how they will be used in the resource assessment.

• Specification of how the results of the assessment will be used in
management (usually via a “decision rule”) and how decisions will
be implemented.

This evaluation is usually by simulation trials across a range of alter-
native hypotheses that are thought to encompass the range of dynamics
the real world might show in response to resource harvesting.

This approach makes a very fundamental change to the central ques-
tions being addressed through scientific assessment for resource man-
agement. The first step is the requirement that scientists demonstrate the
assessment methods used can, in the context of the data available and the
management structure, meet the management goals that have been iden-
tified for the fishery. It is notable that this essential first step is not ad-
dressed in most fishery assessment processes under most present fishery
management arrangements; instead effort is usually strongly focused on
trying to reach consensus on such things as the present state of the re-
source. That is, activity is strictly within the resource assessment box of
Fig. 1.

The focus under the new paradigm will be on the robustness of the
management strategy in the context of the available information, on mon-
itoring that provides for detection and correction of errors, and on meth-
ods to successfully implement of management decisions.

In some regions of the world assessments will be almost data free,
and assessments of robustness will be based on simulation testing across
hypotheses of resource dynamics based on experience from elsewhere. In
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these situations robust management strategies will be found that exten-
sively use time-space limitations to resource access (such as closed areas
and seasons), and under these strategies considerable catch will be for-
gone to reasonably ensure sustainability under limited information. These
strategies will be close to the traditional management strategies employed
by many indigenous cultures. The scientific questions will be reasonably
easily soluble this way, but there will be a significant management chal-
lenge in effective implementation of the necessary strategy under the so-
cial and economic pressures of the twenty-first century.

In other regions assessments will be data rich and robust strategies
will use complex controls, including marine protected areas and spatial
zoning of resource use. However, it is likely that strategies which reason-
ably ensure sustainability will be found to involve higher levels of protec-
tion and forgone catch than is the case in most presently used management
strategies. Resource assessment and management in the twenty-first cen-
tury will routinely see this reduced average catch as simply an expected
cost of stability and sustainability of catches, and a consequence of the
low information content of fisheries, slow and imperfect management
implementation, and uncertainty in fishery assessments.

There are several examples where starts have already been made on
the development and application of the methods of the new paradigm.
These include South African hake (Punt 1992) and anchovy (Butterworth
et al. 1993), Australian orange roughy (Smith 1993), Australian gemfish
(Smith et al. 1996), an Australian tropical trawl fishery (Sainsbury 1991),
Icelandic cod (Baldursson and Steffansson 1993), and the IWC-revised
management procedure (Kirkwood 1993). All these examples used simu-
lation trials of the performance of the whole management system, across
a range of alternative hypotheses about resource dynamics and the obser-
vation process, and all judged performance using quantifiable measures
derived from the management objectives. The IWC-revised management
procedure was one of the earliest to develop and use the approach, and it
provides a good example (see de la Mare 1996 for details).

The IWC revised management procedure was developed from exten-
sive simulation testing of a management a framework similar to that in
Fig. 1. Observations about the stock could come from the fishery itself
and from scientific surveys, and the simulation tests were conducted across
alternative hypotheses about features such as the dynamics of the stock
(including time varying carrying capacity and population growth rate, and
episodic disease outbreaks), stock structure, bias in historical catch records,
variability in survey estimates of abundance, and time varying bias in
survey estimates of abundance. The performance measures used to eval-
uate prospective management strategies reflected the IWC management
objectives to have a high total catch, to have a low interannual variability
in catches, and to avoid serious depletion of the stock at any time. The
task then was to find a management strategy (i.e., a combination of the
observations made, the analysis or stock assessment methods applied,
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and catch control rule for determining the catch from the stock assess-
ment results) that scored well for all performance measures across all of
the alternative hypotheses about stock dynamics and observation errors.
The observations used in the strategy finally adopted were the annual
catch and regular scientific survey estimates of stock abundance (fishery
catch rate was not used to measure abundance). The stock assessment
uses a very simple two parameter difference equation model of the popu-
lation, with the parameters being carrying capacity and productivity. The
catch control rule gives a zero catch if the population is estimated to be
lower than 54% of the carrying capacity, and gives a linear increase in the
catch limit for increasing abundance estimates above this. The rate of
linear increase in the catch limit increases as the estimate of the stock
productivity increases (see Fig. 5a). A Bayesian procedure is used to gen-
erate an updated distribution of catch limits, by combining the catch and
abundance survey estimates with broad priors on the level of population
depletion, the productivity and the bias in survey estimates. The distribu-
tion of catch limits represents the uncertainty in catch limit that results
from uncertainty about the present population depletion and productivi-
ty, and selection of catches at higher or lower percentiles along that distri-
bution would give less or more conservative management strategies. The
IWC was presented with the implications of different selections to each of
the performance measures and selected the forty-first percentile as giving
the desired balance across the different management objectives (see Fig.
5b).

The key features of the approach are that considerable effort was put
into identifying the key uncertainties in the resource dynamics and obser-
vation processes, and into developing and simulation testing prospective
strategies across these uncertainties with respect to quantifiable manage-
ment performance measures. Science contributed greatly in helping to
pose the management questions in a way that allowed effective scientific
analysis, in conducting that analysis, and in clearly showing the implica-
tions that different strategies had on achievement of management objec-
tives. Selection of the desired balance across potentially competing
management objectives was not considered to be a scientific task, but
rather to be in the role of the managers.

The IWC example illustrates the evaluation of a passively adaptive
management strategy. In passively adaptive management strategies, the
fishery controls (such as catch) are altered in response to perceived changes
in the resource toward or away from the desired resource state. Contin-
ued passively adaptive management will result in some empirical learn-
ing and resolution of uncertainty about the dynamics of the resource, but
no specific changes in the fishery controls are taken to increase this rate
of learning. Consequently the rate of learning can be very slow because
often a fishery provides a weak experimental design for discrimination of
alternative hypotheses about population regulation. There is often weak
statistical contrast between alternative population control variables, such
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Figure 5a. The catch control rule for the IWC’s revised management procedure. The
proportion of the population caught increases linearly above a threshold
level, and the gradient of this straight line increases as the estimated
productivity of the stock increases (de la Mare 1996).

as population size, recruitment level, environmental variables, fishing
intensity, and the size of other populations in the ecosystem; thus even
after many years of observation there is not definitive discrimination be-
tween alternative hypotheses. If it is sufficiently important to separate
some of these alternative hypotheses, as for example if they had signifi-
cantly different management implications, then specific management ex-
perimentation may be justified. In such actively adaptive or experimental
management strategies the fishery controls are altered specifically to im-
prove the rate of learning about some important alternative hypotheses
about the fishery. The design of an actively adaptive management strate-
gy contains elements of experimental design to scientifically distinguish
alternative ecological hypotheses (and in principle also hypotheses about
economic and social dynamics). The performance of prospective actively
adaptive strategies is evaluated using the same performance measures,
derived from the management objectives, as would be used for passively
adaptive strategies. The resolution of the alternative hypotheses is not an
end in itself, and use of an actively adaptive strategy is justifiable only if
it leads to an improvement in these performance measures that is accept-
able to the managers and other relevant stakeholders.

There are two well developed examples of actively adaptive manage-
ment in Australian fisheries; one dealing with species composition chang-
es in a tropical multispecies trawl fishery on the North West Shelf (Sainsbury
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1991, Sainsbury et al. 1997a) and the other dealing with the effects of line
fishing on the Great Barrier Reef (Mapstone et al. 1996). Development of
both strategies involved identification of uncertainties in understanding
of the dynamics of the resource and formulation of explicit alternative
hypotheses intended to reflect the range of responses to fishing thought
to be reasonably likely. Both also involved detailed comparison of the
performance of various possible strategies, including passively adaptive
strategies, and extensive interaction between scientists, managers, and
other stakeholders. The North West Shelf strategy was designed to dis-
criminate among four hypotheses that could explain undesirable changes
in species composition following the introduction of trawling. Field im-
plementation of the North West Shelf strategy involved closure of some
large areas to trawling. This has been under way since 1986 and has pro-
vided the expected resolution between the alternative hypotheses of re-
source dynamics. The Great Barrier Reef strategy was designed to provide
estimates of the parameters of key population and fishery interaction pa-
rameters in a complex and spatially interconnected system of reefs. The

Figure 5b. A Bayesian method is used to calculate a posterior distribution of the
catch limit from data on catches and resource surveys combined with
prior distributions on the uncertainty in stock depletion, stock productiv-
ity, and bias in resource surveys. Selection of any particular catch limit
has associated with it a distribution of outcomes for each of the manage-
ment performance measures, which relate to management objectives
such as maintaining the stock and catches. The IWC selected the forty-
first percentile as providing the desired balance of outcomes across its
management objectives.
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experiment began in 1997, and the experimental design involves the use
of four clusters, each of six reefs, and a sequence of opening and closing
some reefs to fishing while others remain constantly open or closed.

Conclusions
So where do these thoughts leave us in speculating about the living ma-
rine resource assessments of the mid-twenty-first century?

The resource assessments will have to deal with more resource uses
and users, more data and more diverse data sources (including new tech-
nologies for observing the marine system), more conflict over resource
sharing, and complex spatial, habitat, and food-chain effects. There will
still be a high level of uncertainty in the appropriate structure and param-
eter values for the models used in assessments. However, the assessments
and related management structure will operate under a different para-
digm and process. The central tenets of this paradigm will be precaution-
ary management and the use of management strategies that have been
scientifically demonstrated to robustly lead to achievement of manage-
ment objectives despite the key uncertainties faced. The associated re-
source assessments will explicitly recognize model uncertainty, and will
focus on evaluating the performance of prospective strategies. The key
issues will be the identification and weighting of alternative hypotheses,
the robustness of management strategies to uncertainty, and the design
and performance of the management system. The management environ-
ment will include extensive stakeholder participation, and the manage-
ment system will explicitly search for and use suitable social and economic
incentives and management instruments to achieve its goals.

If living marine resource management is to be more successful in the
twenty-first century than it has been in the twentieth century, then scien-
tific resource assessments will need to adopt a new paradigm something
like that outlined, and we will need to be more successful at linking sci-
ence into the management system in a practical and effective manner. If
this is not done then the future for marine living resources, and the indus-
tries and people dependent on them, is gloomy indeed. However, the out-
line of some features of the new paradigm appear to be forming now and,
even if there are still some surprises in store, the appropriate way forward
is there. I believe and hope that we will develop and adopt a new paradigm
for marine resource assessment, and that we will be more effective in
linking the science with practical fishery management. But we have a lot
of work to do.
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Abstract
While the modernization of fishery management tools is increasing through-
out the world, developing countries are still trying to build appropriate
data collection mechanisms with limited facilities and in fisheries critical
condition. Despite the depletion of resources, our fishery scientists usual-
ly find an inappropriate context for assessment, expressed in particular
by uncertain or nonexistent data and poor estimation of spatial and tem-
poral scales. This is the case in Brazil, which has always found it logistical-
ly very difficult and expensive to collect data along its 8,000 km long
coast where artisanal activities account for more than 50% of the activity.
However, São Paulo state fisheries data have been considered one of the
most complete and robust, especially due to the Instituto de Pesca collec-
tion efforts that have carefully archived historical landing data in a classi-
cal approach since 1968.

This paper gives an overview of the situation with São Paulo State
fisheries and databases with the aim of evaluating the possible kinds of
data inputs and outputs for stock assessment. Critical points will be dis-
cussed. The industrial fleet is composed mainly of sardine seiners, shrimp
and paired bottom trawlers, gillnetters and tuna longliners. Fleet size and
discards are scarcely known. Besides data collection based on interviews,
vessel owners also contribute information about total fish production.
Unfortunately, fishery effort data has been obtained only for part of the
landings, and provide inaccurate estimates. Recently, with the increase in
landing sites, the decreasing number of official data collectors, and poor
research budgets, complete data collection is becoming more of a chal-
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lenge. However, the lack of information on other fisheries that share the
same stocks is the most critical assessment problem, resulting in poor
estimates of total stock catch and effort. The need to improve data acqui-
sition and archive strategies is clear. Nevertheless, information currently
available is essential and valuable if we wish to discuss how to use and
optimize our resources properly.

Introduction
Several problems concerning stock assessment can often be the result of
failed data collection practices.  An evaluation of the condition of fishery
data can be a starting point to make possible the implementation of stock
assessment procedures in places where these practices are not systemat-
ic. São Paulo state industrial fishery landing control historically seems to
be one of the most robust and consistent in Brazil. The most challenging
problems concern catch and effort data collection. However, at present,
these limitations can seriously compromise fishery production estimates
for stock assessment.

This work aims to show a synthesis of the present status of fisheries
and a review of data collection practices and stock assessment methods
in the state of São Paulo. A fishing activity overview and a comprehensive
description of data sources are the focus of this report so that a search for
alternative solutions to future assessment may be reached.

Methods
The information used in the evaluation was obtained from several pub-
lished articles, official statistics, reports, personal communications, fish-
erman and researcher interviews, and field work.

Sources included: SUDEPE (no date), Ripley (1956), Richardson and
Moraes (1960), Braga (1962), Vazzoler and Vazzoler (1969), Neiva and Moura
(1977), SUDEPE/PDP (1985), Bendazoli and Rossi-Wongtschowski (1990),
Valentini et al. (1991a, b, c), Valentini and Cardoso (1991), and Zavala-
Camin and Antero da Silva (1991), IBAMA (1992, 1993, 1995), Lin (1992),
Cergole (1993), Arfelli and Amorim (1994), Tiago et al. (1994), Amorim et
al. (1995), Castro and Castro (1995), Costa et al. (1995), Rossi-Wongtschows-
ki et al. (1995), Dias and Dornelles (1996), SEMA (1996), Silva (1996), Tomás
(1996), Arfelli et al. (1997), Gasalla et al. (1997), REVIZEE (1997).

Field work consisted in personally checking the number of operation-
al fishing boats of the region and interviewing fishermen. This process
allows a fair estimate for fleet size.

Information on the present situation of fishery databases was obtained
from the Instituto de Pesca Marine Fisheries Research Center.
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Brief Historical and Socioeconomic
Background
The state of São Paulo is located in southeastern Brazil, the most econom-
ically developed region of the country, which hosts the largest South Amer-
ican metropolis, São Paulo City, with about 16 million people. Crossed by
Tropic of Capricorn and extending between 23°33′ and 25°18′28″S and
44°43′24″ and 48°14′18″W, its coastal zone is about 700 km long (north-
east-southwest direction) (Fig. 1). São Paulo coastal zone shelters Atlantic
tropical rainforest remnant regions, with great biological diversity and
geomorphological complexity, including estuaries, mangroves, caverns,
rivers, rocky and sandy shorelines and several islands. Santos region, lo-
cated 70 km from São Paulo City, is the most urbanized part of the coast,
and supports the biggest South American harbor and an industrial petro-
chemical complex. It is the most environmentally impacted as well.

In 1991, 1,647,235 inhabitants were living in São Paulo state’s coastal
zone, depending on tourism, agriculture and fisheries (SEMA 1996) for
economic support. As this marine coast represents an extensive area for

Figure 1. Location of fishery area of São Paulo fleet.



44 Gasalla & Tomás — Fisheries Data and Stock Assessment in SE Brazil

fisheries, its landing harbors provide a significant part of the big São Pau-
lo City commercial fish for market. Even though the fishery sector seems
to play a minor role in the economy when compared with other agricultur-
al activities, the economic importance of fisheries tends to be highly lo-
calized and concentrated. Fish, as food, is important for people living
along the coastal zone and fisheries directly or indirectly represent an
important source of employment and livelihood. The fisheries sector pro-
vides different kinds of employment varying with the type of exploitation
and level of commercialization. Small-scale fisheries are labor intensive
and families benefit greatly from this type of employment. No public reg-
ulation (such as credits, minimum price control, or government incen-
tives) is presently available to this sector.

The São Paulo total coastal fleet fisheries area encompasses 5,308
square km and experiences high fishing effort from other states’ fleets.
Compared with other South American continental shelves, São Paulo state’s
shelf is narrow (with a maximum width of 110 miles, at Santos), with a
sandy and muddy bottom especially favorable for trawling activities.

São Paulo total landings represent about 10% of total Brazilian catches
and showed a downward trend especially after 1984. Fig. 2 shows the
evolution of São Paulo State total landings from 1947 to 1995. In 1984,
São Paulo’s harvest of fish from capture fisheries reached a level of 131,000
tons. In 1995, official data indicates values of 35,000 tons. On average,
fishes contributed 87% annually, and crustaceans and mollusks, 13%. The
most important regional fishery resource is the Brazilian sardine, whose
industrial landings contribute about 50% of total annual landings, followed
by demersal fishes and shrimp. Figs. 3 and 4 show the makeup of the
fishing gear and species resources.

It is difficult to identify the line between subsistence and commercial,
or between industrial and small-scale fisheries in this region. Small-scale
fisheries have a great historical and socioeconomic importance for the
traditional coastal population (called “caiçaras”). They have been losing
traditions and lands due to intensification of tourism and real estate ex-
pansion in coastal areas. To date, no restricted area is guaranteed to small-
scale fishermen. They have been adapting several typical artisanal fishing
gears, such as set traps, gillnets, beach and haul seines, trammel, fyke and
hoop nets, squid hook-and-line, and others. No up-to-date fleet size esti-
mates are known for these fisheries.

Present Situation of the Fishery
A complete picture of São Paulo state’s main fisheries is shown in Tables 1,
2 and 3, including target species, fleet characteristics, evolution, and a
synthesis of regulation procedures and constraints. These tables present
the context necessary for understanding the general problems of the fishery.
The evolution of the main stock landings in the state of São Paulo and in
the entire landing area is shown in Figs. 5, 6, 7, 8, 9, and 10.
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Figure 2. Evolution of São Paulo landings.

Figure 3. Relative importance of fishing gear in São Paulo 1995 landings
(tuna longlining not included).
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Figure 4. Relative importance of main resources in São Paulo 1995 land-
ings.

The Federal government, through legal norms implemented by the
Brazilian Institute for Environment and Natural Resources (IBAMA) regu-
lates fisheries in Brazil.  Decisions from this organization are often based
on studies and scientific work group technical reports. Beyond these re-
sults, stock assessment is not a systematic practice, nor are management
decisions based on specific reference points.

São Paulo State’s Fishery Data Collection
and Stock Assessment
Background
São Paulo landings statistic control program began in 1942, and was con-
ducted until 1946 by federal agencies (Braga 1962). This data was gath-
ered by a local research group coordinated by FAO technicians in the 1950s
and 1960s, such as Ripley (1956), Richardson and Moraes (1960), and Vaz-
zoler and Vazzoler (1969). All later sampling strategies were based on this
approach.  Data were based on interviews of fleet captains in which qual-
ified collectors registered data on logbooks. The fishermen’s own record
prints had several problems due to the captain’s education level. The sam-
ple unit was Santos commercial fleet, which in 1958 landed at only three
well-controlled points.

The Instituto de Pesca, a state public institution for fishery research,
made fishery collection efforts after 1968 using the previous methodolo-
gy. The objective was to verify stock tendencies and not to survey total
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fish landed in the state of São Paulo. At that time, a minimum condition
for data collection and handling was ensured and information was care-
fully archived. Over time, as budgets, agreements, and vacancies were
cut, the statistics control system lost accuracy and collecting and inter-
preting fishery data became a big challenge. The public resource reduc-
tion period was coincidental with the beginning of the first shrimp and
sardine fishery crisis. After 1988, the only public fishing warehouse was
privatized causing social upheaval in the fishery sector as a result of in-
creasing taxes. It included fleet landing moving to clandestine points and
to other state’s harbors. This disruption of fleet dynamics and landings
made it difficult for the fishery inspection and survey.

Stock assessment has not been a regular practice systematically ap-
plied to this fishery; however, the scientific community always made ef-
forts to make recommendations to the federal management.

Present Situation
Fishery-Dependent Data
The Instituto de Pesca has an ongoing interview-logbook database pro-
gram for the state of São Paulo. Presently, there are only five official data
recorders, regularly collecting landing reports on local fishing wharves.
Reports follow the traditional approach (as shown in Braga 1962), consid-
ering 60 fish categories and a fishing area divided in blocks of 10° on a
side. Information is collected on field data sheets, but some industries
also provide commercial bills or fishing logs. Improved in 1994, the present
sample unit is Santos, Cananeia and Ubatuba region landings.

Fishery data include fishing area, depth, sampled landing catches,
and randomly sampled information about fishery effort, which is used to
derive CPUE estimates. Effort is measured in number of boats, trips, hauls,
fishing hours and hooks, and often number of small-scale fishermen. Table
4 shows, for the main fisheries, the percentage of landed catches for which
effort data are computed. Landed catch information is periodically ob-
tained by collectors, interviews, logbooks, and industry commercial bul-
letins. Logbooks are filled out and sent in only by tuna fleet captains.

Compared with other periods, there was an increase in landing sites
and a reduction of data collectors. Table 5 shows the sampling coverage
on observed landing sites. These data indicate poor estimates of small-
scale activities.

The main problems observed in the evaluation are the sampling  strat-
egy due to the increase in landing points and the reduction of research
budget and fieldwork personnel.

Onboard discards are unknown, and catchability and selectivity esti-
mates cannot be derived nor can the real fishery impact on the ecosystem
be determined.
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Table 4. Percentage of landings with known effort information, in the
last 5 years.

Sardine Pink shrimp Sea-bob shrimp Tuna
purse seine  trawl  trawl longline

100% 78% 53% 100%

(in number of boats) (in fishing hours) (in fishing hours) (in number of hooks)

Demersal fishes Groundfishes Anchovy Sharks
trawl bottom longline  seine  gillnet

85% 100% 100% 0%

(in fishing hours) (in number of hooks) (only in number
of fishermen)

Table 5. Present sampling coverage in the state of São Paulo.

Number of Number of estimated Number of known
licensed boats operational boats landing sites

Fishery

Industrial 401 421 9

Small-scale 621 >2,500 32

Landing sites covered by
data collectors (%) Landing sites where biological

Daily Sporadically sampling is done (%)

Fishery

Industrial 11.1 100 71.3

Small-scale 12.5 15.7 3.1
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Figure 5. Brazilian sardine 1964-1994 landings.
Dark line = total landings (TL); weak line =
São Paulo landings (SP).

Figure 6. Pink shrimp 1965-1995 landings, show-
ing total (TL) and São Paulo (SP) landings.

Figure 7. Sea-bob shrimp 1965-1995 landings, show-
ing total (TL) and São Paulo (SP) landings.



Symposium on Fishery Stock Assessment Models 55

Figure 8. Tuna and tuna-like São Paulo 1971-1995
landings by species/category (TUN =
tunas; SWO = swordfish; SHA = sharks,
and BILL = billfishes).

Figure 10. Broadband anchovy 1974-1996 landings in
São Paulo.

Figure 9. Demersal fish 1968-1995 landings in
São Paulo by species (WC = white croak-
er; KW = king weakfish; TG = trigger-
fish; JW = Jamaican weakfish).
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Data archiving on computers has begun in the last few years. Recent-
ly, there is a database project aiming to include complete fleet landing
and biological sampling information in Microsoft Access 7.0® framework.

Fishery-Independent Data
Oceanographic cruises also gather fishery survey reports and environ-
mental data, and are conducted by universities (University of São Paulo
and University of Rio Grande). Effort is concentrated only on a small part
of the stock at any given time. The Instituto de Pesca has carried out sev-
eral exploratory cruises using several gear types, such as traps, light at-
traction, sliding net, and tuna and bottom longlining.

Principal Stock Assessment Methods
Some assessment techniques were applied to some stocks from south-
eastern Brazil, landed in the state of São Paulo, such as sardine, shrimps,
croakers, weakfish and swordfish. A Yield Isopleths Analytic Model (Bev-
erton and Holt 1966), a Cohort Analysis (Pope 1972), VPA and a Length
Cohort Analysis (Jones 1974) were used to the brazilian sardine stock
(SUDEPE/PDP 1985; Cergole 1993). A Surplus Production Model (Schaeffer
1954) and a generalized Production Model (Fox 1970) was applied to the
main shrimp and demersal fish stocks, as pink and sea-bob shrimp, croak-
er and weakfish. Recently, another study from Arfelli (1996) applied a
Yield Analysis for Polycohortical Populations (Santos 1992) to the sword-
fish stock.

Discussion
The historical data collection on the São Paulo fishery can be used to study
the evolution of regional fishery problems; however, some critical points
must be observed to improve present and future data sampling for stock
assessment.

The reduction of research budgets and technical personnel focusing
on fishery data collection and the multiplication of landing sites can fur-
ther damage the São Paulo database program. As Braga pointed out in 1962,
the uniformity of future statistical surveys depends on centralized land-
ing operations. At that time, there were only three landing points; present
work estimates 9 industrial plus 32 small-scale, excluding extra clandes-
tine and unknown points of landing. For instance, part of the shrimp pro-
duction is landed at points where there are no data collectors, resulting in
underestimates of total catches. Sardine can also be often underestimated.

On the other hand, São Paulo state’s fleet dynamics is very complicat-
ed and unstable. Studies on fleet behavior have shown that, after one or
two years, the situation can completely change (Tiago et al. 1994, Gasalla
et al. 1997). Sporadic better conditions or higher prices in other regions



Symposium on Fishery Stock Assessment Models 57

can decrease landing values at controlled points, without indicating a down-
ward trend in the stock. The limited knowledge of total fleet size is anoth-
er limiting factor to fishery analyses; there is poor or nonexistent fleet
characterization and effort standardization, as well as fishing power. Not
having selectivity or catchability estimates available can result in indices
of abundance that poorly reflect stock size.

Another criticism of these data sources for stock assessment are the
poor estimation of spatial and temporal scales and inaccurate effort mea-
sures. Uncertain total stock catch estimates are due to the lack of data
from other states, where often no database is implemented or available. It
is also necessary to evaluate precision and accuracy of different data
sources and also biased sampling practices.

The development of new data acquisition and archiving strategies
should be seriously recommended. We suggest as possible solutions to
these problems the implementation of a new sampling program able to
define a spatial strategy scheme to derive fleet analysis studies including
fluctuation of catchability, better species composition analysis, and ef-
fort-related factors, such as efficiency of targeting the resource. To pro-
vide useful information for stock assessment and to monitor the health of
the stocks, it will be necessary to have this process standardized in the
entire area, including the other states of the region. Funding will be neces-
sary to provide education to the fishery sector as well as the implementa-
tion of a statistics program.

New Insights
Despite the difficulties observed in fishery science and managing fisher-
ies, we can still set goals for future work on fishery stock assessment:

1. Acknowledge the uncertainty of historical data.

2. Consider new statistical tools to treat uncertainties and probabilities.

3. Search for alternative regional methods, considering the fisheries as a
predator and studying its local strategies.

4. Search for alternative management options, such as cooperative man-
agement or co-management.

5. Improve ecological knowledge of fisheries, relating target species to
other species in the environment, aiming towards broadly based man-
agement of the ecosystem.

“We have at present only very limited ability to predict the influence
of various factors on the catch of fish; hence we cannot be sure what new
kinds of information will improve our predictions, or make management
schemes more effective and efficient.” (Dickie 1978)
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Abstract
Observers on board fishing vessels have gathered data from Bering Sea,
Aleutian Islands, and western Gulf of Alaska crab fisheries since 1988.
That data has provided estimates of catch per unit effort (CPUE) for both
the directed catch and bycatch during the commercial fisheries. Because
observers can sample only a small portion of the total effort from an ob-
served boat and because observers are present only on the catcher-pro-
cessor component of the commercial fleet in some fisheries, an evaluation
of the precision and accuracy of fishery-wide CPUE estimates derived from
observer pot samples is needed. We present such an evaluation for ob-
served crab fisheries prosecuted in 1995. CPUE estimates and their stan-
dard errors were generated from data collected by observers from 27,627
pots sampled in 1995 fisheries and stratified by vessel-days. Estimates of
mean CPUE for retained legal crabs were within 8% of CPUEs generated
from confidential interviews in 10 of the 13 fisheries. Estimates of mean
CPUE for retained legal crabs were within 8% of CPUEs generated from fish
ticket delivery records in two of the five fisheries with less than 100%
observer coverage. Differences larger than 8% between observer-based
estimates and confidential interviews or fish ticket data were largely at-
tributed to the small number of pots sampled by observers in those fish-
eries. Standard errors were in general very small, indicating the CPUE
estimates were precise. Standard errors of CPUE estimates generated from
bootstrap simulations were all equal to or less than the standard errors
computed analytically. Bootstrapping also indicates that the sampling dis-
tributions for CPUE estimates of retained-legal crabs and commonly en-
countered bycatch are unimodal and symmetric.
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Introduction
Observers on board fishing vessels have gathered data from Bering Sea,
Aleutian Islands, and western Gulf of Alaska crab fisheries since 1988.
Development of a mandatory observer program for crab fisheries in Alas-
ka was initiated primarily to assure that the sex and size-limit restrictions
in king (Lithodidae) and Tanner (Chionoecetes bairdi) crab fisheries were
enforced on at-sea processing vessels. Whereas Alaska Department of Fish
and Game (ADFG) dockside samplers could assess the crabs delivered to
shore-based processors, prior to 1988 ADFG had no authority or program
to sample the crabs that were processed at sea. By 1990, observers were
required on all catcher-processor vessels (C/Ps) or floating-processor ves-
sels processing king crab or any species of Chionoecetes at sea in Alaska.

Collection of biological or fishery data was a secondary motivation at
the inception of Alaska’s crab fishery observer program. However, as well
as collecting data from the catch retained for processing, crab fishery
observers afforded the opportunity to record information from the non-
retained catch by sampling the catch of randomly selected pot lifts from
C/Ps. The utility of observers in collecting biological and fishery data was
soon apparent and by the mid-1990s observers were also required on all
vessels fishing in the Korean hair crab (Erimacrus isenbeckii) fishery; all
vessels targeting scarlet king crab (Lithodes couesi), grooved Tanner crab
(Chionoecetes tanneri), or triangle Tanner crab (C. angulatus); and all ves-
sels participating in the red king crab (Paralithodes camtschaticus) and
brown (or “golden”) king crab (Lithodes aequispina) fisheries in the Aleu-
tian Islands. Data collected from those fisheries by observers provided
information that could not otherwise be obtained, including information
on the geographic and temporal distribution of fishery effort, on levels
and distribution of directed catch and bycatch, on the biological charac-
teristics (e.g., size, sex, and reproductive condition) of discarded bycatch,
on fishing methods (e.g., soak times and escape mechanism employed),
and on the effectiveness of gear modifications in reducing bycatch.

Data on catch rates and sex-size-species composition of discarded
bycatch crabs has been of particular interest to fishery regulators and
researchers. Effort during an Alaska crab fishery season is typically di-
rected on only one species and participants are permitted to retain only
one or a few species. Only males may be lawfully harvested and a mini-
mum size for legal retention is established for each exploited species in
an area. All females, undersized males and non-permitted species must
be immediately returned unharmed to the sea. Total harvest and catch
rates (crabs per pot lift, CPUE) of retained legal males has been well mea-
sured in the Alaska commercial crab fisheries due to the state’s require-
ment that catch and effort (pot lifts) for each landing be recorded on an
ADFG fish ticket, coupled with the state’s program of sampling catch and
interviewing skippers at deliveries. Prior to the initiation of the crab ob-
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server program, however, information on discarded bycatch was not avail-
able to fishery managers.

CPUE and composition of the bycatch is of interest for two reasons.
The first is that it provides the information necessary to address Alaskan
and federal government intentions to minimize bycatch. The second is
that it provides information on female and undersized males that is not
available from some unsurveyed crab stocks. Since 1993, virtually every
consideration by the Alaska Board of Fisheries (BOF) of regulations per-
taining to area closures, season openings, size limits, gear restrictions,
and gear conflicts in Bering Sea and Aleutian Islands crab fisheries has
been directly informed by observer data on bycatch. CPUE of bycatch as
estimated from observer data has, for example, been used to assess the
effectiveness of area closures in reducing red king crab bycatch in the
Bering Sea Tanner crab fishery (Tracy and Pengilly 1996) and as input to
fishery models used to assess harvest strategies in the Bristol Bay red
king crab fishery (Zheng et al. 1997a, 1997b). As observer-based estimates
of bycatch CPUE become increasingly relied upon in the development of
regulations, management decisions, and management strategies for Alas-
ka crab fisheries, the reliability of those estimates needs to be examined.
That is particularly true in cases where observers are present on only a
distinct component of the fleet, the C/Ps.

We present information on the variability (standard errors and coeffi-
cients of variation) and sampling distribution of crab CPUE estimates that
were based on observer pot sampling from fisheries prosecuted in the
Bering Sea, Aleutian Islands, and western Gulf of Alaska during 1995. The
goal here is to help fishery managers, researchers, and regulatory bodies
judge the reliability of the historic bycatch CPUE estimates that they use.
We also examine the legal crab CPUE estimates, their estimated standard
errors, and estimated sampling distribution in comparison with the CPUE
of legal crab computed from fish tickets and skipper interview data. We
assume that the CPUE, computed from fish tickets and skipper interview
data, is the actual CPUE against which the bias and sampling error of the
observer-based estimate can be directly examined. Although the CPUE es-
timates of bycatch crab are generally of interest to users of the observer
data, there are no independent estimates of bycatch CPUE that allow for
an assessment of bias and sampling error. The results for the legal crab
estimates should, however, provide some guidance on the conditions that
affect the reliability of the bycatch CPUE estimates and assist in interpret-
ing the estimates of crab bycatch presented in annual crab observer data-
base reports (e.g., Boyle et al. 1996). Our results also have relevance to the
planning and designing of observer pot-sampling protocols in the future.
Nonetheless, our goal here is not to determine optimal pot-sampling pro-
cedures for observers, because that determination must consider other
factors and other priorities for observer deployments that are beyond the
scope of this paper.
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Methods
Data Collection
ADFG managed 13 Bering Sea, Aleutian Islands, and western Gulf of Alas-
ka crab fisheries during 1995 in which observers were present on at least
some fishing vessels (Table 1). Effort in those 13 fisheries was targeted on
eight species: red king crab, blue king crab (Paralithodes platypus), brown
king crab, Tanner crab, snow crab (Chionoecetes opilio), grooved Tanner
crab, triangle Tanner crab, and Korean hair crab. In aggregate, those 13
fisheries covered an area extending 1,600 km east-west and 1,000 km
north-south (Fig. 1).

Prior to deployment of observers, the ADFG observer coordinator es-
tablished a target daily number of pots to sample and observers were
instructed to randomly select and sample that number of pots each day
from all periods during which fishing occurred. The target daily number
of pots to sample was determined for each fishery on the basis of the
anticipated time available for pot sampling given other duties and the
anticipated time required to sample a pot. For example, a target of only

Table 1. Vessel participation, observer coverage, total pot lifts, and num-
ber of pot lifts sampled by observers in Aleutian Islands, Bering
Sea, and western Gulf of Alaska crab fisheries during 1995.

Total Observed Total Sampled
Fishery vessels vessels potlifts potlifts

Bering Sea snow craba 253 19 506,802 1,530

Bering Sea Tanner craba 196 11 247,853 421

St. Matthew blue king craba,b 90 2 48,560 47

Pribilof red and blue king craba 119 1 107,521 34

Adak brown king craba,c 34 4 319,006 1,430

Adak red king crabd 6 6 2,265 263

Dutch Harbor brown king crabd 17 17 65,732 2,512

Bering Sea Korean hair crabd 21 21 447,555 10,117

Bering Sea grooved Tanner crabd 8 8 60,069 4,407

Eastern Aleutian grooved Tanner crabd 7 7 71,931 4,216

Western Aleutian grooved Tanner crabd 5 5 11,324 1,096

South Peninsula grooved Tanner crabd 7 7 7,248 925

Eastern Aleutian triangle Tanner crabd 1 1 Confidential 629
a Observer coverage mandatory only on catcher-processors (C/Ps).
b Observer also deployed on one catcher-only vessel.
c Observers also deployed on two catcher-only vessels.
d 100% observer coverage mandatory.
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Figure 1. Location of pots sampled by observers in Aleutian Islands, Bering Sea,
and western Gulf of Alaska crab fisheries during 1995.

four pots per day was established for observers stationed on C/Ps in the
Bering Sea snow crab fishery, because pot sampling in that fishery is time
consuming due to the typically high CPUE and because observers on C/Ps
have numerous other duties, such as sampling crabs retained for process-
ing. On the other hand, a daily target of 40 pots was established for ob-
servers in the Bering Sea Korean hair crab fishery, because vessels in that
fishery typically perform a large number of pot lifts with low CPUE each
day and because the observers had no duties associated with monitoring
the processing of crabs. The number of pots sampled did occasionally
vary from the daily target due to, for example, weather conditions or lim-
ited effort for the day.

Observers categorized and enumerated by species the catch from each
sampled pot. All commercial crab species were also categorized and enu-
merated by sex and legal status. Although observers collect data on all
species captured and on other biological attributes of captured crabs, in
this paper we present only the results for data collected on CPUE of legal
and bycatch crabs from the targeted species.

Data Analysis
We use CPUE to denote the average number of crabs caught per pot lift for
an entire fishery season for some defined component of the fleet. We also
make a distinction between the “observed fleet” and the “total fleet” for
fisheries in which observer coverage is less than 100%. In no fishery con-
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sidered here with less than 100% observer coverage (Table 1), can the
observed fleet be considered a random sample of the total fleet. The ob-
served fleets in the Bering Sea snow crab, Bering Sea Tanner crab, and
Pribilof red and blue king crab fisheries were made exclusively of the
relatively few participating C/Ps. In the St. Matthew blue king crab and
Adak brown king crab fisheries, the observed fleets also included catcher-
vessels that voluntarily carried observers. In cases where observer cover-
age is less than 100%, there are two sources of error if CPUE estimated
from observer pot samples is used to estimate the actual CPUE for the
total fleet: differences between the actual CPUEs of the observed fleet and
the total fleet; and, as exists with 100% observer coverage, differences
between the actual CPUE of the observed fleet and that estimated from the
pot samples.

Because a target number of pots to sample each day from each ob-
served vessel was stipulated in the observer sampling procedures, the
estimates of CPUE for the observed fleet and their standard errors (SE)
were computed according to a stratified sampling model for estimation of
a population mean (Cochran 1977, equations 5.1 and 5.12) in which each
vessel-day combination is a stratum. Details on application of the strati-
fied sampling model in computation of estimated CPUE and its standard
error in this application are provided in Boyle et al. (1996). Coefficients of
variation (CV, the estimate divided by its standard error and expressed as
a percentage) were computed as standardized measures of the estimator’s
variability.

The sampling distribution of the CPUE estimates for the observed fleet
was assessed by resampling the data with replacement (“bootstrapping”;
Efron and Tibshirani 1993). Resampling was performed in accordance with
the stratified sampling model by resampling at the level of the vessel-day
strata. That is, each bootstrapped estimate of CPUE required resampling
with replacement from the data on catch per pot lift within each vessel-
day up to the number of pots actually sampled on the vessel-day. The
bootstrap process of computing CPUE was replicated 500 times to provide
an estimated sampling distribution, estimated mean, and estimated stan-
dard error that could be compared with the CPUE estimate and standard
error computed analytically from the stratified sampling model.

Daily confidential interviews with vessel skippers performed by on-
board observers provided data on daily effort and catch of retained legal
crabs for each observed vessel. The CPUE of retained legal crabs comput-
ed from confidential interviews served as the standard for assessing error
and bias in the observer-based estimates of CPUE for the observed fleet.
We refer to the retained legal CPUE estimated from confidential interview
data as the “actual observed fleet CPUE” (AOF CPUE). In fisheries with 100%
observer coverage, the AOF CPUE also provides an estimate for the total
fleet. In those fisheries with less than 100% observer coverage (Table 1),
ADFG fish tickets, supplemented with confidential interviews of skippers
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by dockside samplers, provided data on CPUE of retained legal crabs for
the total fleet. We refer to the CPUE of retained legal crabs estimated from
the fish ticket data for all fishery landings as the “actual total fishery CPUE”
(ATF CPUE). We expressed the difference between the actual CPUE and that
estimated from observer data as a percent error:

    
Percent error

CPUE CPUE

CPUE
ObserverData Actual

Actual

=
−

×100%

where Actual denotes either the AOF or ATF CPUE estimate.

Results
Retained legal crab CPUEs based on observer data were within 8% of the
AOF CPUE value in all but one (the Adak red king crab fishery) of the eight
fisheries with 100% observer coverage and in two (the Bering Sea Tanner
crab and Bering Sea snow crab fisheries) of the five fisheries with less that
100% observer coverage (Fig. 2). Of the 13 fisheries sampled, the three
fisheries showing the largest discrepancies between the AOF CPUE and
the observer-based estimates were those with the lowest numbers of pot-
lifts sampled by observers (34 pots in the Pribilof red and blue king crab
fishery, 47 pots in the St. Matthew blue king crab fishery, and 263 pots in
the Adak red king crab fishery). Not surprisingly, observer pot samples
also provided a poor estimate of the ATF CPUE in the Pribilof blue king
crab fisheries. Notably, however, the estimated CPUE for retained legal
males in the Adak brown king crab fishery was within 3% of the AOF CPUE
but differed by 37% from the ATF CPUE.

Coefficients of variation (CVs) for estimated CPUEs of retained legal
crabs and sublegal males were generally 5% or less, indicating high preci-
sion (i.e., low variability) of estimates (Fig. 3). Precision of CPUE estimates
of both legal and bycatch crabs tended to increase with increasing num-
bers of pots sampled. Within fisheries, CVs for estimated CPUE of females
were generally much higher than for those of males and CVs for estimated
CPUE of retained legal crabs tended to be lower than those for sublegal-
sized male crabs.

Bootstrapped estimates of mean CPUE for retained legal males and
their standard errors are presented in Table 2. Bootstrapped mean esti-
mates differed from those computed analytically by no more than 0.08
crab per pot. Bootstrapped standard errors were lower than or equal to
the standard errors computed analytically.

The sampling distributions of estimated CPUE based on 500 boot-
strapped samples show three general patterns (Fig. 4). The first is typified
by the south Peninsula grooved Tanner crab retained legal males data (Fig.
4a). The sampling distribution in this case is approximately normal and is
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well characterized by the estimated CPUE and its standard error. In addi-
tion, the AOF CPUE is within two standard errors of the estimated value.
The second pattern is exemplified by the Bering Sea snow crab retained
legal males data (Fig. 4b). The sampling distribution in this example is
approximately normal and well characterized by the estimated CPUE and
its standard error; however, the AOF CPUE is more than four standard
errors from the estimated value and well outside of the estimated sam-
pling distribution. Out of the 13 observed fisheries, the AOF CPUE fell
outside of the estimated sampling distribution in five cases and was more
than two standard errors from the estimated value in six cases. The esti-
mated sampling distributions of CPUE were closely approximated by a
normal distribution in all cases except that of female blue king crab CPUE
in the Pribilof red and blue king crab fishery (Fig. 4c). The skewed, multi-
modal distribution in this example indicates limited inferential value of
these data.

Figure 2. Percent error between CPUEs for retained legal males as estimated from
observer pot-sampling data and the actual values as computed from con-
fidential interviews and fish ticket data in 13 Aleutian Islands, Bering
Sea, and western Gulf of Alaska crab fisheries during 1995. Black dots
denote percent errors relative to actual observed fleet CPUEs (AOF CPUE).
Open triangles denote percent errors relative to actual total fishery CPUE
(ATF CPUE) for those fisheries in which observer coverage was less than
100%. Fisheries in which the error was greater than 8% are labeled.
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Figure 3. Coefficients of variation of observer-based CPUE estimates for female,
sublegal, and legal crabs of the targeted species in 13 Aleutian Islands,
Bering Sea, and western Gulf of Alaska crab fisheries in 1995.

Discussion
CPUE estimates computed from 1995 observer pot sample data for re-
tained legal crabs during the Bering Sea snow crab, Bering Sea Tanner
crab, Adak brown king crab, Dutch Harbor brown king crab, Bering Sea
Korean hair crab, Bering Sea grooved Tanner crab, eastern Aleutian area
grooved Tanner crab, western Aleutian area grooved Tanner crab, south
Peninsula grooved Tanner crab, and the eastern Aleutian triangle Tanner
crab fisheries were within 8% or less of the actual value for the observed
portion of the fleet. That close agreement between the observer-based
CPUE estimates for retained legal crab and the actual values in each of
those 10 fisheries suggests that observer data should also provide rea-
sonably accurate, low-bias estimates of bycatch CPUE for the observed
portion of the fleet in those fisheries. CPUE estimates computed from ob-
server pot sample data for retained legal crabs in each of the St. Matthew
blue king crab, the Pribilof king crab, and the Adak red king crab fisheries
differed from the actual observed fleet value by more than 20%, indicating
lower reliability of observer data in providing catch rate estimates for the
observed fleets in those fisheries. Not surprisingly, large relative errors in
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estimating retained legal CPUE were associated with the low numbers of
sampled pots.

Observers were present on 100% of the vessels fishing in the Dutch
Harbor brown king crab, Adak red king crab, Bering Sea Korean hair crab,
Bering Sea grooved Tanner crab, eastern Aleutian grooved Tanner crab,
western Aleutian grooved Tanner crab, south Peninsula grooved Tanner
crab, and the eastern Aleutian triangle Tanner crab fisheries. Hence, the
conclusions stated in the above paragraph on accuracy of CPUE estimates
relative to the observed fleet in those eight fisheries also pertain to the
total fleet for those fisheries. Observers were deployed only on C/Ps in
the Bering Sea Tanner crab and snow crab fisheries, but their data were
sufficient to provide reasonably accurate (within 6% of the actual value)
estimates of retained legal CPUE for the entire fleet. Presumably, the ob-
server data from those two fisheries also provides reasonably accurate
estimates of the fleet-wide bycatch CPUEs. On the other hand, partial ob-
server coverage in the Pribilof red and blue king crab and the Adak brown
king crab fisheries provided very poor estimates of retained legal CPUE
for the total fleet and can be assumed to have provided poor bycatch
CPUE estimates for the total fleet in those fisheries. In fact, observer cov-
erage in the Pribilof king crab fishery did not provide any information on

Table 2. Comparison of observer-based CPUE estimates and their stan-
dard errors computed analytically from the stratified sampling
model with bootstrapped estimates.

Computed Analytically Bootstrapped

Fishery CPUE SE CPUE SE

Bering Sea snow crab 110.00 1.91 109.92 1.68

Bering Sea Tanner crab 7.92 0.55 7.93 0.46

Adak brown king crab 6.62 0.23 6.62 0.19

Adak red king crab 2.19 0.37 2.19 0.33

Dutch Harbor brown king crab 6.26 0.17 6.25 0.15

Bering Sea Korean hair crab 3.50 0.03 3.50 0.03

Bering Sea grooved Tanner crab 8.19 0.09 8.18 0.09

Eastern Aleutians grooved Tanner crab 6.73 0.10 6.74 0.09

Western Aleutians grooved Tanner crab 6.79 0.20 6.79 0.19

South Peninsula grooved Tanner crab 85.15 1.87 85.10 1.63

CPUE estimates are for retained legal males in the Aleutian Islands, Bering Sea, and western Gulf of
Alaska fisheries with observer coverage during 1995. Estimates for the St. Matthew blue king crab,
Pribilof blue and red king crab, and eastern Aleutian triangle Tanner crab fisheries are not presented
due to confidentiality of data.
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Figure 4. Examples of bootstrapped sampling distributions of observer-based CPUE
estimates for three fisheries selected from the 13 Aleutian Islands, Bering
Sea, and western Gulf of Alaska fisheries with observer coverage in 1995:
(a) South Peninsula grooved Tanner crab retained legal male CPUE; (b)
Bering Sea snow crab retained legal male CPUE; and (c) Pribilof blue king
crab female CPUE.
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the catch rate of red king crab, one of the two species of king crabs har-
vested during that fishery.

The poor performance of the observer data in estimating CPUE for the
total fleet is not surprising in the case of the Pribilof king crab fishery.
Only one vessel carried an observer during that fishery and the pot-sam-
pling data provided a poor estimate of CPUE for that single vessel. The
more interesting case is the Adak brown king crab fishery, in which the
observer-based CPUE estimate differed from the actual CPUE for the total
fleet by 37%. Although observer data was adequate to characterize the
CPUE for the four vessels that constituted the observed portion of the
fleet in the Adak area brown king crab fishery, the partial observer cover-
age in that fishery was not adequate to reliably characterize catch rates
for the entire fishery. The percentage of vessels with observer coverage
during the Adak brown king crab fishery was actually higher (12%) than
that for either of the Bering Sea snow crab (8%) and Tanner crab (6%) fish-
eries. The poor performance of partial observer coverage in the Adak brown
king crab fishery most likely reflects the inability of partial observer to
adequately sample a fishery prosecuted over a vast area during a season
lasting 9.5 months.

The CVs of most observer-based CPUE estimates for the observed fleet
were low, indicating high precision (low variability due to sampling error)
of the estimates. As would be expected, higher CVs for CPUE estimates
were associated with low numbers of pots sampled. In each fishery, the
CV for the estimated CPUE of females were higher than those for the esti-
mated CPUE of male crabs, particularly the retained legal males. Hence,
users of the observer-based bycatch CPUE estimates should be aware that
CPUE of bycatch females is estimated with less precision than for the tar-
geted legal crabs. The generally higher CVs for female CPUE may be attrib-
utable to a more aggregated distribution of the incidentally captured
females (e.g., Stone et al. 1992). The CVs presented in this paper are gen-
erally lower than those reported by Turnock and Karp (1997) who investi-
gated observer-based estimates of the mean number of salmon bycatch
per haul in the 1995 Aleutian Islands and Bering Sea trawl fisheries for
pollock. Differences may be attributable to the fact that Turnock and Karp
reported on bycatch species, whereas we limited our discussion to the
bycatch of the targeted species.

Bootstrapped standard errors of CPUE were in close agreement with
those computed analytically from the stratified sampling model, indicat-
ing that estimates of standard errors can be directly computed from the
data. Also, the bootstrapped sampling distributions of CPUE were, with
only one exception, well approximated by the a normal distribution, the
estimated CPUE, and its standard error. Notably, however, the CPUE esti-
mates based on observer data for retained legal crabs in the Bering Sea
snow crab, Bering Sea Korean hair crab, Bering Sea grooved Tanner crab,
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and eastern Aleutian area grooved Tanner crab fisheries differed from the
actual CPUE for the observed fleet by more than three standard errors. It
remains unclear if that is due to some slight biases that may exist in the
observer-based estimates or to slight errors in the confidential interviews
that we assumed provided the actual CPUE values.
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Abstract
Of interest in recent years has been how best to construct annual indices
of stock abundance for the southern bluefin tuna (SBT) stock which ade-
quately account for the spatial and temporal dynamics of the fishery. This
fishery has been characterized by a continuous decline in the size of the
spawning stock since the 1960s, the introduction of restrictive catch quo-
tas in the mid-1980s with concomitant reductions in the spatial distribu-
tion of effort, and a recovery in the abundance of juveniles during the
1990s. In particular, the spatial and temporal distribution of the fishing
effort for SBT has declined appreciably since the mid-1980s and this has
resulted in a problem in the use of catch and effort data to calculate indi-
ces of SBT abundance. Basically there are no data to assess the present
state of the stock in large areas in which the stock was fished historically.
Investigations of the spatial distribution of fishing effort also indicate the
possibility of increased spatial targeting of localized regions of higher
catch rates. Nevertheless, due to the lack of fishery independent indices
of abundance, many aspects of the underlying stock and effort dynamics
remain uncertain. In order to account for these present uncertainties, a
range of models, based on various hypotheses of the underlying stock
and effort dynamics, have been developed for estimation of the CPUE-
based annual indices of stock abundance.

Introduction
Commercial catch and effort data and the resulting catch-per-unit-effort
(CPUE) are routinely used in assessing the impact of commercial fishing
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operations on stock abundance. However, many problems persist in the
interpretation of catch rates and their use in estimating abundance indi-
ces for exploited fish populations (Paloheimo and Dickie 1964, Gulland
1974, Hilborn and Walters 1992). These problems include inadequate data
coverage of the spatial extent of the stock and the more general issues of
whether data from a commercial fishery, which attempts to maintain a
high catch rate, truly reflects stock abundance.

There can be little doubt that fishing success is influenced markedly
by a fisher’s prior knowledge of the fishery, by the degree of variability in
the spatial distribution of the fish stock, and possibly also by the fishing
success of other vessels in surrounding areas. Many fish aggregate in lo-
calized areas due to currents, nutrient levels, water temperature, ther-
mocline depth and proximity to land masses, and fishers use their
knowledge of these areas to target their fishing activities. High catch rates
are often maintained by fine-scale targeting of the resource that can mask
declines in the stock. Continual improvements in fish finder technologies
have no doubt exacerbated this problem.

While the use of fine-scale spatial catch and effort data can assist in
overcoming the biases incumbent in the use of spatially aggregated data,
the maintenance of high catch rates in localized areas may also mask a
concomitant contraction in the spatial range of the stock. Uncertainty con-
cerning the state of the stock is further increased if the spatial extent of
the fishery is reduced over time. Fishing strategies may also be influenced
by management decisions. For example, the introduction of competitive
quotas often results in increased competition between vessels and an as-
sociated strategy of reducing risk by targeting areas of reliable catch rates.
These issues raise serious questions about the adequacy of the catch and
effort data alone to provide accurate indices of stock abundance.

Many of the problems found in the construction of indices of stock
abundance from catch and effort data from a fishery can be illustrated by
the problems that face scientists in assessing the status of the southern
bluefin tuna (SBT) stock. This fishery has been characterized by a contin-
uous decline in the size of the spawning stock since the 1960s, the intro-
duction of restrictive catch quotas in the mid-1980s, reductions in the
spatial and temporal distributions of fishing effort, and, more recently, a
recovery in the abundance of juveniles during the 1990s. In particular, the
spatial and temporal distribution of the fishing effort for SBT has declined
appreciably since the fishery was first considered fully exploited in the
early 1970s and this has resulted in a problem with the use of catch and
effort data to calculate indices of SBT abundance. Basically there are no
data to assess the present state of the stock in large areas in which the
stock was historically distributed. In this paper an approach developed to
deal with this problem is presented.
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Abundance Indices in a Spatially
Changing Fishery
Some of the problems encountered in the analysis of catch and effort data
when the spatial distribution of a fishery changes over time can be clari-
fied through a simple example. In a spatially expanding fishery there are
no data in the early years for areas which are only fished in later years. If
one only uses abundance estimates from the areas fished, then estimates
of total size of the resource in the initial years will be underestimated.
Prorating abundance estimates over the potential extent of the fishery
may help to correct this problem, but if the areas fished in latter years are
those with greater density, then the index will again underestimate total
abundance. Alternatively, if a fishery contracts to the most productive
areas, then the pro rata estimate of abundance for the total fishery will
tend to overestimate the stock in the later years. Apart from the natural
preference of fishers to target areas with higher returns, spatial contrac-
tion of effort could arise when quotas limit the total catch and fishing
becomes limited to the most productive seasons and areas to reduce risks
and maximize vessel quota share or profits.

As an illustrative example, consider the spatially expanding and con-
tracting fishery displayed in Table 1. The fishing ground is spatially strat-
ified into four distinct regions and an index of the number of fish in each
region is also given. The regions fished each year are indicated in bold
and the number of fish at the start of each year in each region is adjusted
for the catch taken during the previous year. No movement between areas
is assumed. The total abundance index of fish over all regions is the sum
of the abundance indices in each of the separate regions. Based on the
catch and effort data, assumed proportional to true abundance, together
with assumptions about the stock numbers in the areas not fished each
year, various indices of stock abundance can be calculated. Two possible
indices are as follows:

1. Constant-Squares Index
It is assumed that the spatial extent of the stock is a constant from year to
year and is equivalent to the union of the spatial extent of the fishery over
all years. In any year the catch rates in the regions fished are assumed to
be representative of all regions. As such, the catch rates in the regions not
fished are assumed to be the weighted average (by area) of the catch rates
in the regions fished. An index of abundance for the entire stock in any
year is then:
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where CPUEyi is the observed CPUE in the ith region and yth year, Ai is the
area of the ith region, Ny and Ay are the number and area of all regions
fished in the yth year and Atotal denotes the total area of all regions fished
over all years.

2. Variable-Squares Index
It is assumed that the spatial extent of the stock varies from year to year
and is the same as the spatial extent of the fishery in each year, i.e. Atotal =
Ay in each year. This implies that the catch rates in the regions not fished
are assumed to be zero. An index of abundance across for the stock in any
year is then:
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For the example given in Table 1 the values of each index, assuming Ay = 1
for all i and CPUEi is equivalent to the abundance index in each region, are
given for each year.

As explained previously, when a fishery expands into more produc-
tive fishing regions, indices of abundance based on early catch and effort
data will most likely underestimate the total size of the resource. Of course,
had the fishery expanded into less productive regions, the Constant-Squares
index would have overestimated the size of the resource in these early
years. For the two years when all four regions are sampled, both of the
above indices give unbiased estimates of the change in relative abundance.
However, during the contraction phase of the fishery, since the fishery
preferentially targets the areas of highest resource abundance, the Con-
stant-Squares index is seen to overestimates the size of the resource. On
the other hand, the Variable-Squares index continues to underestimates
the size of the resource. Given the nature of the assumptions underlying
the construction of the indices above, the true abundance in these later
years can probably be assumed to be somewhere between the levels indi-
cated by the two indices. This is because fishers are unlikely to have per-
fect knowledge of the areas of highest abundance, and the spatial extent
of the stock is likely to be greater than the spatial extent of the fishery.

The two indices above are relatively simple, and it is possible to con-
struct alternatives. For example, one can make use of the information in
the years when the spatial extent of the fishery is greatest to model the
expected catch rates in the regions not fished in other years. While there
are many possible ways this can be done, one simple method is presented
here. This method involves calculating the ratio of the catch rates in each
region with the highest catch rate in that year. In the example above this
gives 1.0, 0.675, 0.40, and 0.175 in the fourth year and 1.0, 0.667, 0.388,
and 0.166 in the fifth year. If these distributions can be taken as represen-
tative of the distribution of catch rates in most years, then the mean dis-
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tribution (1.0, 0.671, 0.394, 0.171) can be used as indicative of the distri-
bution of catch rates by area in the years when one or more of the regions
is not fished. Finally, if it is assumed that the fishers always manage to
fish in the regions with the highest catch rates, then the catch rates in the
regions not fished can be calculated by multiplying the highest catch rate
observed in a given year with the corresponding tail value of the average
distribution. For example, the expected catch rate in the missing fourth
region in the sixth year is 160 × 0.171 = 27, which is close to the true
value. Again, the sum of the observed or expected catch rate in all regions
for a given year gives an index of annual abundance. The value of this
index, called the Ratio-Squares index, is shown in Table 1 for the later
years.

Each of the three indices presented above are based on their own set
of simple assumptions concerning the stock and fleet dynamics within
the fishery. The Constant-Squares and Ratio-Squares models assume that
the spatial extent of the stock remains constant between years. The allo-
cation of fishing effort within each region then assumes that areas fished
in any year are (i) chosen at random, or (ii) preferentially targeted at the
areas with the highest catch rates. On the other hand, the Variable-Squares
model assumes that the spatial extent of the stock can vary from year to
year and that in any year fishing takes place in all areas where there are
fish. This model therefore implies that there are no fish in the areas not
fished. However, the Constant-Squares and Variable-Squares indices make
predictions concerning the catch rates in unfished squares that make no
use of the spatial distributions of catch rates in the squares that are fished.
Alternatively, the predictions made by the Ratio-Squares index makes use

Table 1. Schematic representation of a hypothetical spatially expanding
and contracting fishery.

Regions Total Constant Variable Ratio
Year 1 2 3 4 index squares squares squares

1 50 100 150 200 500 200 50

2 45 100 150 200 495 290 145

3 40 90 150 200 480 373 280

4 35 80 135 200 450 450 450

5 30 70 120 180 400 400 400

6 25 60 105 160 350 432 325 352

7 25 50 90 140 305 460 230 309

8 25 50 75 120 270 480 120 271

The numbers on the left give the average stock abundance in each region and year. The regions fished
each year are indicated in bold. Calculated indices of stock abundance for each year are given in the
columns on the right.
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of the information concerning the spatial distributions of catch rates in all
squares in a number of years. It also attempts to more closely model the
expected behavior of fishers who will attempt to maximize their econom-
ic returns by choosing to fish in areas of known high catch rates and
forego areas with little or no fish. Indeed, after an initial expansion and
learning phase, many fisheries may enter what may be regarded as a more
mature phase characterized by the possible contraction of effort to more
favorable areas. In particular, this may be the situation in those fisheries
where total effort has declined, possibly due to the introduction of quotas
or other management restrictions. While more complex models can be
developed which more fully account for these factors, the Ratio-Squares
index helps to encapsulate some of these ideas in a relatively simple
manner.

The Longline Fishery for Southern
Bluefin Tuna
Southern bluefin tuna (SBT) have a widespread but patchy distribution
that is reflected in the spatial distribution of the fishing effort for this
species. Like other tunas, SBT also tend to form transient aggregations in
areas where oceanic thermal features favor local enrichment. The Japa-
nese longline fishery for southern bluefin tuna has undergone remarkable
changes since its inception as a major fishery in the early 1950s. Shingu
and Hisada (1971) give a brief outline of the changes between 1957 and
1969 during which the area exploited by the longline fishery expanded by
about nine times. While SBT spawn in the tropical waters south of Java the
main fishing grounds since 1970 are located within the southern oceans
between the mid-Atlantic and New Zealand (Fig. 1).

By 1970 the fishery was considered fully exploited, if not overexploit-
ed, with the abundance of the adult stock considered to be less than 10%
of the initial level (Hayasi 1974). As a result, the Japanese initiated volun-
tary closures (begun in October 1971) of certain fishing grounds where
young juveniles predominated (Suda 1974). Evaluation of these closures
in 1974, however, showed they had not restricted effort with catch rates
continuing to decrease and the proportion of small-sized fish in the catch
continuing to increase (Warashina and Hisada 1974).

Since 1971 no major new fishing grounds for southern bluefin tuna
have been discovered. However, there have been substantial contractions
in the spatial distribution of effort in most of the major fishing areas since
1971 (Fig. 2) possibly due to the targeting of fishing effort to favorable
areas. For example, the number of 1° squares fished in area 7 has more
than halved since 1975. These changes are concurrent with larger scale
changes in the amount of effort being expended within each statistical
area as well as changes in the percentage of the total effort within each
area. For example, the contraction in area 7 coincides with a general de-
crease in the effort within area 7, while the fluctuations in spatial
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Figure 1. Statistical areas used to provide coverage of the fishery for southern
bluefin tuna.

Figure 2. Number of 1° squares fished by Japanese
longliners within each of the SBT statisti-
cal areas 4 to 9 for the years 1969 to
1995.
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distribution in area 8 up to the mid-1980s coincide with a general increase
in the total effort within that area during that time. Within area 9 a gener-
ally stable pattern in the spatial extent of the fishery is seen despite a
general increase in effort up to the mid-1980s.

The significance of the contractions in the spatial distribution of ef-
fort indicated above will be increased if these shifts coincide with con-
traction of the fishing effort into regions with generally high catch rates.
As indicated in the example above, this can mask the true extent of the
decline in the stock.

Effort Dynamics with Statistical Area 7
The changes within statistical area 7 can be used to illustrate the nature of
some of the changes across the entire fishery. The data used in the analy-
ses described below come from two sources—Japanese longline data for
SBT and joint-venture data for Japanese longline activities undertaken
within the Australian Fishing Zone. In both instances the data describes
the catch and effort for individual sets with the spatial resolution being 1°
of latitude and longitude. The former are part of the extensive data base
of tuna catch and effort held at the National Research Institute of Far Seas
Fisheries in Shimizu, Japan, while the latter come from the data stored in
the Australian Fishing Zone Information System database in Canberra,
Australia.

In order to analyze the degree of spatial aggregation of fishing effort
in each year, the 1° squares fished were ordered according to the amount
of fishing effort (number of hooks) in them for each year. The percentage
of the total annual effort that was expended in the top 50, 25, 10, and 5%
of these squares was then calculated. The results are given in Table 2. For
example, in 1971 fishing took place in 282 different 1°  squares with 95%
of that effort occurring in only 50% of these squares and 40% occurring in
the top 10% of squares. Indeed, in all years the effort appears to be spatial-
ly aggregated. A comparison of the extent of this aggregation is provided
for the three years 1971, 1980, and 1991 (Fig. 3a). There appears to be
little change for the years 1971 and 1980, while the proportion of the
effort expended in the top 10% of squares has increased significantly for
the year 1991. Indeed, the increase in the level of aggregation appears to
have been a feature of the fishery since 1986 and could indicate a shift in
the fishing practices of the fleet since the introduction of quotas in the
mid-1980s. These changes are clearly illustrated in the comparison of the
spatial distribution of the Japanese longline effort for the years 1971,
1980, and 1991 (Fig. 4). Not only has the spatial extent of the fishery
shrunk substantially, but the remaining effort is more concentrated. The
greatest amount of effort in any single square during 1971 was less than
700,000 hooks, while during 1980 this had increased to 1,440,000 hooks
and to just less than 2,000,000 hooks in 1991.
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Table 2. Number of 1° squares fished each year in statistical area 7 and
the percentage of the total effort within the top 50, 25, 10, and
5% of squares after ordering the squares by decreasing effort
and catch rate.

Squares Ordered by effort Ordered by catch rate
Year fished 50% 25% 10% 5% 50% 25% 10% 5%

1971 282 94.8 73.4 39.9 23.1 46.0 22.1 5.9 3.1

1972 214 94.8 75.1 43.6 26.8 63.0 30.7 9.2 3.6

1973 231 94.7 79.4 50.2 31.0 53.1 24.3 7.0 2.8

1974 247 90.4 65.9 35.1 20.2 54.7 28.7 11.6 5.2

1975 271 94.5 81.0 53.1 33.6 66.0 18.3 4.8 1.0

1976 257 94.4 77.7 48.4 31.0 52.5 25.0 5.9 1.3

1977 244 92.9 73.1 48.0 32.2 63.7 24.6 7.9 2.6

1978 260 91.5 73.5 47.7 32.3 72.2 28.0 8.0 2.8

1979 248 92.3 71.3 41.9 25.4 72.5 28.2 4.2 0.6

1980 233 93.4 75.3 46.4 30.1 69.7 29.6 11.6 3.5

1981 243 94.1 78.1 52.1 37.4 67.7 31.6 6.8 4.9

1982 189 93.1 79.5 55.1 37.8 85.1 36.2 11.6 4.8

1983 216 90.1 68.6 43.8 30.5 69.4 21.0 8.4 1.8

1984 216 92.9 75.2 45.5 27.3 66.8 37.0 10.8 3.2

1985 231 90.1 67.1 39.6 25.6 70.0 35.8 21.3 10.0

1986 217 92.9 80.2 59.6 40.8 82.6 62.2 34.3 12.7

1987 199 93.4 76.9 52.1 35.9 66.8 42.7 11.4 6.4

1988 169 95.8 81.5 56.5 38.6 84.2 47.1 15.1 2.0

1989 165 95.6 86.9 73.0 60.7 86.4 76.7 56.7 1.3

1990 114 95.9 84.5 65.5 49.9 73.3 13.8 5.3 0.6

1991 120 93.4 82.0 63.9 47.3 79.2 63.5 10.9 2.3

In order to investigate the directed targeting of areas of higher stock
densities, the relation between the distribution of effort and the stock
density (using catch rates as a proxy) was analyzed by calculating the
cumulative effort against area fished (after ranking the squares by catch
rate). As before, the percentage of the total effort in the top 50, 25, 10, and
5% of these squares was calculated and the results are displayed in Table
2. For 1971 it is seen that 46% of the effort was expended in the top 50 of
squares and only 6% of the effort in the top 10% of squares. In this situa-
tion there does not appear to be very effective targeting of the areas with
higher nominal catch rates. However, a comparison of the degree of spa-
tial targeting for the three years 1971, 1980, and 1991 (Fig. 3b) shows
large changes between the years with the degree of targeting increasing
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Figure 3. Cumulative effort versus cumulative area fished (both
expressed as a percentage of the respective annual
totals) for the SBT fishery within statistical area 7 dur-
ing the years 1971, 1980, and 1991 after ordering
the 1° squares fished by (a) decreasing effort and (b)
decreasing catch rates.
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Figure 4. Spatial distribution of the Japanese longline fishing effort (number of
hooks) within the SBT statistical area 7 for the years 1971, 1980, and
1991.
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dramatically between 1980 and 1991. This increase in targeting appears
to have increased steadily during the 1970s and more quickly in the late
1980s, reaching its greatest extent in 1989 when 57% of the effort was
targeted in 10% of the squares.

It is evident that spatial targeting of fishing effort has always been a
feature of the SBT longline fishery within area 7. However, in the early
1970s it appears that the effort was not preferentially targeted at areas of
above average catch rates. This practice began to change in the mid-1970s
and since 1986 there has been a significant increase in the spatial aggrega-
tion of the fishing effort with the areas with greatest effort increasingly
being those with the highest nominal catch rates. This situation appears to
be similar to that illustrated in the example given previously where in the
later years fishing effort was reduced in the areas of low stock abundance.
In both cases the increase in fishing effort in the areas of higher catch
rates in comparison to areas of low catch rates has the potential to unduly
weight the average catch rate upward, and hence causes an upward bias in
the average index of abundance over the whole fishing ground. In order to
overcome the potential for bias, one needs to ensure that the analysis of
the data is undertaken on a spatial scale that matches the scale at which
the effort is targeted in the fishery. For the SBT longline fishery this ap-
pears to be at the 1° scale. Although finer scale targeting is possible, the
length of the longline (often up to 100 kilometers) and the manner in which
the data is recorded results in this finer-scale information being lost.

Whether the changes since 1971 have been based on a deliberate strat-
egy of reducing the risk of getting low catch rates is difficult, if not impos-
sible, to discern from the data alone. However, such a strategy would seem
reasonable from an economic perspective where catch rates need to be
above a certain level in order to return a profit. While the actual fishing
strategies of the fleet remain uncertain, it is generally seen to involve a
searching component to find the areas of higher returns. However, the
introduction of quotas in the mid-1980s and the concomitant reduction in
fishing effort, competition between boats (and or components of the fleet)
for quota share would necessarily involve a strategy of reducing the risk
of returning low catches. The potential to reduce risk and concentrate
fishing effort in productive areas would also be increased with the shar-
ing of information within components of the fleet. Such an exchange of
information appears to be a general practice among components of the
Japanese fleets (Doulman 1987). Furthermore, increased concentration of
effort in higher catch rate areas may also be due to greater targeting on
smaller fish as returns from targeting the more widely dispersed larger
fish diminish. The shift away from areas of low catch rates to areas of
consistently high catch rates, as seen in the SBT fishery, would therefore
be consistent with an economic practice of trying to maintain high profit-
ability.
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Stock Dynamics
Stock assessments indicate that the stock abundance of SBT has declined
dramatically since the early 1960s, with the present spawning stock bio-
mass estimated to be less than 10% of that in 1960 (Fig. 5). The spawning
stock biomass in 1980 was 74% of the level in 1969, declining further to
29% of this level by 1991 (Polacheck et al. 1996).

Whether there has been a concomitant decrease in the spatial extent
of the stock given the declines in stock abundance remains uncertain.
Decreases in the spatial extent of the fishing effort may not be associated
with decreases in the spatial extent of the stock, though variations in the
spatial range of a decreasing fish population are consistent with observa-
tions from other animal populations and with the theory of density de-
pendent habitat selection (MacCall 1990). Indeed, the collapse of the SBT
within area 4 in the early 1980s may have been associated with a contrac-
tion in the distribution of the stock in this region (Caton et al. 1990).

Indices of SBT Stock Abundance
Indices of southern bluefin tuna abundance based on analysis of the Jap-
anese longline catch and effort data have been calculated routinely as part
of the annual assessment of the SBT stock. Due to the limited coverage for
some statistical areas and quarters, the analyses are usually limited to
statistical areas 4 to 9 and quarters 2 and 3 only. Total catch is converted
to catch-at-age using size information aggregated by 5 × 10° and by quar-
ter, as this was the usual scale at which the data were historically collect-
ed. The methods used for standardization of catch rates follow the work
of Allen and Punsley (1984) and use a general linear model to estimate the
parameter values in the fitted model. A full description of these analyzes
is given elsewhere (Campbell et al. 1995, 1996). The discussion here will
focus on the method adopted in light of the uncertainty in the stock and
fleet dynamics described above.

Due to the variable spatial coverage of catch and effort data for the
fishery from year to year, together with the uncertainty associated with
the preferential allocation of effort, it has not been possible to calculate a
single reliable unbiased index of stock abundance. To help overcome the
potential for biased estimates due to the analysis of data with uncertain
stock and effort dynamics, and to help bracket the uncertainty that arises
with analysis of incomplete data, an approach has been developed which
models the catch rates in the areas bypassed by the fishery under various
assumptions concerning the spatial dynamics of the stock and the fleet.
These assumptions are based on the concepts underlying the Constant-
Squares, Variable-Squares, and Ratio-Squares indices presented in the il-
lustrative example above. For brevity, the indices based on these three
models are known as the B-avg, B-ratio, and B-min indices respectively
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and the concepts underlying each of these models were implemented as
follows:

B-avg: The spatial extent of the stock remains similar from year to
year and is given by the union of all the 1° squares in which SBT have been
caught over the time-frame of the available data. In any given year and
quarter the 1° squares fished in each 5° block are assumed to be selected
on a random basis. The expected catch rates in the 1° squares not fished in
that block are assumed to be equal to the average of the catch rates in the
fished 1° squares in that same block. (Note, where a 5° block is not fished
in a particular year, the average catch rate of the 5° blocks which are fished
within the same statistical area is used.)

B-ratio: The spatial extent of the stock is again assumed to be similar
across years. However, for any given year and quarter the fishing effort in
each 5° block is assumed to be preferentially targeted to those 1° squares
with the highest catch rates. Catch rates in the 1° squares not fished are
based on the tail of the average over all years of the distribution of the
ratio of ordered catch rates in each 1° square fished in all 5° blocks. A more
detailed description of the model is given in the Appendix.

B-min: The spatial extent of the stock is assumed to change from year
to year and coincide with the spatial extent of the fishing effort. The catch
rates in all 1° squares that are not fished in any year are therefore assumed
to be zero.

Figure 5. Annual estimates of southern bluefin tuna
spawning biomass (thousand t). From Polacheck
et al. 1996.
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The above models are used to augment the observed catch and effort
data so that an extra catch and effort data record is created for each year-
quarter-1° cell that is not fished. In this manner the data set to be analyzed
by the general linear model becomes spatially balanced in the sense that
for each year at least one data record exists for each quarter-1° cell. These
augmented data sets are then analyzed by means of a general linear mod-
el and the results are used to calculate annual indices of stock abundance
(Campbell et al. 1995, 1996). For the SBT assessments separate analyses
are carried out on the individual age classes 4, 5, 6, 7, and 8 and on the
combined age classes 4-5, 6-7, 8-11, and 12+. Annual indices of stock
abundance since 1971 are then calculated for each of the three models
(Fig. 6). All indices are incorporated as tuning indices in the subsequent
VPA models (Polacheck et al. 1996) and by assigning statistical weights to

Figure 6. Annual indices of southern bluefin abundance for the different age
classes.
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each of the indices based on an assessment of the credibility of the model
assumptions, probabilities can be assigned to the resulting projections
(Klaer et al. 1996). An examination of these assumptions is given in Camp-
bell and Tuck (1996).

An advantage of the approach just described is that instead of relying
on just a single CPUE based tuning index, the assessment allows the re-
sults from several tuning indices to be combined and in so doing explicit-
ly incorporates some of the uncertainties inherent in the catch and effort
data. This uncertainty is clearly seen in the results presented. For exam-
ple, differences in the resource levels indicated by the indices given in
Fig. 6 are a reflection of the uncertainties in the information available. In
particular, large differences between the indices in a given year are due to
the uncertainties resulting from the lack of information in the areas which
remain unfished, combined with the high uncertainty regarding possible
catch rates in these areas due to a large range in the catch rates observed
in those areas which are fished. Indeed, high catch rates in some areas in
the early 1970s helps to explain the large differences noted between the
different indices during this period. However, as the stock was fished down
the range of catch rates observed in the fishery became smaller resulting
in the differences between the indices also becoming smaller. During the
1990s, there has also been a substantial contraction in the spatial extent
of the fishing effort and this has contributed to the increased differences
between the individual indices during this later period.

While inferences about the status of the SBT stock do not concern us
here, several features can be noted. First, for most age classes there was a
substantial decline in abundance between 1970 and the mid-1980s fol-
lowed by a recovery in the late 1980s or early 1990s. However, the size of
this recovery varies significantly between the different indices. In some
instances substantial increases in abundance are seen while in other in-
stances the recovery is either small or a further decline continues. Again,
these differences are a reflection of the uncertainties in our knowledge
concerning the stock. Second, if one assumes the B-ratio indices best re-
flect the underlying dynamics of the fishery, then one sees a sequential
recovery in individual age classes since the mid-1980s (Fig. 7). Further-
more, the large cohort which entered the fishery as 4-year-olds in 1992 is
seen to persist as 5-year-olds in 1993 and as 6-year-olds in 1994. However,
assuming comparable catchability, the diminishing size of the index for
this cohort may be indicative of a sequential fishing-down over these years.
Finally, the younger and older age classes are seen to respond differently
in 1983, with the younger age classes having a relatively high index and
the older age classes having a relatively low index. These deviations from
the trend are possibly due to unusual environmental effects during 1983
when a strong El Niño event was recorded. The responses noted in the
indices for this year may be indicative of changes in age-class availability
in response to changing environmental conditions not adequately account-
ed for in the standardizing model used.
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While the results presented here are limited to the three models de-
scribed above, which apply the same set of assumptions across all years
for each index, it would be possible to have different sets of assumptions
in different years. For example, one could perhaps use the results con-
cerning the levels of targeting of high catch rate squares in each year (cf.
Table 2) to weight the effort assumption used in the B-ratio index. Alterna-
tively, one could combine the individual indices as calculated, using dif-
ferent weights for each in different years. For example, Hearn and Polacheck
(1996) used the concepts behind the density dependent habitat models of
MacCall (1990) to construct an index that gives different annual weights
to two indices based on the Constant-Squares and Variable-Squares con-
cepts described previously.

Discussion
Interpretation of catch rates and construction of indices of stock abun-
dance should be based on an understanding of both the distribution of
the stock and the distribution of the fishing effort, and ultimately on the
relationship between these two. It is usually the case, however, that the
fishery dependent catch and effort data alone will not allow one to ade-
quately resolve competing hypotheses concerning the underlying stock
and effort dynamics. In such cases fishery-independent data such as sys-
tematic research surveys and understanding of the decision rules by which
fishing effort is spatially allocated are also needed if these hypotheses are
to be resolved.

Figure 7. Annual B-ratio indices of southern bluefin abundance
for age classes 4-8 since 1982.
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A number of issues related to the difficulties in interpretation of catch
and effort data appear to have contributed to the recent collapse of the
North Atlantic cod fishery. A summary of some of the events leading up to
this crisis describes how the “fleet was fishing a smaller and smaller area
of ocean” and “the fishermen were catching more fish per hour than the
scientists because they were going to warmer patches where they knew
cod were congregating” and “you get a false impression that there are lots
of fish, while the surrounding ocean is empty” (New Scientist 1995).

The extent to which the SBT fishery has been able to concentrate fish-
ing effort in areas with higher than average fish density has been investi-
gated and instances of considerable spatial targeting have been found.
This practice seems to have become more prevalent since the introduc-
tion of quotas in the mid-1980s. In order to overcome the potential biases
that can result in using the catch and effort data from a fishery with a high
degree of spatial targeting, analysis of the commercial catch and effort
data to obtain indices of stock abundance has been carried out at the
finest spatial scale possible. For the SBT longline fishery, catch and effort
data are recorded to within one degree of latitude and longitude.

Related to the problems in analyzing catch and effort data for a spa-
tially targeted fishery, are the additional biases and uncertainty which
enter due to missing observations, e.g., historical areas of the fishery which
are no longer fished. Due to spatial contractions in the fishing effort over
the years, the extent to which the fishing grounds are known to overlap
the entire stock area has become more uncertain. The changing nature of
the SBT fishery from year to year makes it difficult to say whether the fish
population in an area with no fishing effort should be considered unsam-
pled or not present. Given this uncertainty, it has not been possible to
agree on a single reliably unbiased index of stock abundance based solely
on the commercial catch and effort data. Instead a number of indices based
on various assumptions as to the underlying stock and effort dynamics of
the fleet have been constructed. Support for or rejection of the assump-
tions underlying the calculation of the various indices can then be based
on a spatial analysis of the data for the fishery itself and/or from behavior
observed in other fisheries or from the ecological field in general.

Analyses undertaken for the 1996 assessments (Campbell and Tuck
1996) found disproportional changes in the distribution of the stock over
time resulting in a greater portion of the stock being found in a smaller
area. While this result may be due to several factors, such variations in the
spatial range of a fish population are consistent with observations from
other animal populations and with the theory of density-dependent habi-
tat selection (MacCall 1990). The advantages of such behavior may in-
clude improved foraging, improved migration or spawning success, and
protection from predation (Clark 1985). Whatever the natural advantages,
this behavior is also important to the fishing fleets. However, whether or
not the fishing fleets have been able to successfully target the main habi-
tat areas containing the major proportion of the stock is less certain (and
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underlies the main differences in the indices described above), though
spatial contraction of a fishery to high catch rate areas is consistent with
the economic practice associated with competitive quotas.

The uncertainties in our ability to presently assess the status of the
stock of southern bluefin tuna have led to calls for a number of experi-
mental fishing programs to be undertaken (see Anon. 1996 for a summa-
ry). Given the contraction in the spatial extent of the commercial fishery
and the resulting uncertainties incurred, attempts to gain a better under-
standing of the spatial distribution of the stock have been given a high
priority, though the mechanism by which this can be carried out remains
unresolved. At its simplest, one needs to sample the areas of the fishery
which were fished historically but which are no longer fished. However,
given the high costs of fishing, the high likelihood of low catch returns,
and the large area to be sampled, this does not seem an economically
viable option for the commercial fleet alone. The details of an appropriate
sampling design and fishing strategy remain the subject of ongoing re-
search.

Finally, while this paper has focused on the problems associated with
the interpretation of commercial catch and effort data in a fishery with
uncertain stock and effort dynamics, many other factors influence our
ability to interpret commercial catch rates as indices of stock abundance.
Many of these factors are well known (see Paloheimo and Dickie 1964,
Gulland 1974, Hilborn and Walters 1992) and include improvements in
the operational and technological aspects of the fishery, together with the
influence of economic and management related decisions, all of which
may change catchabilities over time. Attempts to document the changes
in the SBT fishery and include them in future analyses are under way.
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Figure A1. Spatial distribution of fishing effort within a 5 × 5° block over three suc-
cessive years. The numbers represent the observed catch rates within
each 1 × 1° square. Blank squares indicate the absence of fishing effort.

Appendix: Protocol for estimating catch rates
for the B-ratio index.
Consider a situation where fishing effort within a 5 × 5° block spatially
contracts over time (Fig. A1). In the first year, 18 of the 1° squares are
fished while in the second and third years this number decreases to 13
and 11 respectively. The data set across the three years is unbalanced in
the sense that we have 18 squares sampled in the first year, but fewer in
later years. Estimates of the catch rates in the squares not fished in these
later years are based on the following protocol.

First, for each year the average catch rate in each of the 1° squares are
sorted into descending order. These values are shown in the column head-
ed CPUE in Table A1. Second, for each year i the ratio of the jth catch rate
with the maximum catch rate is calculated. These values are in the column
Rij. Third, for each level the average of these ratios is calculated across all
years for which there is data:
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where Nj is the number of years for which the ratio value exists at the jth
level. The values of   Rj  are listed in the last column in Table A1. Finally, the
values for the missing catch rates in year i for the jth square in each block
are calculated as follows:

    
CPUE

m
CPUE

R

R

R

m
CPUE

Rij ik
k

m
j

k

j ik

k
k

m
= ∑ × = ∑

= =

1
1 1

where m is the number of squares having non-zero catch rates in that
block in the ith year. The calculated values are displayed in Table A1 in
bold. Note that averaging over all the observed catch rates in the manner
shown helps reduce the influence of outliers in the observed data.
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Table A1. Tabulation of observed and modeled 1° catch rates used in the
example for the calculation of the B-ratio indices.

Year = 1 Year = 2 Year = 3
Level j CPUE1j R1j CPUE2j R2j CPUE3j R3j   Rj

1 10 1.0 10 1.0 10 1.0 1.00

2 9 0.9 10 1.0 8 0.8 0.90

3 9 0.9 9 0.9 7 0.7 0.83

4 8 0.8 8 0.9 7 0.7 0.77

5 7 0.7 8 0.8 7 0.7 0.73

6 7 0.7 8 0.8 6 0.6 0.70

7 7 0.7 7 0.7 6 0.6 0.67

8 5 0.5 6 0.6 5 0.5 0.53

9 5 0.5 6 0.6 4 0.4 0.50

10 5 0.5 4 0.4 2 0.2 0.37

11 4 0.4 3 0.3 0 0.0 0.23

12 4 0.4 2 0.2 2.36 0.30

13 3 0.3 0 0.0 1.18 0.15

14 3 0.3 2.98 2.36 0.30

15 2 0.2 1.99 1.58 0.20

16 2 0.2 1.99 1.58 0.20

17 1 0.1 1.00 0.79 0.10

18 0 0.0 0.00 0.00 0.00

The modeled catch rates are in bold.
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Abstract
Historically, stock assessments of Atlantic blue marlin (Makaira nigricans)
and white marlin (Tetrapturus albidus), conducted under the auspices of
the International Commission for the Conservation of Atlantic Tunas
(ICCAT), have been restricted to production modeling approaches. Pro-
duction models are used due to the unique fisheries and biological as-
pects of the species which result in a paucity of detailed information on
the size or age structure of the catch. These analyses have evolved from
single index equilibrium, to multiple index non-equilibrium models, as
the ICCAT Enhanced Research Program for Billfish improved the Atlantic-
wide data and new non-equilibrium multifishery production models be-
came available. Analyses of these fisheries data have been conducted over
the last two decades through a series of intersessional billfish workshops
held by ICCAT, under various stock structure hypotheses, to provide esti-
mates of historical relative biomass, fishing mortalities, and maximum
sustainable yield. Among the difficulties in modeling stock biomass, there
have been conflicting indices of abundance for several fisheries, difficul-
ties in modeling the dynamics of precipitous drops in CPUE through non–
age structured approaches, and typically flat solution surfaces which cause
difficulty in searches for optimal, unconstrained model solutions. How-
ever, in each case various assumptions were made, or certain parameters
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fixed, generally based on working group consensus, and solutions were
achieved. A case history of multi-fishery Atlantic billfish assessments is
presented, along with approaches that enabled specific problems to be
addressed in the model fitting.

Introduction
International management of Atlantic blue marlin (Makaira nigricans) and
white marlin (Tetrapturus albidus) falls under the auspices of the Interna-
tional Commission for the Conservation of Atlantic Tunas (ICCAT), which
currently has 25 member countries and is headquartered in Madrid, Spain.
The commission was originally formed in 1966 to maintain the popula-
tions of tunas and tunalike fishes (including billfishes, Istiophoridae, and
swordfish, Xiiphidae) at levels that permit the maximum sustainable catch
for food and other purposes. Assessing the population status of Atlantic
blue marlin and white marlin, as well as other istiophorids, has histori-
cally been difficult because of the unique aspects of the fisheries (Furman
1989) and biology (Boggs 1989) of these species which hinder acquisition
of information to assess the status of the stocks.

In general, billfishes are large highly mobile species, long-lived, and
sparsely distributed predators with an extensive geographical range. The
historical delineation of Atlantic billfish stock structure has had consider-
able uncertainties. Although there have been numerous instances of trans-
Atlantic movements of both blue and white marlin (Jones and Prince 1996),
and at least one documented trans-oceanic movement of a blue marlin to
the Indian Ocean (NMFS 1994), tag recovery data provides limited insight
into ocean-wide structure of the populations and questions on stock struc-
ture have not been fully resolved. As a result, in most assessments three
possible scenarios have been contemplated: a North Atlantic stock, a South
Atlantic stock, and a total Atlantic stock.

Recognizing that gains in scientific advice about the status of these
resources could be realized if more detailed and comprehensive informa-
tion was available, ICCAT initiated the Enhanced Research Program for
Billfish (ERPB) in 1986. The ERPB elevated billfish research priorities to the
international level and made funds (primarily from private recreational
interests in the United States) available to reduce deficiencies in the ICCAT
billfish database. The major objectives of the ERPB included: (1) Improve
catch, effort, and landings statistics; (2) develop an Atlantic-wide tagging
program for billfish; and (3) promote the advancement of age and growth
studies. This data collection and research program continues in 1998.

Atlantic-wide estimates of billfish nominal landings and catch-per-
unit-effort (CPUE) have undergone extensive revision since statistics were
first compiled, as a result of research activities of ERPB and through a
series of intersessional billfish workshops held by ICCAT (ICCAT 1981,
1994, 1996). The changes in data collection and estimation of abundance
indices have been addressed in four billfish workshops, three of which



Symposium on Fishery Stock Assessment Models 101

were held under the auspices of ICCAT. The results of these workshops,
along with the evolution of billfish stock assessment techniques from
single to multi-fishery production models, is the primary focus of this
paper.

Approaches to Population Assessment
Data Collection

Collection of data for stock assessments of blue and white marlin are
difficult, due to several factors related to the fishery. In any given year,
70-90% of the Atlantic-wide billfish landings (representing about 1% of the
total Atlantic-wide landings of tuna and tuna-like species) reported to
ICCAT come from longline fisheries that target tuna and swordfish, in
which billfish are incidentally caught. Billfishes caught in this manner are
normally dressed at sea, with heads, spines, fins, tails, and viscera re-
moved to permit efficient onboard storage. The carcasses are then frozen
for long periods before they are off-loaded at transshipment ports. This
method of processing may lead to species mis-identification, non-report-
ing of landings, and lumping two or more billfish species into “unclassi-
fied” billfish category. In addition, this can lead to increased difficulties in
acquisition of size frequency data, determination of sex ratios, and collec-
tion of other landings statistics. These problems are not unique to Atlan-
tic fisheries (Alverson et al. 1994), since non-target species are generally
not accounted for in as much detail in terms of landing statistics. Estimat-
ing dead discards and incidental mortality is difficult for both commercial
and recreational fisheries. In the recreational fishery, the majority of catches
are released. Not only is the estimation of the total recreational landings
(actual landings plus dead discards from fish released) extremely difficult
due to few adequate surveys, but the proportion of released fish that die
from the stress of capture and subsequent release is poorly understood in
both commercial and recreational catches.

The collection of nominal landings data is further complicated be-
cause as many as four dozen nations (many not members of ICCAT) catch
Atlantic billfishes but do not routinely report billfish landings directly to
ICCAT, although catch reports are obtained through other international
organizations (e.g., FAO). Prior to 1986, billfish had a lower research prior-
ity than tunas or swordfish for many ICCAT countries due to the inciden-
tal nature of most of the Atlantic billfish landings. Recognition of a large
but generally unquantified socioeconomic value (Meyer 1989) for the rec-
reational component of Atlantic billfish fisheries has elevated the priority
somewhat.

Atlantic-wide blue marlin and white marlin nominal landings report-
ed to ICCAT have shown great fluctuations over time (Fig. 1). The longline
fishery in the Atlantic was established in the late 1950s, and very high
landings occurred for both species into the 1960s. The landings peaked in
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the mid-1960s and have since remained well below those levels for both
species. Trends in landings have generally followed longline fishing ef-
fort, particularly by the Japanese fleet. However, estimated landings have
increased for blue marlin in the last decade, while remaining at fairly con-
stant levels since the early 1970s for white marlin.

Population Production Models
The difficulties in compilation of landing statistics coupled with the lack
of detailed information on biology of these species makes information
very limited or unavailable. As a result, these restrictions hinder attempts
to apply a range of age or size based stock assessment analyses. Because
lumped biomass stock production models require only a time series of
catch and index of abundance (i.e., CPUE) these models have been the
quantitative method of choice for billfish stock assessments.

The simplest production models assume a logistic increase in the rate
of change of a stock due to production, and often include an equilibrium
assumption (Graham 1935, Schaefer 1954). Several variations on the sim-
ple stock production approach have been developed. One of the most

Figure 1. Historical total catch (t) of total Atlantic blue marlin and white marlin,
1960-1995.
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flexible approaches was the generalized production model (Pella and Tom-
linson 1969). This model adds an additional parameter to the logistic equa-
tion that allows various shapes in the production function, and does not
require the equilibrium assumption. Though this model has increased flex-
ibility, most implementations only allow fitting of a single index of abun-
dance.

The introduction of ASPIC (a stock-production model incorporating
covariates, Prager 1992) also extended the simple logistic population pro-
duction model approaches by allowing for simultaneous analysis of mul-
tiple data series, and not requiring equilibrium assumptions. These
characteristics allowed for a more extensive use of the ICCAT Atlantic-
wide multi-fishery database. The detailed theory and mechanics of ASPIC
are fully described in Prager (1992, 1995). The parameters estimated in
the ASPIC model formulation are: K, the biological carrying capacity; i.e.,
maximum equilibrium stock size (t); B1R, the ratio of biomass in the first
year to K; r, the biological yearly intrinsic

 
rate of increase of the stock; and

q(i), the catchability coefficients for each of the individual i data series.
For the purposes of ICCAT, the derived quantities of most interest were:
MSY, the maximum sustainable yield (t) per year (= Kr/4); BMSY, the stock
biomass (t) at MSY (= K/2); and FMSY, the fishing mortality rate at MSY (=
r/2), as well as the time trajectories of the relative statistics B/BMSY and
F/FMSY, which provide information on the status of the resource over time.
Because the quantities estimated most precisely by production models
are MSY, effort at MSY, and biomass and fishing mortality levels relative to
MSY (Prager 1992), estimates of biomass and fishing mortality trajectories
presented are in terms of relative biomass (B/BMSY) and relative fishing
mortality (F/FMSY).

Overview of Past Assessment Results
Early Assessments
Little modeling of Atlantic billfish population dynamics was attempted
prior to 1977, due to limited catch and effort data and a poor understand-
ing of the fishery and biology of the species. The billfish stock assessment
workshop held in Hawaii in 1977 (NMFS 1978) was the first important
forum that addressed data needs and direction of research efforts to bet-
ter understand the world’s populations of billfish. Conser and Beardsley
(1979) built upon the work of Kikawa and Honma (1978), and assessed the
status of stocks of blue marlin and white marlin in the Atlantic Ocean.
Following the recommendations of the 1977 workshop, available data were
analyzed under the two stock structure assumptions: separate North At-
lantic and South Atlantic stocks; and a single total Atlantic-wide stock. In
that assessment, Japanese longline data and estimates of Atlantic-wide
catches were analyzed using the generalized stock production model (Pel-
la and Thomlinson 1969). Although model fits to the data were generally
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poor, some of the earliest estimates of maximum sustainable yield were
developed as a result of the 1977 workshop (Table 1). Although the report
by the Standing Committee on Research and Statistics (SCRS) (ICCAT 1980)
concluded that it was not clear as to “whether the apparent over-fishing of
the North Atlantic stock of marlin is growth overfishing or recruitment
overfishing,” the analyses indicated that the stock was probably below the
level which could produce MSY.

Soon after this workshop, Beardsley and Conser (1981) examined catch
and effort data from the U.S. recreational fishery for billfishes to evaluate
their usefulness in determining trends in abundance. Using a power mod-
el (Robson 1966), they were able to develop an index of relative abun-
dance over the period 1971-1978. However, the usefulness of this series
for Atlantic wide population assessment was limited, given that there were
no analytical tools at the time for modeling multiple fishery data series
simultaneously. However, the importance of accounting for separate CPUE
series for the overall stock was recognized as a means of improving as-
sessment advice.

During the First ICCAT Inter-Sessional Billfish Workshop (ICCAT 1981),
blue marlin and white marlin catch statistics by country, compiled prima-

Table 1. Historical estimates of maximum sustainable yield (t) for blue
marlin and white marlin under the north, south, and total Atlan-
tic Ocean stock assumption.

Stock assumption Source Blue marlin White marlin

North Atlantic Kikawa & Honma 1978 2,300 1,700

Conser & Beardsley 1979 2,884-3,136 1,877-2,042

Farber & Conser 1983 2,232-2,623 2,092-3,776

Cramer & Prager 1994 1,718-1,864

Farber & Jones 1994 388-921

ICCAT 1996 1,741-2,133 85-771

South Atlantic Conser & Beardsley 1979 2,516-2,871

Farber & Conser 1983 2,074-2,353 2,579-2,672

Cramer & Prager 1994 704-1,278

Farber & Jones 1994 739-2,282

Jones & Farber 1996 1,193-1,224 1,000

Total Atlantic Conser & Beardsley 1979 4,768-5,333

Farber & Conser 1983 3,807-5,040 6,230-6,286

Cramer & Prager 1994 3,517-3,623

Farber & Jones 1994 1,502-1,741

ICCAT 1996 4,096-4,787 2,102-2,228
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rily from the ICCAT Statistical Bulletins, were reviewed, refined, and re-
estimated for the period 1957-1979. The only extensive standardized time
series of CPUE was collected from the Japanese longline fishery. Farber
and Conser (1981) followed the methodology of Conser and Beardsley
(1979) and applied the generalized stock production model with equilibri-
um assumptions, fitting an index of abundance and a weighted average of
effective fishing intensity using the PRODFIT program (Fox 1975). Farber
and Conser (1981) found that under the North Atlantic stock assumption,
“the models fit the data fairly well.” Although there were still problems
and uncertainties with the assessment, they concluded that the assumed
north, south, and total Atlantic stock of blue marlin appeared “to have
been overexploited in the early 1970s” and that if the most recent (i.e.,
1977-1978) indices were reliable, “the North Atlantic stock of white marlin
may be seriously overfished.” Relatively uncertain results were found for
the South Atlantic and for the total Atlantic stock assumptions. However,
despite the uncertainties, they concluded that the total Atlantic stock was
“at least fully exploited since 1970 and probably overexploited by 1977
and 1978.”

Farber (1982) followed the methodology of Conser and Beardsley (1979)
and Farber and Conser (1981) and attempted to assess the status of marlin
stocks based on revised data. However, an inconsistency between CPUE
and fishing effort was found. Concern was expressed that the Japanese
longline fishery, used in the past to index abundance for all Atlantic mar-
lins, represented a decreasingly smaller percentage of the total billfish
catch—down to roughly 10% in 1979, compared to 95% over the period
1960-1964, possibly reflecting changes in the fishing strategies over time
by the Japanese fleet. It was concluded that it could not “be determined if
exploitation levels were above optimum,” but “that high levels of effort
and yield had been followed by declining yields,” with a decline in CPUE
over time. Farber and Conser (1983) updated the marlin assessments of
Farber (1982) using the catch and effort data through 1980 and followed
the same methodology and assumptions as previous assessments. In that
analysis, the generalized production model did not fit the data well under
either stock structure assumption. Nevertheless, separate estimates of
maximum sustainable yield for the north, south, and total Atlantic Ocean
were again provided (Table 1) for blue and white marlin.

Assessments in the 1990s

Available Indices of Abundance for Blue and White Marlin
The Second ICCAT Billfish Workshop, held in Miami in 1992 (ICCAT 1994),
was significant in that existing indices of abundance were refined and
newly standardized CPUE series were developed for several countries that
catch significant amounts of blue and white marlin (Fig. 2). For example, a
major problem hindering improved stock assessments for all billfish spe-
cies was accounting for changes in fishing strategy for the Japanese Atlan-
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Figure 2. Standardized relative indices of abundance, including composite series,
for fisheries used in the 1996 analysis. Fig. 4A contains the blue marlin
North Atlantic longline CPUE trajectories; Fig. 4B is the blue marlin South
Atlantic longline series; Fig. 4C is the blue marlin North Atlantic recre-
ational series; Fig. 4D is the white marlin North Atlantic longline CPUE
series; Fig. 4E is the white marlin South Atlantic longline series; Fig. 4F is
the white marlin North Atlantic recreational series.
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tic longline fleet in the mid- to late-1970s (ICCAT 1991). The historical
Japanese longline data series was considered to represent two distinct
fisheries due to changes in the tuna target species: the earlier 1961-1979
period using regular longline techniques, and the more recent 1980-1990
period using deep longline techniques. The differences between methods
are detailed in Uozumi and Nakano (1994) and basically refer to the gear
configuration and deployment that corresponded to changes in target
species and spatial changes in effort. The changes were addressed for
blue marlin by Nakano et al. (1994a) and for white marlin by Nakano et al.
(1994b) by standardizing marlin CPUEs from the Japanese Atlantic long-
line fishery using a general linear model (GLM) and the Honma (1974)
method. This permitted standardized CPUE indices to be presented for
the entire historical time-series, 1960-1989, while accounting for shifts in
fleet effort and deployment patterns.

Supplementary CPUE series in most cases were standardized to ac-
count for gear and geographical effects. These included the blue and white
marlin U.S. recreational fishery in the North Atlantic for 1973-1991 (Far-
ber et al. 1994), and the Venezuelan recreational fishery in the North At-
lantic for 1961-1990 (Gaertner and Alio 1994). In addition to these series,
standardized CPUE series were developed at the workshop for the Brazil-
ian longline fishery in the South Atlantic (Amorim et al. 1994, Antero-Silva
et al. 1994) and the Taiwanese longline fishery (ICCAT 1994). The Brazilian
series was, however, based on limited data, and continued development
was recommended at the time. The Taiwanese series was developed at the
workshop without the advice of Taiwanese scientists (who were not
present), and was therefore considered a tentative, and potentially unreli-
able, data series.

The Third ICCAT Billfish Workshop, held in Miami in 1996 (ICCAT 1996),
provided greater opportunities for global cooperation in advancing the
state of billfish assessments. This workshop marked the first time repre-
sentatives from all major Asian longline fleets fishing the Atlantic attend-
ed an ICCAT Billfish intersessional meeting. Here, five countries submitted
standardized indices of abundance for blue marlin and white marlin fish-
eries (Fig. 2). The standardized blue marlin and white marlin CPUEs from
the Japanese Atlantic longline fishery for 1960 to 1995 were presented by
Uosaki (1996) and Uozumi (1996), respectively. Taiwanese scientists at-
tended the billfish workshop for the first time and provided corrected and
updated standardized CPUE estimates for the Taiwanese longline fishery
from 1967 to 1994 (Hsu 1996). A scientist from Korea also attended the
billfish workshop for the first time and provided revisions for the Korean
nominal billfish landings data. The U.S. longline standardized CPUE for
the years 1987-1995 (Cramer 1996) was presented and the Brazilian lon-
gline data for 1971 to 1995 (Amorim et al. 1996) was substantially revised
and updated at the workshop. In addition, the Venezuelan (Gaertner and
Alio 1996) and U.S. (Jones et al. 1996) recreational CPUE data were revised
and updated through 1995.
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Blue Marlin
The 1992 Assessment. Cramer and Prager (1994) presented the first multi-
fishery exploratory stock assessment analysis for blue marlin using the
ASPIC approach. Total catches from 1960 to 1990 (Fig. 1), were compiled
from ICCAT statistical tables. Longline catches were matched with their
respective longline CPUE series, recreational catches with the recreational
series, and any additional unallocated longline catches were indexed by
the Japanese longline series. Because questions of stock delineation were
still unresolved at this time, the assessment was analyzed using North
Atlantic, South Atlantic, and total Atlantic stock structure assumptions.

In the North Atlantic runs, weighted and unweighted (inverse vari-
ance weighting) models were fitted with and without the Taiwanese data
series. Where the Taiwanese series was not used, all Taiwanese catch was
indexed by the Japanese CPUE. It was quickly determined that this series
was needed to estimate model parameters, as fits without this index re-
sulted in unrealistically large estimates of stock biomass. Hence, the Tai-
wanese data series was used in this assessment. The resulting estimates
of MSY (Table 1) were lower than those estimated from previous assess-
ments. The relative biomass trajectory (Fig. 3A) demonstrated a precipi-
tous drop in the mid-1960s, with an upward trend in the late 1980s, but at
levels below historical highs. The relative fishing mortality (Fig. 3A) had
much greater fluctuations, at times greater than twice the optimum fish-
ing mortality, though there was a slight decline in the late 1980s.

The addition of the Taiwanese data series had little effect on the esti-
mated parameters in the South Atlantic. However, the weighted and un-
weighted model gave different results, with the unweighted model
estimating a higher MSY and slightly less optimistic relative biomass. Nev-
ertheless, both estimates resulted in relative biomass ratios less than half
of that required to produce MSY in the terminal year (Fig. 3B).

Estimates of model parameters for the total Atlantic stock assump-
tion were generated using all available data series. The computed MSY
estimate (Table 1) was also lower than any previous assessment, though
higher than most annual catches in the two decades prior to the assess-
ment. The relative biomass (Fig. 3C) was very low throughout most of the
time series. It was concluded that the stock could not support such a high
level of harvest, and that relative fishing mortality well exceeded the opti-
mum level for the total Atlantic (Cramer and Prager 1994).

The 1996 Assessment. The question of north/south blue marlin stock de-
lineation was explored in much greater detail at the 1996 ICCAT Billfish
workshop. One of the major advances in the 1996 assessment was that
progress in genetic and tagging studies allowed the scientific working
group to conclude that a total Atlantic stock structure assumption for
both blue marlin and white marlin was most appropriate for stock assess-
ment. However, the working group also concluded that biological evidence
concerning stock structure was not totally definitive and therefore recom-
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Figure 3. Annual relative biomass and relative fishing mortality trajecto-
ries from 1992 and 1996 assessments for blue marlin under the
North Atlantic (A), South Atlantic (B) and total Atlantic stock as-
sumption (C).
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mended that north and South Atlantic runs also be done as a prudent
approach to the assessments.

The initial fits of the North Atlantic model incorporated five available
standardized CPUE series for the North Atlantic (Japanese longline, Tai-
wanese longline, U.S. longline, Venezuelan recreational, and U.S. recre-
ational; Figs. 2A and 2C) for the entire time series (ICCAT 1996). These fits
were unsuccessful, due to negative correlations among the longline CPUE
series, as well as between the recreational and longline series. Although
these negative correlation problems were not severe in terms of the trends
across entire time series (Fig. 2), resolving this problem prior to model
fitting presented a considerable challenge to the working group. Several
alternative models were proposed, including using Japanese, or Taiwan-
ese, CPUEs only to index all longline catches, and fitting models with sep-
arate catchability coefficients for the longline fisheries in the 1960s. Finally,
composite CPUE indices were constructed for the longline and recreation-
al series. This provided a way of incorporating all information, and con-
fronting the negative correlation problem. The longline and recreational
composite CPUE indices were constructed by first dividing all CPUEs for
each series by the mean CPUE of the overlapping years. In years where
there was only one CPUE available (e.g., Japanese longline 1960-1968, and
Venezuelan recreational 1961-1972), only that estimate was used. In years
with overlapping indices, averages of the adjusted CPUE estimates were
used. The result was a separate composite CPUE for the longline fishery
and for the recreational fishery (Figs. 2A and 2C). These composite indices
were fairly well correlated (r = 0.76). The longline composite indices were
matched to all longline catches and the recreational composite index was
matched to all recreational catches.

Both longline and recreational composite indices of abundance in the
North Atlantic for the 1960s exhibited initial rapid declines, and model
runs using catch data from 1960 to 1995 failed to capture the dynamics of
this stock response. The working group extensively discussed the issue of
whether the rapid declines in CPUE and landings were real or an artifact of
data collection. The working group concluded that because the peak in
fishing effort during the mid-1960s was at about twice the level of MSY (as
calculated in 1996), the rapid declines were likely accurate reflections of
population responses to such high rates of fishing mortality. The group
felt that such steep declines might well be expected from any fish popula-
tions exposed to such heavy fishing pressure. The solution to this prob-
lem was to use catches for blue marlin dating back to 1956, when the
stock was believed relatively unexploited, fix the B1R parameter to 2.0 (the
equilibrium level for an unexploited stock), and estimate the populations
rate of growth, r, and the separate catchabilities, q(i), for the longline and
recreational composite series. In addition, a 5% two-sided tail trim was
applied to the residual distribution to mitigate the effects of possible sta-
tistical outliers during the fitting.
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The resulting model fits for the North Atlantic stock assumption gen-
erated MSY estimates (Table 1) similar to the estimates of Cramer and
Prager (1994), though with a slightly greater range. The relative biomass
trajectory (Fig. 3A) was also very similar to that of Cramer and Prager
(1994), for overlapping years, though this appears to be scaled down slight-
ly. The relative fishing mortality (Fig. 3A) also tracked well with the 1992
assessment. As with previous assessments, the greatest impact on the
stock biomass appears in the early 1960s.

Jones and Farber (1996) conducted the South Atlantic blue marlin as-
sessment separately from the other 1996 assessments. The available CPUE
series for this analysis included the Japanese, Taiwanese, and Brazilian
longline data sets (Fig. 2B). Initially, models were attempted using all data
sets, because attempting to fit models with a single composite CPUE se-
ries was unsuccessful. Due to difficulties finding minima during the mod-
el’s search routine, it was necessary to fix the initial biomass, B1R, similar
to the North Atlantic model. The resulting model produced levels of MSY
(Table 1) similar to that of Cramer and Prager (1994). However, biomass
trajectories (Fig. 3B) for blue marlin were scaled considerably higher than
that of any other trajectory for the mid-1980s. Nevertheless, models indi-
cate there was a downturn of biomass through the 1990s, and the results
suggest that the blue marlin stock is heavily overexploited under a South
Atlantic stock assumption. This downturn in biomass corresponds to very
high estimated relative fishing mortality levels in the 1990s (Fig. 3B).

The assessment for blue marlin under a total Atlantic stock assump-
tion, considered the superior approach by the working group, combined
all available information for Atlantic blue marlin. Along with freely esti-
mated B1R and r parameters, three separate q estimates were derived: a
North Atlantic composite longline (Japanese, Taiwanese, U.S.); South At-
lantic composite longline (Japanese, Taiwanese, Brazilian); and a North
Atlantic composite recreational (Venezuelan, U.S.). The estimates of MSY
from these model parameters were slightly higher than those of the 1992
assessment (Table 1). The relative biomass ratio (Fig. 3C) shows a similar
drop, as has been the case with all models, in the 1960s, a general in-
crease in the 1980s, followed by a decline from 1989 to 1996.

White Marlin
The 1992 Assessment. In preparation for the ASPIC production models for
white marlin, Farber and Jones (1994) indexed white marlin abundance
from 1961 to 1990 (Fig. 1) using standardized CPUE series for the Japa-
nese and Taiwanese longline and the U.S. and Venezuelan recreational
data series for the North Atlantic (Fig. 2D), and the Japanese and Brazilian
longline for the South Atlantic (Fig. 2E). The total Atlantic analysis used all
series (Fig. 2F). In the analysis, all ASPIC models were fits using yield (t)
and fishing effort by fleet, f. Initially, models were fitted using calculated
fishing effort, f, as catch/CPUE. This methodology proved inappropriate
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with these data, with the model either not converging to any solution or
the fit being extremely poor with unreasonable parameter estimates. A
plot of the average weight of individual fish (i.e., catch in weight/catch in
number), for both the North Atlantic and South Atlantic data exhibited
great variability and was unrealistically high for several years. An alterna-
tive method of estimating f, based on catch in weight (=catch [t]/CPUE
[number/unit effort]) was assumed a more reliable statistic than the catch
in number, given that the average weight of white marlin was presumed
reasonably constant over the period considered. The values of f for all
longline fisheries were derived using the CPUE series from the Japanese
fleet.

For the North Atlantic model, large fluctuations were evident in these
CPUE series from 1961 through 1965. This resulted in difficulties in mod-
el fitting (large residuals), and an inability to capture the dynamics of the
large catch and effort fluctuations during this period. Beginning the long-
line series in 1966, along with U.S. recreational data for 1973-1990 and
Venezuelan recreational data for 1966-1990, mitigated this problem. As a
result, the models were successfully fit, with effort residuals reasonably
balanced with no apparent trends or extreme values. The computed esti-
mates of MSY (Table 1) were well below estimates from previous assess-
ments. The North Atlantic relative biomass was less than 1.0 for all years
after 1974 (Fig. 4A), and was estimated at the start of 1991 to be about 57%
of the biomass that could produce MSY. The relative annual fishing mor-
tality (Fig. 4A) showed considerable annual variability, and was estimated
well above the optimum level for most years except during 1978-1980
and 1989-1990, when it was below optimum.

The South Atlantic white marlin analysis included the Brazilian long-
line CPUE series for the period 1971 to 1990 (Fig. 2E). Because there was
considerably less fluctuation in the South Atlantic Japanese longline CPUE
series for the years 1961 to 1965, this data series was retained. Estimates
of MSY from this analysis were less than that of the previous assessment
(Table 1), though not nearly as dramatic as the North Atlantic. The esti-
mated relative biomass was less than that which could produce MSY for
the entire time series and exhibits a declining trend to extremely low lev-
els (Fig. 4B), with the estimated biomass at the start of 1991 only 3% of
that which could produce MSY. Estimates of relative fishing mortality (Fig.
4B) were greater than 1.0, exhibiting variability without trend over the
period 1962-1982, and then increasing sharply from 1.0 to very high lev-
els over the period 1983-1990. Farber and Jones (1994) noted that during
the mid-1970s, the Japanese longline catches of white marlin in the South
Atlantic were extremely low, and questioned if the CPUEs for those years
(used to calculate effort) were representative of the total South Atlantic
longline catch.

For the total Atlantic analysis, all annual yields (t) were the arithmetic
sums of the North Atlantic and South Atlantic data series. The point esti-
mate of MSY (Table 1) was, like the north and south, well below the previous
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Figure 4. Annual relative biomass and relative fishing mortality trajecto-
ries from 1992 and 1996 assessments for white marlin under
the North Atlantic (A), South Atlantic (B) and total Atlantic stock
assumption (C).
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assessment estimate. The relative biomass trajectory indicates a declining
stock over the period 1966-1977, followed by an increase through the mid-
1980s, and then decreasing again through 1991 (Fig. 4C). The estimated
relative biomass was less than optimum for all years after 1972, with the
estimated biomass at the start of 1991 at 25% of that which could produce
MSY. The estimates of relative fishing mortality were greater than 1.0 for all
years after 1969, with variability and periods of both increasing and de-
creasing trend (Fig. 4C). The conclusion for the total Atlantic from this as-
sessment was that white marlin were “at least fully exploited with a strong
possibility of substantial overexploitation during the last 17 to 20 years.”

The 1996 Assessment. Catch and effort data available for white marlin
were similar to blue marlin. Available CPUE series were from the Japanese,
Taiwanese, and Brazilian longline fisheries, and the Venezuelan and U.S.
recreational fishery (Figs. 2D,2E,2F). Similar to the blue marlin runs, the
initial models were not fitted due to a lack of correlation between indices
of abundance. Separate series of composite indices for the North Atlantic
longline, the South Atlantic longline, and the North Atlantic recreational
CPUE series were estimated to mitigate this problem. The procedures for
constructing the combined CPUE series were identical to those used for
the blue marlin. Further, an approximate 5% two-sided tail trim was ap-
plied to the composite indices to allay the potential effects of statistical
outliers. As with blue marlin, the longline composite indices were matched
to all longline catches and the recreational composite index was matched
to all recreational catches.

The resulting MSY estimates from these model fits for the North At-
lantic stock assumption (Table 1) were among the lowest of any previous
assessment. However, relative biomass (Fig. 4A) and relative fishing mor-
tality levels were very similar to that of the 1992 assessment, and demon-
strate a continuous downward trend across the entire time series.

For the South Atlantic model, Jones and Farber (1996) were unable to
fit models with single composite indices for Japanese, Taiwanese, and
Brazilian fisheries due to problems with model convergence. They found
it was necessary to fix the B1R parameter, as well as the population intrin-
sic rate of increase, r to facilitate model convergence. Although there were
several problems with the South Atlantic analysis, results were consistent
with previous assessments, both in terms of MSY estimates (Table 1), and
relative trajectories (Fig. 4B).

Data preparation for the total Atlantic analysis was similar to that of
blue marlin, except the rod and reel (i.e., recreational) composite index
was not used. Although rod and reel catches for white marlin represent a
very low (about 5%) proportion of the total white marlin landings, the
model could not capture the catch rate pattern observed in the earliest
period, unless initial biomass was set at a biologically unrealistic low level
(ICCAT 1996). The working group recommended that this series therefore
be excluded. The resulting estimates of MSY from the fitted model were
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higher than the 1992 assessment for the total stock assumption (Table 1),
though substantially less than the Farber and Conser (1983) estimate. Rel-
ative biomass levels (Fig. 4C) have declined since the mid-1980s, after a
slight period of recovery in the early 1980s (ICCAT 1996). Relative fishing
mortality (Fig. 4C) appears to be about twice the optimal level necessary
to produce MSY.

Discussion
The early production model assessments of blue and white marlin relied
exclusively on the Japanese longline CPUE to index abundance and did not
adequately represent the complexity and dynamics of multiple countries
fishing a widely distributed stock with different gear types, representing
both directed and incidental bycatch fisheries. Nevertheless, both single
and multiple fishery-based assessment approaches indicate levels of bio-
mass for Atlantic blue marlin and white marlin have greatly declined over
the time series. Assessments suggest that blue marlin and white marlin
have been fully exploited since the 1960s, and are likely currently heavily
overexploited.

One of the recommendations resulting from the workshop was to eval-
uate whether critical model assumptions were met. There was particular
concern that the landings data was incomplete or systematically underre-
ported. This is a difficult problem to detect and address, since evaluating
the implications of errors in annual landings by a constant percentage of
under-reporting only adjusts absolute levels of maximum sustainable yield
and biomass levels. Thus, there remains much uncertainty about these
absolute levels, though less so for relative trends.

Conclusion
The evolution of assessment approaches represents substantial progress
in analyzing the status of the blue marlin and white marlin stocks in the
Atlantic Ocean. Increased representation of fishing nations at workshops,
as well as the working group approach, has been instrumental in advanc-
ing the state of billfish stock assessments. The application of the ASPIC
model permits the incorporation of all available data, giving a more com-
prehensive representation of the stocks than previous assessments that
relied exclusively on Japanese longline CPUE data. This is particularly
important because the Japanese longline data represents an increasingly
smaller percentage of white marlin landings during the most recent years
(though Japanese longline landings for blue marlin have increased in the
most recent years). The trends in the 1996 assessment for the total Atlan-
tic are similar to those described in the 1992 assessment, and although
there remains considerable uncertainty in absolute trends of abundance
and fishing mortality, relative levels appear to be more precisely estimat-
ed. Most important, all assessments, using both single and multiple index
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approaches, indicate that Atlantic blue marlin and white marlin stocks are
overexploited, and possibly severely so.

The strength of using production model techniques to examine trends
in stock abundance depends on many factors, including degree of densi-
ty-dependence on recruitment, recruitment variability, and possible age-
structured lags in the population’s response to fishing pressure. Further
improvements in billfish assessment will also be needed, if we are to pro-
vide advice on the expected dynamics of these stocks under potentially
heavier exploitation. Evaluations of alternative underlying production func-
tions, relating to overexploited stock productivity may provide a basis for
better understanding low biomass dynamics of these stocks. This could
be accomplished by implementing a generalized stock production model
that would allow fitting of multiple indices of abundance. Methods for
better incorporation of mixed unit abundance indices (e.g., in numbers
and in biomass) need to be applied as well. Finally, incorporation of infor-
mation now being developed on the size structure of the catches could
also be used to improve assessments, possibly to better accommodate the
initial declines in catch rate indices observed in these fisheries.

This paper is Miami Laboratory Contribution MIA-97/98-01.
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Abstract
The age structure and status of the U.S. southern Atlantic stock of black
sea bass were examined using recorded and estimated landings and size
frequencies of fish taken from commercial, recreational, and headboat
fisheries during 1979-1995. Fishery-independent data were obtained from
the Marine Resources Monitoring, Assessment, and Prediction (MARMAP)
program for calibrating virtual population analysis (VPA). MARMAP col-
lected black sea bass with four gear types: hook-and-line (1979-1995),
blackfish trap (1979-1989), Florida snapper trap (1980-1989), and chev-
ron trap (1988-1995). Reduced effort with the hook-and-line gear in 1988
coincided with reduced catch per effort (CPE). The size fraction of fish
captured with chevron trap was similar to the Florida snapper trap, but
dissimilar to the blackfish trap. Hence, an extended time series of CPE was
developed combining the Florida snapper and chevron traps. We exam-
ined the effect of different combinations of CPE indices (individually and
in combination) on estimates of fully recruited fishing mortality, spawn-
ing stock biomass, and spawning potential ratio using the FADAPT VPA
approach.
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Introduction
Black sea bass, Centropristis striata, also called blackfish, is a serranid
that inhabits continental shelf waters in depths of 2-120 m, predominant-
ly between Cape Canaveral, FL, and Cape Cod, MA (Mercer 1989). Two
populations are thought to occur along the Atlantic coast, separated by
Cape Hatteras, NC (Mercer 1989, Shepherd 1991). This study is concerned
only with the southern population.

Spawning of black sea bass occurs during January through June along
the U.S. southern Atlantic coast, peaking during March to May (Wenner et
al. 1986, Mercer 1989). Black sea bass are protogynous hermaphrodites,
but mature males occur in all age groups (Vaughan et al. 1995, Table 1).
Sex ratios and female maturity schedules were summarized by Vaughan
et al. (1995). Because fish undergo sexual transition from female to male
during a short time (weeks to a few months), the transitional stage was
combined with males for calculation of sex ratios used in the analyses
that follow.

In this study, we investigated the use of fishery-independent indices
from the Marine Resources Monitoring, Assessment, and Prediction
(MARMAP) program for calibrating virtual population analyses. The MARMAP
program collects fishery-independent data from the South Atlantic Bight
using a stratified random design. Because specific trapping gear types
were not consistent over the entire study time period, a greater sampling
duration was attained by extending backward the current trap gear (chev-
ron). We then analyzed the black sea bass catch matrix (from Vaughan et
al. 1996) using a calibrated virtual population analytic (VPA) approach
with various combinations of the MARMAP gear indices. VPA output in-
cluded estimates of fully recruited fishing mortality (ages 4-7), spawning
stock biomass (both sexes combined), and spawning potential ratio (SPR).
Because black sea bass are protogynous (transforming from females to
males) and the effect of changes in population abundance on sex transfor-
mations is unknown, spawning potential ratio was based on total mature
biomass.

MARMAP Gear Comparisons
The MARMAP program has collected fishery-independent reef fish data
off the southeastern U.S. Atlantic coast since 1979. Evolution of the MARMAP
sampling design was thoroughly described by Harris and McGovern (1997).
Briefly, standard MARMAP sampling was conducted during daylight from
May through August between Cape Fear, NC and Cape Canaveral, FL. Gear
used included blackfish traps (1979-1989), Florida snapper traps (1980-
1989), chevron traps (1988-present), and hook-and-line (1979-present)
(Collins and Sedberry 1991). Fishing effort (soak time and bait type/amount
for traps; angling time, bait type/amount, and terminal tackle for hook-
and-line) was standardized for all gear types. Efficiencies of the three trap



Symposium on Fishery Stock Assessment Models 123

types were compared during 1988-1989, and use of blackfish and Florida
snapper traps was discontinued in 1990 because the chevron traps sam-
pled a greater species diversity (Collins 1990, design and construction of
the traps also presented). Samples were randomly collected from four
broad areas of live bottom (identified with underwater TV) during 1979-
1987. Since then, sampling has been on a stratified (by latitude) random
basis, with 300-600 sites/yr randomly chosen from a data base of over
2,500 known live bottom locations.

Black sea bass were measured (total and standard lengths), and sagit-
tal otoliths were removed and stored dry. For each year (1979-1995) the
commonly sampled sizes (150-259 mm TL) were divided into 10 mm TL
classes and 16-26 individuals were randomly subsampled. All individuals
larger than 259 mm TL or smaller than 150 mm TL were examined since
these individuals were infrequently encountered. The number of black
sea bass aged for each year was approximately 400. Otoliths were placed
in water and read whole with transmitted light using a Nikon SMZ-2T dis-
secting microscope. Aging was done without prior knowledge of the size

Table 1. Maximum differences (observed and bootstrap) and Smirnov test
statistics for length frequency comparisons among gear (black-
fish, Florida snapper, and chevron traps) and between year (1988-
1989) from MARMAP data.

Maximum differences Smirnov statisticc

Gears Year Observed Boota Bootb α = 0.005 α = 0.05

Blackfish 1988-89 0.060 0.087 0.056 0.161 0.121

(243,176)

Florida snapper 1988-89 0.135* 0.146* 0.052 0.155 0.116

(401,152)

Chevron 1988-89 0.059 0.062* 0.028 0.082 0.061

(974,669)

Blackfish-chevron:

(243,974) 1988 0.371** 0.372** 0.331** 0.117 0.087

(176,669) 1989 0.278** 0.287** 0.331** 0.138 0.103

FL Snapper-chevron:

(401,974) 1988 0.105** 0.109** 0.097** 0.097 0.072

(152,669) 1989 0.063 0.083 0.104 0.147 0.110

Sample sizes listed in parentheses under comparison variable. Note: * indicates Smirnov test signifi-
cant at 0.05 level, and ** indicates Smirnov test significant at 0.005 level for individual test.
a Median from 1,000 bootstrap simulations with years separate.
b Median from 1,000 bootstrap simulations with years pooled, then reconstructed.
c Individual test based on α = 0.005, overall test based on seven independent tests (Bonferroni’s

theorem) is α = 0.035.
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of the fish or the date of capture. If the two readers disagreed on an age or
considered the otolith unreadable, that fish was deleted from analyses.
Wenner et al. (1986) used marginal increment analysis to validate the an-
nual nature of increments on black sea bass otoliths.

Declines in catch per effort (CPE) were noted in indices based on
MARMAP sampling using hook-and-line and traps (Fig. 1a-b). There was a
precipitous decline in hook-and-line CPE during 1987 and 1988, when
sample sizes per gear were reduced for comparison sampling while intro-
ducing new trapping gear (chevron). Less drastic declines were noted in
blackfish trap and Florida snapper trap CPEs during the middle to late
1980s. Unfortunately, both of these indices were discontinued after 1989,
while the use of the chevron trap began in 1988. All three trap gear types
were fished synoptically during 1988-1989.

Development of an extended trap gear to represent the whole time
period was needed for greater comparison of a calibration index with the
earlier, converged portion of the virtual population analysis. Recent indi-
ces of short duration can have a great impact on VPA estimates, because
they occur primarily during the unconverged portion of the VPA (Vaughan
et al. 1988). However, without demonstrating some correspondence to the
converged portion of the VPA, it is difficult to judge the usefulness of the
index as a calibration tool.

The question arises as to which historical trap gear (blackfish or Flor-
ida snapper trap) should be used to extend backward the duration of the
chevron trap? The cumulative total length frequencies for the two years of
overlap (1988-1989) for the three trapping gear types (Fig. 2a-b), showed
considerable similarity between the chevron trap and the Florida snapper
trap, but not between the chevron trap and the blackfish trap.

Kolmogorov-Smirnov-Type nonparametric tests (Conover 1971) allow
comparisons among the maximal difference between cumulative (length)
distribution functions. The observed maximal differences among gear types
and between years were summarized (Table 1). To compare these differ-
ences to the appropriate values of the Smirnov Test Statistic (Conover
1971, Table 17), it was necessary to apply Bonferroni’s correction, because
of inflation of α (level of significance) with the conduct of multiple “inde-
pendent” tests (α′ = α/n, where n is the number of independent test). Since
seven tests were conducted, an overall Type I error (α) of about 0.035
resulted from seven individual test statistics (α′) based on (0.005). The
large sample approximation for the Smirnov Test Statistic was s[(m+n)/mn]1⁄2

where s = 1.63 for α′ = 0.005 and s = 1.22 for α′ = 0.05. These comparisons
suggested that the chevron length frequency was different from the black-
fish length frequency for each year, and different from the Florida snap-
per length frequency during 1988 (Table 1). All between-year comparisons
(1988-1989) indicated no significant differences within gear types at α =
0.005, but at α = 0.05 differences were suggested between years for the
Florida snapper trap.



Symposium on Fishery Stock Assessment Models 125

Figure 1. Comparison of CPE from MARMAP indices of black sea bass abundance
from (a) trap gears and (b) extended chevron trap and hook-and-line
gears.
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Figure 2. Comparison of black sea bass cumulative length frequency data from
MARMAP traps (blackfish [BFT], Florida snapper [FST], and chevron [CHV])
for (a) 1988 and (b) 1989.
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All of the between-gear differences may not have been biologically
significant when comparing between gear differences to within gear (year-
to-year) differences. Relatively large sample sizes available for length
frequency comparisons allow one to detect small, but statistically signifi-
cant, differences between length frequency distributions. Analogous to
Helser (1996), we used a bootstrap approach to determine whether differ-
ences between different gear types exceeded differences from natural vari-
ability between the two years for which concurrent data were available. By
sampling repeatedly with replacement (1,000 bootstrap experiments), we
reconstructed the original data sets. The median values of maximal differ-
ences from the 1,000 bootstrap experiments are summarized (Table 1). A
second series of simulations (of 1,000 bootstrap experiments) was con-
ducted for which sampling with replacement was from gear data pooled
across years, and then randomly resorted between the two years for each
gear. Again, the median values of maximal differences from the 1,000
bootstrap experiments are summarized (Table 1). We then visually com-
pared the maximal difference between cumulative length distributions
between years of the same gear to maximal differences between gear types
in the same year (Fig. 3a-b; blackfish-chevron traps and Florida snapper-
chevron traps, respectively). We noted a large separation between within-
gear maximal differences (between years for same gear) and between-gear
maximal differences when comparing chevron with blackfish trap, sug-
gesting real differences between the sampling properties of these two
gears. However, the large overlap among maximal differences when com-
paring chevron with Florida snapper trap suggested that differences be-
tween years for the Florida snapper and chevron traps exceeded differences
between the two traps for each year.

Hence, we concluded that the Florida snapper trap CPE could serve as
the basis for extending the chevron trap CPE to include the earlier period
of 1980-1987 (Fig. 1b). The conversion was accomplished by multiplying
Florida snapper trap CPE in numbers at age by 2.96 (Collins 1990, with
additional samples).

Calibrated Virtual Population Analyses
The catch-at-age matrix was developed from landings (commercial, recre-
ational, and headboat) and corresponding length frequency sampling by
fishery and gear for 1979 through 1995 using annual age-length keys de-
veloped from MARMAP sampling of similar gear types (traps and hook-
and-line) as described in Vaughan et al. (1996) (Table 2).

The analytic program calibrates the virtual population analysis (VPA)
to fishery-independent indices of abundance (Pope and Shepherd 1985).
Specifically, FADAPT (modified from ADAPT [Gavaris 1988] and described
in Restrepo [1996]) was the calibration-based VPA program used to ana-
lyze the above described catch-at-age matrix with various combinations
of the MARMAP CPE indices:
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Figure 3. Comparison of bootstrapped maximum differences in black sea bass cu-
mulative length frequency data from MARMAP traps for 1988-89 between
(a) chevron-blackfish traps, and (b) chevron-Florida snapper traps. Year
identity is maintained in these bootstraps.
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1. Four gear CPE indices.
2. Hook-and-line CPE only.
3. Three trap CPE indices.
4. Chevron trap CPE only.
5 Extended chevron trap CPE only.
6. Extended chevron trap and hook-and-line CPE.

The first combination uses all four indices separately in a single run. The
second combination considers only the hook-and-line gear, while the fol-
lowing three combinations consider only trap gear. The final combination
considers the extended chevron trap gear and hook-and-line together.

Virtual population analysis sequentially estimates population size and
fishing mortality rates for younger ages of a cohort from a starting value of
fishing mortality for the oldest age. An estimate of natural mortality, usu-
ally assumed constant across years and ages, is also required. We used the
FORTRAN program for separable virtual population analysis (SVPA) devel-
oped by Clay (1990) to estimate the selectivity pattern for recent years to
serve as input to the FADAPT runs. For the SVPA runs, starting values of F
were based on the mean of the final three year class (1987-1989) estimates
of Z (1.0 yr–1) and final F obtained by subtracting M from Z.

The output from the calibrated FADAPT VPA considered in this study
(Figs. 4-5) included full F (weighted mean over ages 4-7), spawning stock
biomass (SSB), and spawning potential ratio (SPR). Most biological refer-
ence points used as targets or overfishing thresholds in fishery manage-
ment in the United States are based on these variables (Mace and Sissenwine
1993, Mace 1994, Rosenberg et al. 1994).

The age-specific estimates of F for ages 4-7 were weighted by catch in
numbers at age to obtain full F. Spawning stock biomass was calculated
from mean weight at age by year multiplied by the number of fish and by
the percent mature males and females. Spawning potential ratio (SPR) com-
pares spawning stock biomass per recruit with and without fishing. All
other life history parameters are usually held constant (e.g., maturity sched-
ule and age-specific sex ratios) in calculating SPR, so the estimate of SPR
increases as fishing mortality decreases.

Full F, SSB, and SPR from the FADAPT runs with different sets of CPE
indices were compared (Figs. 4-5). As noted above, the starting partial
recruitment vector for the FADAPT runs was based on an SVPA run for the
period 1990-1995 (this minimized the coefficient of variation based on
several SVPA runs of varying duration with final year of 1995).

First, we compared FADAPT runs calibrated to all four indices (hook-
and-line and 3 separate unexpanded traps), three separate unexpanded
trap indices, and the hook-and-line index only (Fig. 4). The FADAPT run
calibrated to the hook-and-line index suggested a considerable increase in
full F and moderate decline in SPR in 1995 as compared to FADAPT runs
calibrated with the trap indices. Although full F and SPR showed no tem-
poral trend, SSB declined after 1987. The slight increase in SSB in 1992
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Figure 4. Comparison of full F, SSB, and SPR for black sea bass for MARMAP CPE
indices: (a) hook and line and 3 individual unexpanded traps, (b) 3 indi-
vidual unexpanded traps, and (c) hook and line using FADAPT method.
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Figure 5. Comparison of full F, SSB, and SPR for black sea bass for MARMAP CPE
indices: (a) unextended chevron trap, (b) extended chevron trap, and (c)
hook and line and chevron trap using FADAPT method.
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may have been associated with the introduction of a minimum size limit
that year.

Next, we compared FADAPT runs calibrated to the chevron trap indi-
ces (unexpanded, expanded, and combined with hook-and-line) (Fig. 5).
The FADAPT run calibrated to the unexpanded chevron index suggested
much lower full F and higher SPR in 1995 as compared to FADAPT runs
calibrated with the expanded chevron trap index (with or without hook-
and-line). Again, although full F and SPR showed no temporal trend, SSB
declined since 1987.

Model error (MSE) from FADAPT was minimized by use of all gear sep-
arately (0.067), with similar model error using only trapping gear (0.071)
(Table 3). Downweighting by FADAPT of the hook-and-line CPE was appar-
ent when all gear CPEs were used (9.3%) and relatively high weight given
to the recent, short chevron CPE (46.6% for all four gears and 52.3% for all
three trap gears). Some of the spiky aspect of the Florida snapper trap CPE
(Fig. 1) probably resulted in its smaller weighting when all four gear types
were used (13.8%) and when all three trap types were used (14.9%). Using
only hook-and-line CPE gave highest model error (0.695). As expected,
model error was greater for the extended chevron trap CPE (0.317) than
for the chevron trap CPE alone (0.133). As the chevron trap CPE was ex-
tended backward using the Florida snapper trap, any lack of agreement
with the converged portion of the VPA would tend to increase MSE. Com-
bining the extended chevron trap CPE (68.6%) and hook-and-line CPE (31.4%)
in the calibration gave a value for MSE (0.221) less than the two indices
used alone, although the residual sum of squares was intermediate.

Table 3. Sample size (n), residual sum of squares (RSS), and mean squared
error (MSE) from FADAPT runs for black sea bass with various
combinations of calibration indices.

FADAPT Run Sample size RSS MSE

(1) All gears 46 3.098 0.067

(2) Hook-and-line only 17 11.823 0.695

(3) All trap gears 29 2.072 0.071

(4) Chevron trap only 8 1.066 0.133

(5) Extend chevron trap only 16 5.076 0.317

(6) Hook-and-line and extended chevron trap 33 7.295 0.221

Weightings for MARMAP indices estimated by FADAPT: (1) 0.093 for hook-and-line, 0.303 for blackfish
trap, 0.138 for Florida snapper trap, and 0.466 for chevron trap; (3) 0.327 for blackfish trap, 0.149 for
Florida snapper trap, and 0.523 for chevron trap; and (6) 0.314 for hook-and-line and 0.686 for extend-
ed chevron trap.
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Discussion
The blackfish trap CPE was inappropriate for extending the chevron trap
CPE, because it had different selectivity properties from the other gear
types. Differences in selectivity between the Florida snapper trap CPE and
chevron trap CPE were less than or of the same magnitude as annual dif-
ferences in selectivity by these gear types. Hence, the Florida snapper
trap CPE provided a useful surrogate for extending the chevron trap CPE,
because it had essentially the same selectivity properties.

The hook-and-line CPE suggested greater full F, and smaller SSB and
SPR than indicated by the trap indices. Furthermore, the extended chev-
ron trap CPE (1980-1995) demonstrated greater full F, and smaller SSB and
SPR than indicated by the chevron trap CPE (1988-1995). The longer
period for calibration permitted better historical comparison between the
catch matrix (as represented by the converged portion of the VPA) and the
CPE index. The trend in the extended chevron trap CPE agreed well with
the trend noted in the hook-and-line CPE, and, in particular, confirming
the sharp decline in CPE between 1987 and 1988 noted earlier in the
MARMAP hook-and-line CPE index for black sea bass.

Although model error (mean squared error) was lowest for the FADAPT
run using all indices separately (without extending chevron trap CPE), it
was not necessarily the preferred run. Some of the reduction in model
error was obtained by giving greater weighting to the recent, short dura-
tion chevron CPE which has fewer years to compare to the converged por-
tion of the VPA. Hence, the true uncertainty associated with the chevron
CPE index may have been underestimated. By using the extended chevron
CPE with the hook-and-line CPE, uncertainty associated with the longer
CPE index better represents the uncertainty inherent with the model fit
and the information content of the MARMAP program was more fully used
in analyzing the status of the black sea bass stock.

Although no major trends were noted for full F (and hence SPR) in all
FADAPT VPA runs with different calibration indices, all FADAPT VPA runs
suggested a significant decline in SSB since 1987.
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Abstract
As part of the VPA assessments of southern bluefin tuna, agreed-on objec-
tive diagnostic tests designed to detect significant lack of fit are reported
for each VPA analysis. However, in summarizing the current status of the
stock and in the estimation of the probabilities of recovery, VPA results in
which the diagnostic tests suggest significant lack of fit have been consid-
ered no differently than ones for which the test do not indicate any lack of
fit. A procedure is developed whereby the results of these diagnostic tests
can automatically and objectively be incorporated as an additional weight
into the procedures used to combine results from different VPAs. The
procedure takes into account that multiple tests are performed for a single
tuning index and that possible correlation among the tests may exist. It
yields a scale that accounts for both the relative lack of fit in a single index
and the total number of tuning indices in which there is lack of fit. A
survey was carried out using simulated assessment results to provide an
indication of the performance of the procedure relative to human percep-
tions of what constitutes significant lack of fit. The results indicate that
the two are generally consistent. The procedure is not meant as an alter-
native to developing and using likelihood approaches in assessments, but
as an additional weighting term to be used in conjunction with both an
output “likelihood” weight and an input prior weight to provide an overall
relative weight when combining alternative assessment results.
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Introduction
Management decisions that regulate catch levels for fish stocks are often
based on scientific assessment of the current state of the stock relative to
historical levels and projections of the future stock sizes under different
catch scenarios. The estimations of both current and future stock sizes
are based on population models in which biological data from the stock
and catch data from the fisheries are used to estimate the parameters of
the models. Large uncertainties exist in the current knowledge and under-
standing of the population dynamics of fish stocks. In addition, the sam-
pling error and biases associated with the basic data used for estimating
the catch and biological processes are frequently unknown, but potential-
ly large. Consequently, there is a correspondingly large uncertainty about
both the most appropriate model structure for assessing specific stocks
and the estimates of the input parameters to use in these models. It is not
uncommon for different model structures or parameterizations within the
full range of uncertainties to yield substantially different results with re-
spect to stock status and management implications. As such, there is in-
creasing recognition that evaluation of the consequences of model and
input uncertainties needs to be incorporated into the scientific stock as-
sessment process and that results and advice should be presented in a
probabilistic framework.

Bayesian approaches provide one framework for developing probabil-
istic assessments and the approach is being adopted in a number of stock
assessments (Hilborn and Walters 1994). Bayesian approaches require that
the assessment model be framed as a maximum likelihood problem and
that prior weights or probabilities (i.e., degree of belief) be assigned to
alternative inputs into the model. The Bayesian analyses use observed
data and estimates of the likelihood of the different parameters given the
observed data to provide updated probabilities for the parameter values
of the model. However, there are limitations to Bayesian approaches
including specification of the appropriate distributional form and the
variance-covariance structure for the data inputs into the assessment. Also,
a Bayesian approach requires that all formulations of specification mod-
els or hypotheses can be specified in a nested structure and that all the
different nested models use the same input data. The process of updating
the probabilities assigned to the different input parameters is based com-
pletely on the likelihood of specific parameter values given the data in-
puts. There is no scope within the formal Bayesian framework for testing
and taking into account whether there is any fundamental lack of fit to the
basic model (e.g., nonlinearity in assumed linear relationship; temporal
trends in residuals, etc.). The only measure of fit is the estimated overall
likelihood of the data.

Since 1992, all VPA assessments of the southern bluefin tuna (SBT)
stock have been based on the ADAPT (Gavaris 1988) framework (Ishizuka
and Tsuji 1990; Polacheck et al. 1992, 1997; Tsuji and Takeuchi 1997).
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These integrated approaches allow for a wide variety of different sources
of information to be used in the tuning process based on a user-defined
objective function. By putting the VPA tuning process into a statistical
framework, these integrated approaches also allow for examination of the
residuals for lack of fit (e.g., nonlinearity, time trends, etc.). Differential
weighting of the various sources of information in the objective function
can then be used to evaluate consistency, sensitivities, and sources of
lack of fit, and to identify areas of uncertainty in the overall assessment
results.

Within the current SBT stock assessment, there are multiple sources
of identified uncertainty. These include different interpretations of the
catch rate data, the natural mortality rates, the catch-at-age matrices, the
estimation of the plus group, and specification of the population-fishery
dynamic model underlying the VPA (e.g., selectivity assumptions). For each
of these sources of uncertainty, a range of different models and/or param-
eterizations have been developed to represent different plausible hypoth-
eses for the observed data and underlying stock and fishery dynamics.

The process of incorporating uncertainties has been an evolving one.
Initially the number of dimensions and the range within each dimension
considered was small. Under this situation, all combinations of results
could be individually evaluated, and simple (e.g., visual) comparisons
formed the basis for synthesizing the various results into an overall as-
sessment of the status of the stock and providing management advice. As
the process has evolved to incorporate a more realistic and comprehen-
sive range of the actual uncertainties, the number of individual VPA as-
sessments with corresponding stochastic projections increased to over
several hundred. More automated and objective processes were needed
for integrating the results.

The process evolved to providing a weighted average over an agreed-
upon range of assessments. Different national delegations of scientists
involved in the assessment process independently develop sets of weights
and the results across the different sets of weights are compared. The
process of setting weights has elements of an “informal” Bayesian process
in that each group of scientists is meant to decide on the relative plausi-
bility of the various hypotheses and specific parameter values, based on
prior knowledge and beliefs updated by review and examination of the
VPA results presented up to the point when the weights are specified.
Such an informal process can, and has, led to very divergent sets of weights
with different implications for stock status and management advice. The
process is further confounded in that the weights are only assigned to
each of the uncertainty dimensions independently (i.e., only the marginal
distributions are considered). When constructing the overall average weight-
ed results, each dimension is treated independently and the weights are
simply multiplied together. There is no consideration of the joint proba-
bilities. This is particularly problematic because once the weights have
been assigned there is no process for further updating based on the “plausi-
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bility” or “likelihood” of the actual results. As such, this process ignores
the power of these integrated VPA approaches both to provide some over-
all measure of goodness of fit to the input data and to examine the resid-
uals for systematic or unacceptable lack of fit.

There has been agreement among all involved in the SBT assessment
process that an objective approach is needed that not only takes into ac-
count prior information but also allows for updating of the weights based
on the VPA outputs. Ideally such an approach would update the input
prior weights based on some measure of goodness of fit related to the
objective function (e.g., the likelihood estimates of the data given the fit-
ted parameters) and also take into account any substantial lack of fit. The
current stage of development of the SBT assessment does not provide an
obvious measure for goodness of fit as a result of the non-nested struc-
ture of the alternative models and because not all of the data are used in
the different models. Moreover, for some of the major sources of uncer-
tainty (e.g., natural mortality rates, interpretation of CPUE), the catch-at-
age data and fitted VPA model would not be expected to be informative.

The SBT stock assessments are reviewed by the Scientific Committee
of the Commission for the Conservation of Southern Bluefin Tuna (CCSBT).
At a scientific workshop held by the CCSBT to examine CPUE and VPA
models (CCSBT 1996), the participants agreed on a set of diagnostic tests
that should be performed and reported with each individual VPA. These
diagnostic tests are designed to detect significant temporal trends in the
residuals and non-linearity between observed and predicted terms in the
objective function. Probability levels for each test can be generated using
statistical methods. While results of these diagnostic tests are reported,
their results have not been formally incorporated into the assessment
process. Currently, VPA results in which the diagnostic tests suggest sig-
nificant model lack of fit are considered no differently than ones for which
the test do not indicate any lack of fit (e.g., Klaer et al. 1996). In general, as
long as the number of alternative models and parameterizations being
considered in an assessment is relatively small, questions of model lack
of fit have been dealt with by using visual examinations of residuals along
with the results from diagnostic tests to disqualify those results that clearly
do not fit the data. However, such an approach is not feasible when the
number of alternative models and parameterizations increases. Also, such
an approach only results in a zero or one weighting, which makes it diffi-
cult to deal with non-clear-cut situations where there is apparently lack of
fit to some portions of the input data. As such, an approach is needed that
can handle assessments with multiple tuning indices in which large num-
bers of alternative models and parameterizations are being considered.

The purpose of the present paper is to develop a procedure whereby
the results of such diagnostic tests can automatically and objectively be
incorporated into weighting procedures used to combine results from dif-
ferent VPAs. The procedure has been developed in the context of the SBT
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assessment within the CCSBT framework, but could be used in other situ-
ations. It should be emphasized that the approach developed here is not
meant as a replacement for the need to develop a “likelihood” weighting
approach that would update the prior weights based on the overall good-
ness of fit to the data. Instead, we would see the approach being used in
conjunction with a “likelihood” measure of fit in order to provide a meth-
od for objectively downweighting results when diagnostic tests indicate
substantial and significant model misspecification in a manner analogous
to a penalized likelihood approach.

Diagnostic Tests
Within the CCSBT framework, initially five diagnostic tests were defined
and the results were calculated for each time series used in tuning the VPA
(CCSBT 1996). However, these have subsequently reduced to the follow-
ing three tests:

1. A runs test for the time series of residuals (i.e., a test based on the
number of runs of positive and negative residuals for the tuning in-
dex versus time).

2. A hypothesis test of whether the slope of the regression through the
origin of the predicted versus observed values for a tuning index dif-
fers from 1.0.

3. A runs test based on the residuals from the regression through the
origin of the predicted versus observed values assuming a slope of 1
(i.e., a test based on the number of runs of positive and negative re-
siduals for the tuning index versus the value of the predicted index).

As initially defined in 1996, the runs tests were conducted based on
the normal approximation to the expected number of runs in a series with
n1 positive residuals and n2 negative residuals (see Draper and Smith 1966).
However, in the most recent assessment, the Durbin-Watson test for serial
correlation has been substituted for the runs test in 1. This test provides
an indication of whether there is an unusually low or high number of runs.
The regression diagnostic test (test 2) was performed using standard least
squares regression methods assuming normal and additive errors. The
first test is meant to detect if there are large temporal trends in the resid-
uals, and the other two tests were meant to detect non-zero intercepts or
nonlinear relationships between the VPA estimates and the observed tun-
ing indices. These diagnostic tests have been selected by the CCSBT scien-
tific committee and are used here to illustrate the process we have
developed for combining multiple diagnostic tests applied to multiple
tuning indices. Alternative suites of tests may be more appropriate in
other situations and assessment forums.
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Development of a Lack of Fit Weighting Based
on Diagnostic Test Results
When the probability levels for one or more of the diagnostic tests are low,
this suggests that there is substantial lack of fit of the model to the data.
Thus, the model as structured in combination with the data inputs is not
fully consistent. As such, the results and predictions from such a model
have a degree of implausibility. When some VPA results indicate substan-
tial lack of fit, it would seem appropriate to use the probability levels
from these tests to derive a relative weighting scale. However, there is no
well developed statistical theory for doing this, although in more straight-
forward statistical analyses a low probability level (zero weight) would
usually lead to rejection of the model. It should also be noted that in the
application of these diagnostic tests to the residuals from the VPA esti-
mates, the probability levels from these tests are not fully accurate mea-
sures of the true probability. This is because of the multiple number of
tests being conducted and uncertainty about the actual form of the prob-
ability distribution for these tests, particularly within the context in which
they are being used. This suggests that, in developing a weighting scale
based on these tests, the scale should be conservative; i.e., only down-
weight VPA results in those cases where the diagnostic test indicates a
very significant lack of fit.

Given the above, the following procedure has been proposed as a ba-
sis for assigning relative weights to a particular VPA result based on the
probability levels from the diagnostic tests:

1. For each tuning index, determine the number of the three diagnostic
tests for which the probability level is less than 0.05. Then assign a
value to that index according to the number of tests with a probability
level (p) less than 0.05:

a. If the probability levels for all tests are above 0.05, then this index
gets a value of 1.

b. If the probability level for only one test is less than 0.05 then this
index gets assigned the value if it is less than 0.017; otherwise it is
assigned the value 1.

c. If the probability levels for only two tests are less than 0.05, then
this index gets assigned the value of the lowest probability value
for the two tests if both are less than 0.025; otherwise it is as-
signed the value 1.

d. If the probability level for all three tests are less than 0.05, then
this index gets assigned the lowest probability value for the three
tests.

2. If the value assigned to an index is less than 0.005, then assign it the
value of 0.005.
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3. The geometric mean of the values assigned to all indices in steps 1
and 2 is assigned as the relative weight for this VPA run.

This procedure attempts to take into account both the fact that multi-
ple diagnostic tests are being performed on a single tuning index and that
the tests among the different tuning indices cannot be considered com-
pletely independent. The latter is because of the correlation among the
indices, the catch-at-age data, and the VPA parameter estimates. The ration-
ale for deciding when to downweight an index in step 1 is developed in
detail in the Appendix based on considerations of the multiple number of
tests and the possible correlation among them. Setting a value of 0.005 as
the minimum that can be assigned to a single index means that there is a
limit to which the VPA results will be downweighted as the result of a lack
of fit for a single index. Thus, if there are five indices, the minimum weight
when only one index was found to have significant lack of fit would be
0.35, which is the geometric mean of 0.005 and 1,1,1,1.

Taking the geometric mean across the different tuning indices means
that the amount of downweighting that occurs depends both on how se-
vere the lack of fit for any of the indices is and how many indices had
substantial lack of fit (i.e., if there were only five indices, the minimum
weight due to lack of fit in 1, 2, 3, 4, or 5 indices would be 0.35, 0.12,
0.042, 0.014, and 0.005 respectively). The use of the geometric mean gives
more weight to having multiple indices with lack of fit than to having
severe lack of fit in a single index. This was seen as an important property
since the former suggests a general overall lack of fit (see Discussion).

The above procedure has an element of arbitrariness. Other proce-
dures or values for the probability levels and minimum values could be
used (see Discussion). However, the procedure does provide an objective
approach for assigning relative weights based on the results of the diag-
nostic tests. It takes into account the multiple testing and possible corre-
lation among the tests. It also yields a scale that takes into account both
the relative lack of fit in a single index and the number of tuning indices in
which there is lack of fit. Finally, it provides a weighting scale in which
there has to be severe lack of fit (as measured by the diagnostic tests) in
multiple indices for a VPA to assign a negligible weight. This latter seems
a desirable property since the particular model structure and parameter-
ization were presumably selected based on a judgment that they were a
plausible representative for the underlying stock dynamics.

Application of Lack of Fit Weightings to
Simulated Assessment Results
A survey was designed to compare the weights assigned using the objec-
tive procedure described above with the subjective evaluation of lack of
fit provided by fisheries scientists. Each survey consisted of a presenta-
tion of simulated results for 12 assessments that were fitted to three tun-
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ing indices. For each tuning index, a plot of observed versus predicted
and residuals versus time were provided. In all cases, the coefficient of
variation of the residuals was fixed at 0.2, and residuals were chosen at
random using a normal distribution and the mean of the simulated ob-
served values. This means that the sum of squares values (or likelihood
value given the data) for the fit for each assessment were exactly the same.
Trends in some residuals were produced by the introduction of a non-
linear (V-shaped) relationship or a non-zero intercept for observed versus
predicted values. Individuals completing the survey were requested to
assign a value between 0 and 10 to each simulated assessment according
to how well they considered the tuning indices fitted the VPA results. They
were not supplied with diagnostic test results, or any further information
other than the residual plots. Surveys were distributed during this Lowell
Wakefield symposium (International Symposium on Fishery Stock Assess-
ment Models for the 21st Century, Oct. 8-11, 1997, Anchorage, Alaska).
Completed surveys were returned during and after the symposium.

The results for each of the diagnostic tests for the simulated assess-
ments used in the survey are shown in Table 1. The diagnostic test results
for simulated assessments 1, 3, and 4 were duplicated in the survey by
assessments 10, 8, and 6 respectively, except that the order the indices
were presented was changed and there were small differences in the diag-
nostic test results due to different randomizations. Table 1 shows that the
rates of failure of the diagnostic tests at the 0.05 level for the duplicate

Table 1. Diagnostic test values for simulated assessment results used in
the survey.

Runs test Runs test Significance of slope
by time by regression other than 1

S.A. Index 1 Index 2 Index 3 Index 1 Index 2 Index 3 Index 1 Index 2 Index 3

1a 0.99 0.23 0.98 0.00 0.23 0.00 0.00 0.82 0.00

2 0.00 0.01 0.19 0.00 0.01 0.19 0.00 0.00 0.29
3b 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.75 0.79
4c 0.99 0.23 0.00 0.99 0.23 0.00 0.50 0.82 0.00

5 0.02 0.23 0.19 0.02 0.23 0.19 0.35 0.82 0.29
6c 0.99 0.01 0.19 0.99 0.01 0.19 0.50 0.00 0.29
7 0.99 0.23 0.19 0.99 0.23 0.19 0.50 0.82 0.29
8b 0.02 0.01 0.00 0.02 0.01 0.00 0.35 0.00 0.79
9 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.75 0.00

10a 0.99 0.92 0.19 0.00 0.01 0.19 0.00 0.00 0.29
11 0.29 0.23 0.19 0.02 0.23 0.19 0.35 0.82 0.29
12 0.99 0.23 0.98 0.99 0.23 0.00 0.50 0.82 0.00

Results that failed the diagnostic test at the 0.05 level are displayed in bold. The letters a, b, and c in-
dicate simulated assessments that are essentially duplicates.

S.A. = simulated assessment.
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assessments are the same. Duplication was included to allow judgment of
whether individuals completing the survey were doing so in a consistent
manner.

Simulated assessments 3, 8, and 9 fail a large number of diagnostic
tests, and were included to represent “bad” fits, whereas assessment 7
passed all diagnostic tests and represents a “good” fit. Survey respon-
dents assigned values in the range of 0 to 10 to each assessment, but the
range of individual survey scores varied from 0-9 to 3-7. To eliminate
these range differences and to convert the scores to weightings, they were
standardized to a range of 0 to 1.0.

A survey was judged to be inconsistently completed if the summed
differences of standardized results for the duplicate assessments was great-
er than 0.5. On this basis, 3 of the 13 completed surveys were discarded,
leaving 10 for further analysis. The summed difference values for the
surveys discarded were 0.75, 0.75, and 1.0, and for those retained were
0.44, 0.38, 0.00, 0.17, 0.20, 0.00, 0.25, 0.17, 0.25, and 0.17. Standardized
survey weightings for consistently completed surveys are shown in Table
2. It should be noted that 10 surveys is a small sample for making general
inferences. We would have preferred more, but had difficulty promoting a
higher level of participation.

The objective procedure produces relative weights that are not evenly
spread; e.g., there is a gap immediately below 1 where no weight values
can fall, and small weights are more likely than larger weights. However,

Table 2. Standardized survey scores assigned to each of the simulated
sets of assessment results by people who participated in the
survey, that were judged to be consistent.

Standardized survey scores
S.A. 1 2 3 4 5 6 7 8 9 10

1 0.89 0.38 0.63 0.33 0.60 0.20 0.75 0.67 0.50 0.33
2 0.33 0.25 0.38 0.17 0.40 0.20 0.50 0.17 0.50 0.33
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.44 0.50 0.63 0.50 0.40 0.60 0.50 0.67 0.75 0.67
5 0.56 0.63 0.63 0.67 0.40 0.60 0.25 0.83 0.75 0.83
6 0.44 0.50 0.63 0.50 0.40 0.60 0.25 0.67 0.75 0.67
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 0.22 0.13 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.17
9 0.11 0.25 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00

10 0.67 0.63 0.63 0.17 0.80 0.20 0.75 0.67 0.75 0.33
11 0.67 0.75 0.88 0.83 0.80 0.60 0.75 0.83 0.75 0.83
12 0.78 0.88 0.88 0.50 0.60 0.80 1.00 0.67 0.75 0.67

S.A. = simulated assessment.
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in the survey it would be reasonable to expect that people would assign
their weightings based on a continuous linear scale from 0 to 1.0 for the
standardized results. In order to account for this, a simple log transfor-
mation and re-scaling of the calculated weightings {[log(x) + 2.1175] /
2.1175} compared to survey weights was performed (2.1175 was the val-
ue that produced the best fit between the two weightings) (Fig. 1).

After this transformation, there is a good correlation between the val-
ues produced by the objective procedure and those resulting from the
survey. This suggests that the objective procedure performs well in com-
parison with subjective human judgments when consideration is given to
the nonlinear scale of the objective procedure. The objective procedure
was designed to be conservative and only assign weights less than 1 when
there was significant indication of lack of fit in at least one index. The
procedure appears to provide a reasonable probabilistic approach for as-
signing weights to VPA results that corresponds with subjective weight-
ings assigned “by eye” on examination of assessment output.

Discussion
It is important to emphasize that the procedure developed here is not
meant as an alternative to developing and using a “likelihood” approach in
assessments. The index from the procedure was envisioned as an addi-
tional weighting term to be used in conjunction with both an output “like-
lihood” weight and an input “prior” weight to provide an overall relative
weight to assign to alternative models and parameterizations.

We think that there is a real need for such a lack of fit measure when
the number of alternative models and parameterizations becomes large,
as it almost inevitably will when one tries to capture the full range of
uncertainty contained in most fishery stock assessments. With the increase
in the number of alternatives, it becomes impossible to individually de-
termine which combinations of alternative options are inconsistent with
the basic input data. From our experience of using this index and exami-
nation of diagnostics in the SBT context, we have found that for many
single options (e.g., a particular natural mortality rate vector or a specific
CPUE interpretation) that they do not fall into the simple categorizations
of being always consistent or inconsistent with the input data. Instead, it
is the combinations of specific alternative options for two or more areas
of uncertainty that can result in substantial and unacceptable lack of fit.
As such, some form of automated procedure becomes essential.

We also realize that any such procedure cannot replace logic and com-
mon sense in the initial selection of the alternative models and parameter-
izations that are to be used in an assessment. Problems with lack of fit can
always be circumvented by increasing the number of parameters and by
detailed modeling of the residuals. Clearly, one needs to avoid over-
parameterization. Likelihood ratio tests are one tool that can assist with
this. We see the procedure developed here, or any similar such procedure,
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Figure 1. Comparison of the mean and range of weights assigned to simulated
assessment results from the survey and those calculated using the objec-
tive procedure after log-transformation.
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as an additional tool to assist in the model selection and model weighting
process. It is not meant as a replacement for existing ones.

The exact procedure developed here is only one out of a large number
of possible alternative approaches that could be constructed for assign-
ing weight based on the results of a set of diagnostic tests. We think there
is scope for improving the procedure. We would hope that there would be
further developments and comparative evaluation of alternative approach-
es. Any approach has to deal with two basic issues: (1) combining results
from several diagnostic tests applied to the same tuning index, and (2)
combining the results when two or more tuning indices are used in the
assessment.

With respect to (1), a well-developed statistical basis exists for com-
bining multiple tests. The major problem in directly applying this is hav-
ing to determine the covariance among the different tests. We have
attempted to uses this statistical basis in step 1 of our procedure (see
Appendix) in the absence of knowledge about the covariance among the
tests and given a predefined significance level. Because the covariances
are unknown, there is no unique solution. The choice of how to combine
the results from several tests will depend on how much belief one has on
the degree of independence and the relative amount of conservativeness
desired with respect to the tests being correlated. We have taken a fairly
conservative approach. There would be scope for improving how this com-
bining across tests is done, particularly if additional research determines
the covariances among the different diagnostic tests being used.

The question of how best to combine the results for a set of different
indices is less straightforward. There is the issue of how to weight the
different indices, particularly if they are of different length (with respect
to the years to which they apply) and have different degrees of reliability
(i.e., variance and bias). We have chosen to give all of the indices equal
weight, mainly because the main tuning indices in the SBT assessment are
of equal length and would be expected to have approximately equal vari-
ances. If the indices were of different lengths or had substantially differ-
ent variances, equally weighting may not be appropriate (although this
should be accounted for, at least to some extent by the p-values generated
by the diagnostic tests).

A more difficult question is how to deal with the fact that the diagnos-
tic tests can indicate lack of fit for varying number of indices. If one con-
sidered that the diagnostic tests for each of the indices provide an
independent measure of the lack fit for the overall assessment, then it
would be appropriate to treat the p-values as separate overall probabili-
ties. They could then be combined as the resultant product and the result-
ing p-value could be used as a rejection criteria after taking into account
the multiple testing. This would tend to result in very severe downweight-
ing when lack of fit was detected even in a single index. We did not think
this was appropriate, particularly when the different indices correspond
to different age groups or time periods. In this situation, lack of fit to
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several indices would indicate a general lack of fit in the overall assess-
ment, while lack of fit in only one index would suggest a more restricted
problem, perhaps related to that specific index. We felt that this latter
case should not be downweighted as severely. This was the reason for
using the geometric mean when combining the p-values across different
indices. While this is somewhat ad hoc and scope exists for further devel-
opment, the use of the geometric mean provided the desired general be-
havior (e.g., giving a substantially lower weight in the situation when the
p-value for two indices is 0.05 compare to the situation where one index
had a value of 0.025).

The procedure developed here results in a non-continuous weighting
scheme. Thus, it is impossible to get a value between one and some thresh-
old that depends upon the number of tuning indices. As pointed out by
one reviewer, such thresholds can cause problems for those dependent
upon the scientific advice for decision making over a number of years as
the potential exists for the scientific advice to change radically with the
addition of one more year’s data. We do not see any simple way around
this problem in dealing with the question of lack of fit. As long as the basic
model and parameterization are not a priori implausible, a basic lack of fit
can only become manifest when the time series becomes sufficiently long.
Thus, no matter what the criteria used for judging lack of fit, there will be
a minimum number of observations required in which lack of fit is mani-
fested before the overall fit could be judged inadequate. By using a proce-
dure like the one developed here, it is possible to consider an uncertainty
space spanning a wide range of combinations of models and parameter-
izations. This should yield a fair amount of robustness in the overall gen-
eral results even when one portion of the space is judged by the procedure
to have significant lack of fit as the result of an additional point in the
time series.
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Appendix. A Composite Rejection Rule Based
on Three Goodness of Fit Tests
Given three different (but not necessarily independent) goodness of fit
tests for a given model with a given set of data, each producing a p-value,
we wish to formulate a procedure to accept or reject the model using all
three p-values.

Suppose the three p-values are p1, p2, and p3. Choose α1, α2, and α3

with 0 < α3 < α2 < α1 < 1, such that we reject H0: the model fits, under any
of the following conditions:

1. All three pi ≤ α1, i.e., max (pi) ≤ α1.

2. At least two pi ≤ α2, i.e., median (pi) ≤ α2.

3. At least one pi ≤ α3, i.e., min (pi) ≤ α3.

These three conditions are not mutually exclusive, nor, in general, is
any one totally included in any other. In any given situation, in general we
can be in any region of the following Venn diagram.

This composite rejection rule can be re-expressed as the three mutu-
ally exclusive conditions

a. At least one pi ≤ α3.

b. α3 < all three pi ≤ α1.

c. α3 < two of the pi ≤ α2 and one pi > α1.
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We propose the following values for the αi, using the nominal level of
α = 0.05 for examples throughout.

Let α1 = α = 1 – (1 – α) = 0.05

α2 = 1 – (1 – α)1⁄2 = 0.02532

α3 = 1 – (1 – α)1⁄3 = 0.01695

The value 0.05 for α1 means we reject H0 if all three tests are signifi-
cant at the conventional level. The lower value 0.017 for α3 means we
reject H0 if any one test is particularly bad (highly significant), even if the
others are good (not significant).

The intermediate value 0.025 for α2 allows one large (non-significant)
p-value, but rejects H0 if two are significant at a more stringent level than
the conventional 0.05.

 The value for α3 was calculated such that if the three tests are mutu-
ally independent, then the probability of rejecting a true null hypothesis
by rule (3) or (a), at least one pi ≤ α3, namely 1 – Pr(all pi > α3) = 1 – (1 – α3)

3,
is set equal to α, e.g., the conventional level 0.05. In the case of mutually
independent tests, there are additional positive probabilities of condi-
tions (b) and (c), namely (α1 – α3)

3 and 3(1 – α1)(α2 – α3)
2 respectively. These

are both small and bring the total rejection probability to 0.050236, or, in
general, after some algebra, 1 + 3(1 – α)2 – (1 – α)3 + 3(1 – α)7/3 – 6(1 – α)11/6.
Thus these values of the αi work well for mutually independent pi, giving
an overall rejection probability very close to 0.05, when α = 0.05.

At the other extreme, all three tests would be equivalent, giving iden-
tical p-values, and we effectively have only one test. Then the overall prob-
ability of rejection of a true null hypothesis would be exactly α1 = 0.05. If
conditions (2) or (3) are true, then so is condition (1). Alternatively, condi-
tions (a) or (b) can apply, but not (c).

Thus α1was set to ensure the “correct” significance level with three
identical goodness of fit tests; and α3 ensures the correct significance lev-
el under condition (3) or (a) with three mutually independent goodness of
fit tests. The value for α2 was chosen to ensure a correct significance level
under a specific intermediate scenario. Consider the situation where two
of the goodness of fit tests are identical and the third independent. Then
we effectively have only two independent tests. We chose α2 such that
under this scenario, the probability of at least one of those independent
tests having pi ≤ α is 0.05, or α in general. This does not directly relate to
condition (2), but fits in with our values for α1 and α3 as follows:

α1 identified by 0.05 or α = Pr(at least one pi ≤ α1, when only have one
test).

α2 identified by 0.05 or α = Pr(at least one pi ≤ α2, when have two
independent tests).

α3 identified by 0.05 or α = Pr(at least one pi ≤ α3, when have three
independent tests).
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Pr(at least one pi ≤ α2, from two independent tests)

= 1 – Pr(both pi > α2)
= 1 – (1 – α2)

2

Equating this to α gives α2 = 1 – (1 – α)1⁄2.

The total rejection probability, under the null hypothesis, for this
scenario of two equivalent tests and the third test independent, is found
by summing the probabilities of mutually exclusive conditions (a), (b),
and (c). These are, after some algebra:

Pr[condition (a)] = 1 – (1 – α3)
2 = 1 – (1 – α)2/3

Pr[condition (b)] = (α1 – α3)
2 = [– (1 – α) + (1 – α)1/3]2

=  (1 – α)2 – 2 (1 – α)4/3 +  (1 – α)2/3

Pr[condition (c)] = (1 – α1) (α2 – α3) = (1 – α)4/3 – (1 – α)3/2

and the total rejection probability is the sum of these, which comes to

1 + (1 – α)2 – (1 – α)4/3 – (1 – α)2/3

and for α = 0.05, this is 0.0427, again reasonably close to the ideal
0.05.

Bounds on Overall Probability of Rejection in the
General Case
We can obtain bounds on the overall probability of rejection of a true null
hypothesis in the general case, using the following elementary probability
rules. For any events A, B, and C,

0 ≤ Pr(A and B and C) ≤ min[Pr(A),Pr(B),Pr(C)];

max[Pr(A),Pr(B),Pr(C)] ≤ Pr(A or B or C) ≤ Pr(A) + Pr(B) + Pr(C);

and for mutually exclusive events A, B, and C, Pr(A or B or C) =
Pr(A) + Pr(B) + Pr(C).

Using these rules, and assuming Pr(pi ≤ αj) = αj, i.e., that the p-values
from the goodness of fit tests are meaningful, the three mutually exclu-
sive conditions have bounds on probabilities:

a. Condition (3), at least one pi ≤ α3, has probability between α3 and
3α3.

b. Condition (1) but not (3), α3 < all three pi ≤ αi, has probability
between 0 and α1 – α3.
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c. Condition (2) but neither (3) nor (1), α3 < two pi ≤ α2 and one pi > α1,
has probability between 0 and 3 × min(α2 – α3, 1 – α1) = 3(α2 – α3), at
least for any α1 < 0.5.

Summing these gives overall bounds of

α3 ≤ overall probability of rejection ≤ 3α3 + α1 – α3 + 3α2 – 3α3

= α1 + 3α2 – α3

which for α = 0.05 gives 0.01695 ≤ overall probability of rejection ≤ 0.19091
for any three goodness of fit tests, whether independent or related in any
way. Note that these bounds may not be attainable, i.e., they may be wider
than necessary.

Summary of Total Probability of Rejection of a True
Null Hypothesis

Total probability of rejection
Scenario (Using α1, α2, and α3 based on α = 0.05)

Three mutually independent tests 0.0502

Two identical tests and a third 0.043
independent

Three identical tests 0.05

General Between 0.017 and 0.109
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Abstract
The southern blue whiting (Micromesistius australis) fishery is one of the
largest fisheries in New Zealand waters, with landings peaking at over
75,000 t in 1992. Early assessments of the Campbell Island stock were
carried out in 1992 and 1993 using Virtual Population Analysis. There was
concern over these assessments because diagnostics suggested that the
survivors were poorly estimated due to the noisy CPUE data. In addition,
estimates of recruited biomass from acoustic surveys could not be fitted
and confidence intervals could not be estimated using the existing software.

A separable Sequential Population Analysis was developed to simulta-
neously analyze all the available data and to address these issues. The 17
years of catch-at-age data were fitted as a multinomial distribution with a
median sample size of 100, weighted annually between years. Three acous-
tic indices of spawning stock biomass were fitted as relative abundance
indices, with a coefficient of variation (CV) of 0.3. Eleven years of stan-
dardized CPUE indices were converted to relative effort and fitted with a
CV of 0.5. Simulated data were used to estimate confidence limits, and
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included uncertainty in the annual catch, catch-at-age, CPUE, and acoustic
data.

The model results suggest that the stock underwent a major decline
during the 1980s and early 1990s but has since recovered, due mainly to
the recruitment of the strong 1991 year class. However, the extent of the
recovery is uncertain largely because of observation error in the tuning
indices and the sensitivity of the model to the selectivity assumptions.

Introduction
The southern blue whiting (Micromesistius australis Norman) fishery is
one of the largest fisheries in New Zealand waters. It was developed in the
early 1970s by the Russian fleet and since then landings have fluctuated
considerably averaging about 20,000 t, and peaking at over 75,000 t in
1992 (Fig. 1). The fishery targets southern blue whiting as they aggregate
to spawn on the Bounty Platform, Pukaki Rise, and the Campbell Island
Rise. Fish from these three grounds appear to form separate stocks (Hanchet
1998), and have been treated separately for stock assessment and man-
agement purposes. Before 1993, no catch or effort restrictions were in
place in the fishery. In 1993, a total catch limit of 32,000 t was introduced
with an area limit of 11,000 t on the Campbell Island Rise, 15,000 t on the
Bounty Platform, and 6,000 t on the Pukaki Rise. Historically, most fishing
has been carried out on the Campbell Island Rise (Fig. 1) and so the rest of
this paper deals primarily with that stock.

The first quantitative assessment of the Campbell Island stock was
carried out in 1991 using an age-structured stock reduction analysis fol-
lowing the method of Francis (1990). The model was fitted to CPUE data
and estimates of Z from catch curve analysis, and assumed deterministic
recruitment (Hanchet 1991). The following year a time series of catch-at-
age data extending back to 1982 was developed, and this allowed the use
of catch-at-age models to be used for the first time. Virtual Population
Analysis, tuned using the Laurec-Shepherd method (Laurec and Shepherd
1983), was carried out using the Lowestoft suite of programs (Darby and
Flatman 1994). However, the CPUE data used to tune the VPA were noisy,
and the diagnostics from the tuning indicated that the terminal fishing
mortalities on each age were poorly estimated with CVs ranging from 0.2
to 0.9 (Hanchet 1993). Several limitations were identified with the approach
being used: (1) there was likely to be error in the catch-at-age, CPUE, and
landings data, (2) a time series of biomass estimates from acoustic sur-
veys was being developed, (3) confidence intervals had not been estimat-
ed. A separable Sequential Population Analysis was developed in 1994 to
address these issues and to integrate all the available data in one stock
assessment (Hanchet and Haist 1994). This paper summarizes the model,
the four main sources of data used to assess this stock, and the results of
the model fitting.
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Figure 1. Annual landings of southern blue whiting (t) by the split October-
September fishing year.

Model Inputs
Landings Data
Landings for the period 1971 to 1995 are shown in Fig. 1. Landings before
1979 were not split up by area, and are possibly unreliable, and so only
the period 1979 to 1995 has been considered in the analysis. The landings
since 1979 are based on summaries of estimated catches recorded on
trawl catch and effort logbooks completed by all vessels operating in the
fishery. The fleet is composed primarily of Japanese surimi trawlers and
Russian head and gut trawlers using large midwater nets with codend
mesh sizes of 60 mm. The size distribution of fish caught by the two
types of vessels are virtually identical suggesting they have similar selec-
tivity patterns. No effort or catch restrictions were in force in the fishery
until the introduction of the total catch limit in 1993. Although the catch
limit has been reached in two of the three years since 1993, many vessels
carry scientific observers, and between 50% and 75% of the catch each
year has been observed.

Catch-at-Age Data
Length frequency data and otoliths have been collected from commercial
vessels working in the Campbell Island Rise fishery since 1979. Samples
before 1986 came mainly from single vessels carrying out exploratory
fishing in these waters, whereas samples since 1986 have come from sci-
entific observers on board several commercial fishing vessels each year.
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Length frequency data were stratified by time and area and scaled up to
the total landings following Schweigert and Sibert (1983).

Between 180 and 780 otoliths were read each year using the validated
methodology of Hanchet and Uozumi (1996). Otolith ages were used to
construct an age-length key for each year which was combined with the
scaled length frequency to obtain the annual catch-at-age, which was then
converted to proportion-at-age (see Fig. 4). Between reader variability in-
creased after age 10 (Hanchet and Uozumi 1996), so ages 2 to 10 were
used with a plus group at age 11.

One particular feature of the fishery is the occurrence of two distinct
spawning grounds on the north and south of Campbell Island Rise. In
years when strong year classes are first recruiting to the fishery (as 3-
year-olds) the proportion of new recruits is much higher on the southern
ground than in the north (Hanchet 1998). In some years the fleet has car-
ried out more fishing on the southern ground which may have caused an
increase in the selectivity of the 3-year-old fish in those years.

Acoustic Data
Acoustic surveys of southern blue whiting were carried out in the spawn-
ing season in 1993, 1994, and 1995 (Ingerson and Hanchet 1996). The
surveys were conducted using the random stratified parallel transect ap-
proach of Jolly and Hampton (1990). The survey area was stratified based
on the location of tows made by commercial fishing vessels targeting south-
ern blue whiting over the previous ten years, and covered 25,000 km2.
Although primarily designed as a spawning survey, transects were extended
inshore to cover the principal nursery grounds so that both adult and
prerecruit biomass estimates were obtained. Estimates of backscattering
were converted to biomass using the target strength–fish length relation-
ship derived for North Atlantic blue whiting (Ingerson and Hanchet 1996).
Each year two acoustic surveys were completed and the results averaged
(Table 1).

CPUE Data
Individual tow by tow data were analyzed for the Campbell Island fishery
for the period 1986 to 1995 using a generalized linear model (Hanchet
and Ingerson 1996). Because of the large number of zero tows (ranging
from 2 to 20% per year), a gamma error distribution with a log-link func-
tion was used to model CPUE. Annual catch per unit effort indices were
obtained after standardizing for the effects of vessel length, depth fished,
time of day, tow position, season, and headline height. The resulting CPUE
indices were converted to estimates of total annual effort by dividing them
into the annual landings (Table 2).
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Table 1. Biomass (t) and CV (%) of adult and
prerecruit (mainly 2-year-old) south-
ern blue whiting from acoustic sur-
veys of the spawning and nursery
grounds on the Campbell Island
Rise.

Adult Prerecruit

Biomass CV Biomass CV

1993 18,500 21 89,600 23

1994 161,400 36 22,400 38

1995 121,100 30 20,000 25

Table 2. Results of standardized CPUE analysis for the Campbell Island
Rise.

Number of Percentage Relative Standard Landings Relative
Year tows zero tows year effect error  (t) effort

1986 893 4.6 1.00 – 15,252 15,252

1987 637 5.3 0.68 0.06 12,804 18,829

1988 843 7.1 0.52 0.04 17,422 33,504

1989 1008 4.7 0.53 0.04 26,611 50,209

1990 994 7.8 0.46 0.04 16,652 35,883

1991 1057 3.7 0.35 0.03 21,314 61,072

1992 1091 18.7 0.23 0.02 14,208 62,044

1993 411 10.7 0.61 0.06 9,316 15,272

1994 384 6.8 0.53 0.07 11,290 21,302

1995 170 2.4 0.88 0.13 9,750 11,080



160 Hanchet et al. — Sequential Population Analysis of Southern Blue Whiting

Modeling
Model Specification
The model developed to analyze the fishery is an extension of the ap-
proach outlined by Fournier and Archibald (1982). Errors associated with
the observed catch, the proportion-at-age, fishing effort, and the acoustic
biomass indices are all explicitly considered in the model. The fit to the
total catch and the catch-at-age data are kept separate following Fournier
and Archibald (1982), which has allowed incorporation of variability into
the age determination process. Because fishing takes place during a very
short 2-3 week season in September, at the end of the fishing year, the
catch equations assume that 95% of M occurs before fishing starts and the
remaining 5% of M occurs during fishing.

The form of the catch equations used in the model is given by the
following relationships.

    
C

F

Z
Z Nij

ij

ij
ij ij= − −[ ] ′1 exp( )

  
C Ci ij

j
⋅ = ∑

    Z F Mij ij= + 0 05.
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where,
i indexes year,

j indexes age class,

a is the number of age classes,

Cij is the catch (in numbers) of age class j fish in year i,

Ci ⋅ is the total catch (in numbers) in year i,

Fij is the instantaneous fishing mortality rate for age class j in year i,

M is the instantaneous natural mortality,

Zij is the instantaneous total mortality rate for age class j during the
fishing period in year i,

Nij is the number of age class j fish in the population at the beginning
of year i, and
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N ′ij is the number of age class j fish in the population at the beginning
of the fishing period in year i.

Fishing mortality is treated as a function of the observed fishing ef-
fort (    Ẽi ), catchability (q), and age-specific selectivity (sij). Preliminary anal-
ysis suggested asymptotic selectivity, completed by age 5, so selectivity
of age 5 and older was assumed to be 1.0. Because of the potential for
targeting new recruits, time dependent changes in age-selectivity were
also estimated for ages 2 and 3. A single selectivity parameter is estimat-
ed for age-4 fish. The relationships describing observed fishing effort,
expected fishing effort (Ei), and fishing mortality are:

    E E di i i
E= ˜ exp( )

and     F q s E dij ij i i
E= ˜ exp( )

where,

    s l dij j ij
s= +exp( )

the  dij
s  represent deviations from average selectivity at age j for j = 2

and 3, and 0 for j > 3.

lj = 0 for 4 < j ≤ a

and the   di
E  represent deviations in the effort-fishing mortality rela-

tionship.

Following Fournier and Archibald (1982) we assume that the age-com-
position samples adhere to a multinomial sampling distribution and that
annual total catch estimates are independent and lognormally distribut-
ed. The negative of the log-likelihood function for the catch-at-age model
is then

    
− + −[ ]∑ + ∑⋅np p C C di ij ij C i i

i
E i

E

i
˜ ln ln(˜ ) ln( ) ( )σ σ

2
2

where ni is the sample size,     ̃pij  and pij are the observed and predicted
proportion of fish of age j in year i respectively.     C̃i  is the observed catch
in year i, and σC and σE are standard deviations for catch and effort which
are described below. An additional component is added to the negative of
the log-likelihood function to tune the model to the acoustic survey bio-
mass estimates. These surveys are conducted during the spawning sea-
son and the model is fit to the estimates of adult abundance. The model
estimates of spawning stock biomass (Bi) are

    
B l w Z Ni j j

j
ij ij= −∑ ′exp( . )0 5

where wj is the weight of fish in age class j. In this formulation we are
assuming that the average selectivity lj is synonymous with maturity, which
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is probably valid for this spawning fishery. We assume the survey abun-
dance estimates are relative and they have a lognormal error distribution.
The following term is added to the negative of the log-likelihood function.

    
σB i i

i

i
B rBln(˜ ) ln( )−[ ]∑

=

= 2

93

95

where σB is the standard deviation of the biomass described below,     B̃i  is
the adult acoustic biomass estimate in year i, and r is the abundance scalar.

The model was implemented using AD Model Builder software (Fourn-
ier 1994), which gave simple and ready access to minimization routines,
and provided the ability to estimate the variance-covariance matrix for all
dependent and independent parameters of interest. The parameters be-
ing estimated when minimizing the negative log-likelihood function are
ln(Ni1), ln(N1j ),   di

E ,   dij
s , lj, q, and r.

Weightings
It was not possible to estimate the various standard deviations so they
were fixed at values that represented our levels of confidence in the various
data sets. A convenient way to do this was in terms of weights where wx =

    σ x
−2 , for each variate x, and the corresponding CVs are given for each dataset

considered. An estimate of the confidence came from a consideration of
both the estimated variance and possible bias inherent in the data. Where
appropriate, weights were assigned different values between years.

Annual landings appear to be well estimated in this fishery and so a
weight equivalent to a CV of 5% was given to each year’s catch.

Weights were assigned to the proportion-at-age based on the sample
size in a multinomial distribution. The amount and precision of data
collected from this fishery suggests a sample size of around 300 may be
warranted (Hanchet and Ingerson 1996). However, the standard multinomial
sampling process is not robust to violations of assumptions (Fournier and
Archibald 1982). A number of factors including ageing error, sampling
bias, and nonconformity with the model assumption of separability would
all lead to the sample size being inflated relative to the true deviations of
predicted versus observed proportions-at-age. The sample size was
therefore reduced in the model to a value of 100.

The earlier data (pre-1986) are much less reliable than more recent
data because only one vessel was sampled each year, and there were fewer
length-frequencies taken and otoliths collected and read. Therefore, the
sample size was adjusted between years by the proportion of tows made
in that year compared to the median number of tows in the series following
Cordue (1993):

ni = n(ti/tmed )
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where, ni is the sample size in year i, n is the sample size, ti is the number
of tows sampled in year i, and tmed is the median number of tows in any
year in the series.

A weight of 5 (equivalent to a CV of 30%) was used for each acoustic
data point which is consistent with the average of the CVs from the surveys.
There is no reason to believe that the biomass was better estimated in any
of the years, since each estimate was based on two surveys, so the indices
were given equal weighting for each year.

The standard errors of the CPUE indices estimated by the general linear
model were quite low, suggesting a high weighting (Table 2). However,
because of the highly aggregated nature of the fishery, it was considered
that the CPUE series may not be accurately monitoring abundance and
that it should have a lower weighting than the acoustic indices. Therefore,
the weight for the effort data was assigned a value of 2, which is equivalent
to a CV of 50%.

Other Model Inputs
Natural mortality (M) was estimated by dividing loge100 by Amax, where
Amax is the age reached by 1% of the population. Using aging data from
1986, Amax was calculated to be 22 years giving an estimate for M of 0.21
(Hanchet 1991). This has since been rounded down to 0.2 to reflect its
imprecision. In the absence of data to the contrary, M is assumed to be
constant for all ages and years.

Weight at age was calculated from the weight-length relationship and
von Bertalanffy growth coefficients given in Hanchet (1991) and assumed
to be constant for each year.

Estimation of confidence intervals
Simulated data were used to estimate confidence limits for the results.
Four sources of uncertainty were included in the procedure. The individ-
ual otolith length-age data within individual years were resampled (with
replacement) and then scaled up to catch-at-age using the weighted length
frequency of the catch for that year. Uncertainty in the acoustics data, the
effort data and annual catch was captured by assuming the data were
lognormally distributed with CVs of 30%, 50% and 5%, respectively. For
each of the 500 bootstrap runs data were randomly selected from each
distribution. The percentile method was used to estimate confidence inter-
vals (Effron 1981): the estimate of the 90% confidence interval was comput-
ed as the 5th and 96th points in the set of bootstrap estimates after sorting
them into ascending order.

Sensitivity Analysis
A number of sensitivity analyses were carried out to examine the sensi-
tivity of the model results to alternative model assumptions. These in-
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cluded the relative weightings given to the catch-at-age and effort data, M,
selectivity assumptions, and whether the acoustic indices were treated as
relative or absolute.

Results and Discussion
The biomass trajectory and 90% confidence intervals are plotted in Fig. 2.
The results suggest that the stock underwent a large decline during the
1980s and early 1990s but has since recovered, due mainly to the recruit-
ment of the strong 1991 year class (Fig. 3). The wide confidence limits
suggest that estimates of current biomass and the 1991 year class are
highly uncertain. However, independent supporting evidence of its size
comes from the large prerecruit biomass in the 1993 acoustic survey (Ta-
ble 1), and the very slow growth rate of this year class (Hanchet 1998). The
model suggests that this year class is at least 3 times the size of the strong
1979 and 1980 year classes, and about 10 times the average.

The fit of the model to the adult acoustic biomass is shown in Fig. 2.
The value of the abundance scalar r was 1.14, indicating reasonable
agreement between the absolute adult acoustic estimate and population
biomass. However, the model is unable to fit the decline in the index
between 1994 and 1995, suggesting observation error in one or other of
these indices. The predicted proportions-at-age fit the observed
proportions-at-age very well for most year classes (Fig. 4). The model has
problems fitting the observed effort data between 1989 and 1993, but
overall there are no obvious trends in the residuals (Fig. 5).

The results of the sensitivity analysis are shown in Table 3. The re-
sults were relatively insensitive to the relative weightings examined for
the catch-at-age and effort data. Estimates of historic biomass were most
sensitive to the value of M. Estimates of current biomass and the size of
the 1991 year class were most sensitive to the inclusion of time depen-
dent age 3 selectivity, and to a lesser extent M.

Now the reason for freeing up the annual selectivity of the 2- and 3-
year-olds is that the proportion of fish in these age classes caught in the
commercial fishery can be quite variable. Targeting on 2-year-olds occurs
by fishing shallower than usual, while targeting on 3-year-olds occurs when
fishing the southern ground (Hanchet 1998). The model estimates a large
deviation in the selectivity of 3-year-olds when the proportion of 3-year-
olds in the catch-at-age data is inconsistent with the proportion of fish of
that year class in other ages. A plot of the annual selectivity of 2- and 3-
year-olds by year shows that targeting of the 3-year-olds often occurs when
strong year classes are recruiting to the fishery for the first time (e.g., the
1979, 1980, 1988 year classes) (Fig. 6). In the catch-at-age data there was a
high proportion of 3-year-olds of the 1991 year class relative to the
proportion of 2- and 4-year-olds of this year class. Therefore when the
selectivity was freed up the model estimated a selectivity of 0.85, whereas
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Figure 2. Mid-season spawning stock biomass (t) with 90% confidence intervals,
showing the fit to the three adult acoustic survey indices.

Figure 3. Estimated number of 2-year-olds in the population with 90% confi-
dence intervals.
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Figure 4. Observed and expected proportion-at-age in the commercial fishery.

when it was kept constant between years it was assigned the mean value
(which was 0.58 in that run). Without knowledge of the extent of targeting,
or an independent estimate of the abundance of 3-year-olds, it is not
possible to discern which selectivity value is the most appropriate. This
does, however, highlight the need to include the prerecruit acoustic indices
in the fitting procedure in future assessments of the stock.

The model sSPA has overcome some of the limitations of the earlier
models used to assess the stock (Hanchet 1991, 1993). Following Fournier
and Archibald (1982) and Methot (1989), the model has been structured to
integrate and simultaneously analyze data from fishery dependent and
fishery independent data sources. Errors associated with the observed
catch, the proportion-at-age, fishing effort, and the acoustic biomass indices
are all explicitly considered in the model, and confidence intervals have
been estimated for the first time. The Ad Model Builder software gives
ready access to minimization routines, is flexible enough to allow the
incorporation of future data as they become available, and is fast enough
to enable a large number of sensitivity analyses and the estimation of
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Figure 5. Observed and expected effort. The observed effort was cal-
culated from CPUE data, the expected effort was estimated
from the model.

Figure 6. Estimated annual deviations in the selectivity of 2- and 3-year-olds
and the 3-year-old mean.
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Table 3. Relative changes (expressed as percentages) of selected
parameter estimates as a result of alternative model as-
sumptions for the stock. B, mid-season spawning stock
biomass; R1991, size of the 1991 year class.

Model B1980 B1988 B1995 R1991

Sample size = 325 0.0 0.1 2.0 1.6

Sample size = 50 –0.1 –0.1 –1.8 –1.3

Effort CV = 70% 0.1 0.5 9.1 7.3

M = 0.15 –24.7 –9.2 –9.1 –20.0

M = 0.25 37.3 11.3 11.2 26.4

Acoustic index absolute 0.3 0.9 11.8 9.5

Age 3 selectivity constant 3.4 0.8 29.5 32.9
between years

confidence intervals to be carried out on a routine basis. Future improve-
ments to the model will include the use of an annual weight-at-age matrix,
the incorporation of aging error, and the fitting of age structured acoustic
indices.
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Abstract
Classical regression, analysis of variance, and experimental design fail to
provide adequate tools for building modern fishery models. In the last
decade, however, both statistical theory and software have progressed in
directions that make realistic stock assessment models possible. We re-
view the modern theory and show how to apply it to complex fishery
analyses, in which dual simulation and estimation models relate parame-
ters to available data. In particular, we demonstrate that state space mod-
els in a Bayesian framework provide useful design prototypes. More
generally, the theoretical framework leads to probability distributions that
must be translated into computer code. We discuss software requirements
for implementing this framework. We also present benchmark results from
a catch-at-age model rendered in four current software environments.

Introduction
A typical fish stock assessment uses historical data to evaluate the impact
of fishing on past, present, and future stock status. As preparation for this
work, most assessment scientists have taken at least a few university
courses in statistics. Such courses generally include a thorough discus-
sion of regression theory, analysis of variance, and experimental design.
Unfortunately, even a fairly detailed knowledge of classical statistics fails
to equip the scientist with all the tools needed to build realistic assess-
ment models. For example, a regression model cannot generally explain
the link between available data and underlying stock biomass.

In this paper, we examine recent statistical approaches to designing
models for complex data sets, such as those encountered in stock assess-
ments. We show that these new methods offer an integrated framework in
which complex biological processes can be interpreted in the light of avail-
able data. We also investigate various software environments for imple-
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menting the analyses required by these complex models, and we provide
benchmark comparisons for evaluation.

Both statistical theory and computer software have experienced rapid
changes over the past decade. Problems in stock assessment that once
seemed unique to fisheries science have now been addressed in a wider
framework, with applications in many fields. Furthermore, these concepts
allow a systematic approach to model development, in which assump-
tions range from simple to complex. Model design starts with two obvious
questions. First, what biological and fishery processes govern fish popu-
lation dynamics in space and time? Second, how do the observed data
relate to these underlying processes? These questions can each be given
deterministic or probabilistic answers. The combination of answers de-
fines a state space model (SSM; Harvey 1989, Schnute 1994) that describes
data collection from a dynamic population. A corresponding Bayes poste-
rior distribution can be used for inferring unknown parameters from avail-
able data.

Stock Assessment
Figure 1 portrays the essential elements of stock assessment. The process
begins with “Data” compiled from fisheries and field studies. A leftward
arrow (marked “EDA”) from “Data” to “Model” represents the exploratory
data analysis required to identify a model appropriate for the data. Thus,
the model describes underlying processes that theoretically produce the
observed data. Unknown “Parameters” relate to particular processes, such
as survival, growth, and selectivity by the fishery. The model involves
“Controls,” such as catch removed by the fishery. Environmental variables,
such as water temperature, might also act as controls. We regard the con-
trols as known quantities that contribute directly to the available data
(arrow from “Controls” to “Data”). Similarly, controls directly influence sys-
tem dynamics (arrow from “Controls” to “Model”). The upward arrow marked
“Policy” indicates that a harvest policy algorithm in the model might also
dictate some of the controls. Thus, the model might be used to design an
appropriate control policy.

Given parameters and controls, the model can be used to generate
simulated data, and this relatively easy simulation process can be instruc-
tive for understanding model characteristics. A much harder analysis deals
with the inference problem: estimating parameters from the available data.
Ideally, probability distributions in the simulation model should, via “Sta-
tistical Theory,” imply an “Estimation Algorithm” for resolving the infer-
ence problem. For example, a classical linear regression model with additive
normal error implies a least-squares algorithm for estimating the inter-
cept and slope of a line. In the present context, where the simulation mod-
el might be highly complex, an appropriate estimation algorithm may be
less obvious. Thus, we require that the statistical theory developed here
should be general enough to resolve the inference problem for a broad
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Figure 1. Logical relationships among components of the stock as-
sessment process.

class of stochastic models that could potentially produce the observed
data.

Figure 1 suggests an iterative process that can be used to test both
model design and statistical theory. Start with a hypothetical model, spec-
ified parameters, and a given control policy. Run the model to produce
simulated data, and use the estimation algorithm to obtain parameter es-
timates from these data. Essentially, this process starts with “Parameters”
and cycles through “Model,” “Data,” “Estimation Algorithm,” and back to
“Parameters.” Repeating this process many times gives a distribution of
estimates conditional on the original parameters.

These cycles of simulation and estimation sometimes show that the
available data cannot be used reliably to reconstruct the population dy-
namics. Furthermore, the control policy may influence how well parameters
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can be estimated. Typically, controls that vary substantially from year to
year produce contrasting data that better reveal the system dynamics.
Schnute and Richards (1995) illustrate this principle in the analysis of
catch-at-age data. An adaptive management policy (Walters 1986, Hilborn
and Walters 1992) seeks to optimize information about the system, as
well as optimal return from the resource.

State Space Models
Analysis from Fig. 1 begins by identifying the contents of the boxes “Data,”
“Controls,” and “Model.” For example, consider a fishery in which available
data consist of the annual catch Ct and an abundance index It in each year
t. Assume that the catch Ct also constitutes the only known control. Within
the population, let Rt and St denote numbers of new recruits and survivors
from past years, respectively, at the start of each year t. An appropriate
model for this fishery could include the equations

    S R S C et t t t
M t= + −− − −

− +( )1 1 1
σ δ (1)

    I q R S C et t t t
t= + −( )1

2
τε , (2)

where δt and εt are independent standard normal variates (mean 0, vari-
ance 1). The dynamic process equation (1) describes survival from year
t – 1 to year t, where removals by the fishery precede natural mortality.
Survival includes a lognormal process error with natural mortality param-
eter M and associated standard error σ. The observation equation (2) re-
lates the index It to the population midway through the fishery, when half
the catch has been removed. The parameter q acts as a proportionality
constant, and an associated lognormal measurement error is scaled by
the standard error τ.

This simple example illustrates the concept of a state space model
(SSM). Hidden states Xt = (Rt,St) are governed by a dynamic process equa-
tion (1), and observations Yt = (It) result from these states by an observa-
tion equation (2). Both equations (1) and (2) are influenced by the controls
Zt = (Ct) and the model parameters Θ = (M,q,σ,τ). More generally, an SSM is
characterized by three probability distributions:

    P X Z( | , );1 1 Θ (3)

    P X X Z tt
t t( | , , ); ;− ≥1 2Θ (4)

    P Y X Z tt
t t( | , , ); ;Θ ≥ 1 (5)

where superscripts denote cumulative vectors       X X Xt
t= ( , , )1 L  and

   Z Z Zt
t= ( , , )1 L . Thus, the distribution (3) of the initial state vector X1 de-
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pends on the initial control Z1 and the parameters Θ. Similarly, for t ≥ 2,
the distribution (4) of Xt is conditional on all previous states Xt–1 and all
controls Zt up to the current year t. Finally, the observations Yt in (5) de-
pend on all states and controls up to the current year.

Any model (3)-(5) explicitly meets the simulation requirements dis-
cussed above in connection with Fig. 1. Start with the model, known pa-
rameters, and given controls. Use (3) to generate X1; apply (4) iteratively to
simulate the population dynamics; and thus obtain the complete popula-
tion vector XT for a fixed time       t T= 1, ,L . Finally, use (5) to simulate the
data Y T that would result from the simulated population.

Statistics
We have so far established an explicit correspondence between an SSM
and four boxes in Fig. 1: “Parameters” ↔ Θ; “Model” ↔ (3)-(5); “Controls” ↔
Zt; “Data” ↔ Yt. It remains to explain how “Statistical Theory” produces an
“Estimation Algorithm.” Given the data and controls for years in the range
1 ≤ t ≤ T, unknown quantities to be estimated include model parameters Θ
and hidden states XT. A function that involves all these quantities is the
product of probabilities (3)-(5):

    
L X P X Z P X X Z P Y X ZT

t
t t

t

T

t
t t

t

T
( , ) ( | , ) ( | , , ) ( | , , )Θ Θ Θ Θ= ∏ ∏−

= =
1 1

1

2 1
. (6)

The first two components of the product in equation (6) represent the
joint distribution of all states XT, where this is expressed as an iterative
product of conditional distributions. The third component of the product
corresponds to the distribution of the data Y T, given the states XT. From a
Bayes perspective, L(Θ,XT ) comprises a likelihood function for the unknown
quantities, based on the model in equations (3)-(5). The posterior distribu-
tion is then given by the proportionality

    P X L X Q XT T T( , ) ( , ) ( , ),Θ Θ Θ∝ (7)

where Q (Θ,XT) denotes a prior distribution.
The posterior (6)-(7) exploits the fact that a joint probability distribu-

tion can be expressed as a product of conditional probabilities. In the SSM
paradigm, these dependencies come primarily from transitions between
time steps t – 1 and t, although the approach can be extended to cover a
broader range of conditional distributions. For example, fishery selectivi-
ties might be modeled as random variates from an underlying distribu-
tion independent of t. Such structural assumptions introduce extra factors
in the product (7). Thus, if Θ = (Θ1, Θ2) and Θ1 is conditional on Θ2, then the
distribution of Θ can be expressed as the product P (Θ) = P (Θ1 | Θ2) P (Θ2).

In general, a simulation model defines a sequential calculation of quan-
tities relevant to the analysis, such as the states Xt above. At each step of
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this calculation, some quantities are already known from previous com-
putations, and others remain to be computed. As illustrated by equations
(3)-(5), the stochastic steps involve probability distributions, in which
quantities to be simulated depend conditionally on quantities already com-
puted. The Bayes approach treats all unknown quantities as parameters,
and the “Statistical Theory” in Fig. 1 consists of defining a Bayes posterior
distribution proportional to the product of all these conditional distribu-
tions. For simulation purposes, the model involves drawing random vari-
ates from the proposed distributions. For estimation purposes, the model
prescribes a Bayes posterior distribution. Standard Bayes inference tech-
niques then provide a description of uncertainty in all unknown quanti-
ties, based on the known data.

This Bayesian link between simulation and estimation offers an at-
tractive universal approach to models with arbitrary complexity. Theoret-
ically, almost any deterministic or random process can be contemplated
in the fishery model and evaluated in the light of available data. Clifford
(1994) describes the shift in thinking among statisticians as follows:

The recent revival of interest in Bayesian methods arises not from
a wholesale conversion among statisticians to Bayesian ideology,
but from a need to deal with high dimensional parameter spaces
in modern applications…. In these applications it is convenient to
co-ordinate parameters by imposing probabilistic structures anal-
ogous to those introduced by Bayesian theory. The structures may
involve relatively few hyperparameters which themselves are
amenable to estimation by classical methods…. When the num-
ber of parameters goes into the thousands, it is less obvious how
to proceed and the clear centralist dogma of Bayesianism becomes
an attractive starting point.

Clifford’s remarks have particular relevance to the SSM context dis-
cussed here. The unknown states XT can be considered a high dimensional
parameter vector “coordinated” by “hyperparameters” Θ. Thus, the sto-
chastic model (3)-(5) prescribes the likelihood (6), in which states XT are
linked stochastically (coordinated) by relatively few underlying system
parameters (hyperparameters) Θ. For example, in a model for catch-at-age
data with A age classes and T years of data, the annual state vector Xt has
A components; thus, XT contains A × T unknown parameters. This number
may seem large to scientists accustomed to historical analyses, such as
virtual population analysis (VPA), in which population sizes are computed
deterministically by back calculation. Nevertheless, even VPA produces a
complete set of A × T population estimates, although the fact that the
computed numbers are merely estimates is somewhat disguised by the
deterministic calculation.

In summary, a state space model leads to the problem of estimating
both parameters and states. To simplify our notation, we represent the
complete set of unknowns as θ = (Θ,XT ), and we denote the function on the
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right side of (7) as p (θ ) = L(θ )Q (θ ). Thus, P(θ ) ∝ p (θ ), where p (θ ) can be
computed directly from probability distributions in the model. If p (θ ) has
a mode (maximum value) at   ̂θ , then the second order Taylor expansion

    log ( ) log ( )̂ ( )̂ ( )̂p p Hθ θ θ θ θ θ≈ − − ′ −1
2 (8)

corresponds to the normal approximation in which θ has mean   ̂θ  and
covariance matrix H–1. The prime symbol in (8) denotes transpose, and H
is the Hessian matrix of second partial derivatives of the function [–log
p (θ )], evaluated at   ̂θ . This approximation leads to the first computational
requirement for Bayes inference:

Problem 1. Given the function p (θ ), compute   ̂θ  and H–1.

A software environment for solving problem 1 must allow the distri-
butions (6)-(7) to be converted easily into computer code. In addition, the
environment must provide tools for maximizing a function, computing
its second partial derivatives at the maximum, and inverting a matrix.

Unfortunately, the solution to problem 1 alone can give a poor repre-
sentation of the Bayes posterior. Distributions of some parameters may
be highly skewed; consequently, the symmetric confidence regions of the
normal approximation can be deceptive. Perhaps more seriously, the pos-
terior may have multiple modes, corresponding to different biological in-
terpretations of the available data. Theoretically, information from the
posterior should be available by computing its density in various regions
of parameter space. However, the “curse of dimensionality” represents a
significant impediment to a brute force approach. For instance, examin-
ing a range of 10 values for each of m parameters would require 10m
cells, more than the available memory on most computers when m > 8. A
more reasonable computational alternative is described in

Problem 2. Given the function p (θ ) proportional to the posterior P(θ )
and a large integer n, draw a random sample of n vectors θi (1 ≤ i ≤ n) from
P(θ ). Then use properties of the sample to estimate properties of the pos-
terior.

An approximate solution to problem 2 comes from solving problem 1
and applying a known algorithm for sampling a multivariate normal dis-
tribution. However, a general solution to problem 2 cannot depend on
such specific algorithms, because P(θ) typically is much more complex
than any classical distribution.

In recent years, numerous methods have been proposed for solving
problem 2 (Tanner 1993, Gilks et al. 1996, Punt and Hilborn 1997). Some
of the most popular can be categorized as Markov chain Monte Carlo (MCMC)
methods. These techniques start at a trial point θ1 and move in a Markov
process to future points θi (1 ≤ i ≤ n); thus, each new trial θi depends only
on the previous point θi –1. Relative values p (θi), automatically proportion-
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al to P(θi), are used to decide whether to retain trial points from the Mark-
ov chain. An initial “burn in” segment of the sample is usually ignored.
The solution to problem 1 can greatly assist a solution to problem 2, be-
cause the choice   θ θ1 = ˆ starts the chain at the point of highest posterior
density. Furthermore, the inverse Hessian H–1 can be used to set an appro-
priate movement scale for the Markov process. If the solution to problem
1 is ignored, software requirements for solving problem 2 are minimal.
For example, only a few lines of code are required to implement the pop-
ular MCMC Metropolis-Hastings algorithm (Gilks et al. 1996, p. 7).

The discovery of posterior sampling algorithms has had a profound
effect on Bayesian statistics. Clifford (1993) summarized this effect as
follows:

It used to be that you could tell a Bayesian by his tendency to hold
meetings in isolated parts of Spain and his obsession with coher-
ence, self-interrogation, and other manifestations of paranoia.
Things have changed…. What the authors [of MCMC sampling
methods] have done today is to announce that from now on we
can compare our data with the model that we actually want to use
rather than a model which has some mathematically convenient
form. This is surely a revolution…. Having opened up this Pando-
ra’s box of allowing people to use the models that they want to
use, the question is whether or not statistics is ready to deal with
what is inside. Will we support the widespread use of Monte Carlo
methods or will we try to preserve our professional mystique by
introducing jargon and acronyms?”

Software
A software environment for stock assessment should make it easy to ac-
complish all tasks outlined in Fig. 1. These include:

• Facilities for loading data from text files or databases (“Data”).

• Graphical tools for exploratory data analysis (“EDA”).

• Functions to generate random variates from a wide variety of distri-
butions (“Model,” used for simulation).

• A language for expressing the probability distributions (3)-(5) that
define the inference function p (θ).

• Numerical routines for solving the inference problems 1 and 2, in
particular, for maximizing p (θ) (“Estimation Algorithm”).

The software should also support vectors, matrices, and arrays of
arbitrary dimensions, along with the usual associated functions (e.g., sums,
products, inverses, eigenvalues, decompositions) commonly used in mod-
ern applications. Ideally, the environment should offer an interactive com-
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mand line for investigative graphics and trial analyses. Software packages
with the features discussed here are commonly called fourth generation
languages (4GLs), to distinguish them from the classical third generations
languages (3GLs), such as FORTRAN, PASCAL, C, and C++.

Table 1 lists four packages that we have tested in light of the above
requirements. Three of them (GAUSS, MATLAB, S-PLUS) can be considered
4GLs, although the current version of GAUSS supports only two-dimen-
sional matrices. Thus, GAUSS cannot easily deal with fishery models where
populations have multiple indices (such as age, year, area, and species).
Also, the graphical facilities currently available in GAUSS are relatively
primitive compared with those in MATLAB or S-PLUS.

The AD Model Builder (ADMB) package, which we have classified as a
3.5 GL, essentially provides a C++ class library that extends the C++ lan-
guage to address some of the 4GL requirements identified here. The li-
brary is distributed in binary form for a variety of popular C++ compilers,
which must be obtained separately. The letters AD refer to automatic dif-
ferentiation, a technique that allows the gradient of a function to be com-
puted automatically from the computer code for the function itself. Efficient
algorithms for locating a function’s maximum generally require computed
values of both the function and its gradient. Thus, as demonstrated in our
benchmarks, automatic differentiation can dramatically assist the solu-
tion to problem 1. The ADMB package offers full matrix support, but no
graphics or interactive command line. Programs are written as templates,
which are converted to C++ code by a text-processing program. Code within
a template compares favorably with similar code that might be written for
a 4GL.

As a benchmark example from fisheries literature, we used the catch-
at-age model proposed by Schnute and Richards (1995). We chose this
reference partly because computer code can be written directly from ta-
bles listing the model equations and likelihood function, which are too
lengthy to include here. We first applied S-PLUS to simulate data from a
given parameter vector θ0. We then attempted to estimate these parameters

Table 1. Software products used in the benchmark, with associated ver-
sion numbers and choice of optimizer used for solving problem 1.

Product Company Generation Optimizer

AD Model Builder 2.0.1 Otter Research Ltd. 3.5 GL (Native)
(Borland C++ 5.01)

GAUSS 3.2.28 Aptech Systems, Inc. 4 GL Optmum

MATLAB 5.0.0.4069 The MathWorks, Inc. 4 GL Fminu

S-PLUS 3.3 (Release 1) MathSoft, Inc. 4 GL Nlmib
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with each software package, based on the same simulated data set and the
inference function p (θ ) given by Schnute and Richards (1995). More pre-
cisely, we coded p (θ ) in each software package and used an available opti-
mizer (Table 1) to locate   ̂θ , starting from the initial point θ0. Thus, each
optimizer was faced with the same problem of moving from θ0 to the
modal estimate   ̂θ , where   θ̂ θ≠ 0 due to stochastic error in the simulation
model. With T years of data for A age classes, the total number of param-
eters (dimension of θ ) in this model is m = T + A + 5.

To keep the benchmark simple, we confined our analysis to the estima-
tion phase of problem 1. Thus, our results do not include the computation
of H–1. We used a Pentium 133 MHz computer with 48 MB of RAM, operating
under Windows NT 4.0. We considered two cases, a small example with
only 37 parameters and a larger one with 100 parameters (Table 2). We
accepted the default settings for each product and optimizer shown in Ta-
ble 1. For each run, we recorded the total time required (Time), the number
of function calls (Calls), and the time in milliseconds for each call (ms/call).

It soon became clear that S-PLUS cannot handle problems of substan-
tial size, although the language theoretically can express all mathematical
concepts required for Fig. 1. In each case marked n/a in Table 1, the S-
PLUS interpreter exhausted computer memory before finishing the calcu-
lation, apparently due to a memory management philosophy (Mathsoft,
Inc. 1993, chapter 12) inappropriate for the problems considered here.
Furthermore, in the small example where we could at least obtain the time
for one evaluation of p (θ ), S-PLUS was much slower than the other products.

ADMB performed much faster and required fewer function calls than
its competitors in this benchmark. The reduced number of function calls
stems directly from automatic differentiation. One call in ADMB evaluates

Table 2. Benchmark trials for two cases of a catch-at-age model, in which
T years of data are available for A age classes and the total num-
ber of parameters is m = T + A + 5.

Case T A m Product msa/call Calls Time Scale

1 20 12 37 ADMB 29 161 4.6 s 1.0

GAUSS 42 4,041 2.8 min 1.0

MATLAB 178 1,936 5.8 min 1.0

S-PLUS 1429 n/a  n/a

2 80 15 100 ADMB 131 291 38 s 8.3

GAUSS 167 23,365 1.08 hr 23.1

MATLAB 639 18,360 3.25 hr 33.6

S-PLUS n/a n/a n/a
a ms = millisecond
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both the function and its gradient. The other products approximate gradi-
ents numerically by making a small change to each component of θ; thus,
they require m + 1 function calls to achieve the same result. Furthermore,
ADMB obtains gradients accurate to machine precision, whereas the other
products lose precision in the subtraction needed to approximate deriva-
tives. Consequently, the ADMB optimizer can perform more efficiently
near the minimum, where gradients are small and the loss of precision
from differencing is greatest. Also, ADMB uses the “reverse” method of
automatic differentiation, which is known to be highly efficient (Griewank
and Corliss 1991).

As problems grow in size, the required computer time increases. For
example, cases 1 and 2 in Table 2 have 37 and 100 parameters, respective-
ly. Thus, case 2 scales case 1 upward in size by the factor 2.7 = 100/37. If
case i requires computing time ti (i = 1,2), then the scale factor ti /t1 mea-
sures the time increase for case i relative to case 1. For each product in
Table 2, the scale factor (Scale) for case 2 is greater than 2.7, due partly to
increased time for a function call in the more complex model. Neverthe-
less, ADMB appears more scalable than the other products, probably from
the efficiencies of reverse automatic differentiation.

Discussion
Statistics has recently moved in new directions that can make stock as-
sessment more systematic and rigorous. As discussed by Clifford (1994),
we have adopted the Bayes approach, “not from a wholesale conversion,”
but from the need to work with high dimensional models where the “clear
centralist dogma of Bayesianism” provides an adequate general frame-
work. Within this framework, the “Statistical Theory” in Fig. 1 can be sum-
marized by the inference problems 1 and 2, where an inference function
p (θ ) can be written explicitly for a broad range of models. Perhaps fishery
analysts can finally use models with realistic complexity, rather than a
limited range of classical models with “some mathematically convenient
form” (Clifford 1993).

We have not attempted to address some of the ambiguities that typi-
cally accompany this approach. For example, even in the simple model
(1)-(2), different results can be obtained for different choices of the mea-
surement to process error ratio τ /σ. As models become more complex,
the number of such choices increases, and the ambiguities may dominate
the analysis. As discussed earlier, simulation-estimation cycles in Fig. 1
can be used to test how well available data identify the underlying popu-
lation dynamics. In fishery data analysis, the results are often disappointing.

Like statistical theory, software tools have also seen recent substan-
tial advances. The modeling framework in Fig. 1 and the computational
requirements for solving problems 1 and 2 dictate certain minimal re-
quirements, which we have itemized in the first paragraph of the preced-
ing section. We chose the products benchmarked here for three reasons.
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First, they represent a blend at the level of third and fourth generation
languages essential for the minimal requirements identified here. Our dis-
cussion shows the strengths and limitations of each product from this
point of view. Second, two products (ADMB and S-PLUS) already have been
used extensively for building sock assessment models. We have personal
experience with both (e.g., Schnute and Richards 1995, Richards et al.
1997); thus we have some confidence in our ability to write appropriate
code. Third, the remaining products (GAUSS and MATLAB) have explicitly
extended their 4GL capabilities to include routines for addressing the op-
timization issues inherent in solving problem 1. Other optimization lan-
guages and software (e.g., AMPL; Fourer et al. 1993) focus primarily on
linear and nonlinear programming problems, which differ substantially
from the statistical problems 1 and 2 cited above. For an extensive review
of optimization software in various contexts, see Moré and Wright (1993)
and the related link to their software guide at the Internet site http://
www.mcs.anl.gov/otc/.

We do not think that the ideal software tool exists at present. We would
like a rich language with an interactive command line for fast prototyping.
It would connect easily to our data sets and produce revealing graphics
for rapid insight into complex multivariate data. Vectors, matrices, and
multidimensional arrays would be intrinsically available, along with all
the usual functions and transformations of these objects. It would include
every known mathematical function, and it would produce random vari-
ates drawn from all known univariate and multivariate distributions. Au-
tomatic differentiation of all orders would be supported; for example, an
exact (to machine precision) calculation of the Hessian matrix of second
derivatives would be routinely available. A fast optimizer would be linked
to all these capabilities. An application module would implement all the
concepts in Fig. 1; thus, we could supply only a model and data, and the
rest of the analysis would follow automatically. Perhaps through hidden
compilation, code would run as fast as if compiled and would be upward-
ly scaleable to large data sets. The language would contain a lucid help
facility, and high quality documentation would be available from diverse
authors and publishers. Finally, everyone would use it, so that code could
always be shared.

We certainly do not consider our benchmark exhaustive of the possi-
bilities or even definitive for the products considered here. Software and
hardware change continuously, and we intend primarily to offer a frame-
work for discussion. We recognize that languages and software environ-
ments require long learning curves to master. People naturally become
committed to a tool they understand, and they experience frustration when
it fails to extend easily to meet new requirements. We hope that our exam-
ple encourages readers to test and document results from other software
environments.
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We also hope that our comments stimulate vendors to provide better
software tools. For example, our tests convincingly demonstrate the ad-
vantage of automatic differentiation in the time required to estimate   ̂θ  in
problem 1. The framework in Fig. 1 shows that this is an important issue.
Many cycles of simulation and estimation may be required to test the
effectiveness of a control policy or the potential for estimating a model’s
parameters. For example, consider the problem of investigating 4 control
policies on 100 trajectories, each running 50 years into the future. All
model parameters must be estimated for each future year on each trajec-
tory. If the combined simulation-estimation cycle for each year takes about
40 seconds (Table 2, case 2, ADMB), then the entire run requires over 9
days (4 × 100 × 50 × 40 seconds). If the cycle takes one hour (Table 2, case
2, GAUSS), the run time extends to more than 2 years! Obviously, run time
can dictate whether an analysis is feasible or not.

The Babel tower myth offers some insight into the current software
reality for the community of fishery scientists. After the people of Babel
sought to build a tower to heaven, the Lord God devised a plan (Genesis
11: 4-7). “Behold the people is one; and they all have one language; and
this they begin to do; and now nothing will be restrained from them, which
they have imagined to do…. Let us go down, and there confound their
language, that they may not understand one another’s speech.” Our italics
highlight the prospects for accomplishment with a common language, if
the scientific community could ever agree on one.

Although modern statistical and software tools have become quite
sophisticated, no elaborate model should preclude a thoughtful examina-
tion of the facts. Fishers often accuse scientists of placing excessive faith
in mathematical models and ignoring practical experience. We regard
models as tools for investigating biological scenarios consistent with the
facts, analogous with a detective reconstructing the crime scene from avail-
able clues. A credible model scenario can also be supported by an intui-
tive examination of the raw data (Richards et al. 1997). The final product
must go beyond the mathematical paradigm of Fig. 1 to an explanation
that policy makers can understand and communicate to a skeptical public.
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Abstract
Fisheries stock assessment typically involves an evaluation of historical
stock status and a forecast of future status under one or more harvest
policies. In this paper, we describe an integrated modeling framework
both for estimation of historical stock status and for simulation of future
status under a precautionary management regime. The paper extends our
earlier work, where we used state-space models to conduct the estimation
component of the analysis. Here we demonstrate how large uncertainties
in historical biomass trends can be propagated into forecasts of future
status. Following the precautionary approach, fisheries models must con-
sider the probability that stock biomass will fall below preset limit (con-
servation) reference points within a specified time horizon. Because
reference points are estimated from historical data, they are themselves
highly uncertain. Our method uses estimates of the model parameters
and covariance matrix to recreate plausible scenarios for the historical
state dynamics and corresponding reference points. For each scenario, we
then simulate future states under a fixed catch policy, allowing for pro-
cess error in recruitment. The outcome for a given time horizon and har-
vest policy can be perceived as a bivariate scatterplot with forecasted
biomass on one axis and the corresponding reference point on the other
axis. Thus, our model framework provides an explicit method for evaluat-
ing the likelihood that future stock sizes will fall below the preset limit.
We also suggest visualization tools for clearly portraying these risks to
decision makers.
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Introduction
The United Nations Straddling Stocks Agreement (United Nations 1995)
provides explicit guidelines on application of the precautionary approach.
In the context of fishery stock assessments, reference points are identi-
fied as the primary advisory tool. Reference points may be expressed in
terms of fishing mortality rates or stock biomass (Caddy and Mahon 1995).
Limit reference points define upper bounds to fishing mortality rates or
lower bounds to biomass. Under the precautionary approach, harvest strat-
egies are constrained within these safe biological limits. According to An-
nex II.7 of the Agreement, “For stocks which are not overfished, fishery
management strategies shall ensure that fishing mortality does not ex-
ceed that which corresponds to maximum sustainable yield, and that the
biomass does not fall below a predefined threshold.”

In this paper, we describe a statistical framework that is explicitly
designed to evaluate the risk of either approaching or exceeding the limit
reference points. Specifically, the Agreements state that the fishing mor-
tality F shall be maintained at a rate below Fmsy, the F corresponding to
maximum sustainable yield. Similarly, stock biomass B shall be maintained
at a level above a limit biomass Blim. These conditions can be stated math-
ematically as the probability

    P F F B Bmsy lim( ; ) ,> < < α (1)

where α is small. The key problem is to define harvest strategies such that
condition (1) is met. The problem is complicated by uncertainties in the
definition and measurement of Fmsy and Blim, as well as in stock status and
underlying biological relationships.

We describe an integrated modeling approach for evaluating the risk
that a condition similar to (1) is not met. Our approach allows estimation
of uncertainties in historical stock status and other key stock assessment
parameters, such as the natural mortality rate. Simulations of future stock
status then incorporate these historical uncertainties, as well as process
error in recruitments. We include a case study where we use such fore-
casts to evaluate alternative harvest control policies. In addition, we sug-
gest practical visualization tools for clearly portraying risks in advisory
contexts. We also demonstrate how advice can become less precautionary
when the full uncertainties are not considered.

Methods
Reference Points and Harvest Control Laws
Several real problems are associated with evaluating the probability in (1).
Both the fishing mortality rate F and the biomass B are measured with
error. Furthermore, in the example here, F is not measured directly, but
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inferred from the estimate of B and fishery removals in the catch. Thus, if
B is overestimated, then the historical F will be underestimated. Similarly,
if B is underestimated, then the historical F will be overestimated.

Estimation of Fmsy in (1) poses additional problems. The concept of Fmsy

is based on equilibrium conditions that are unlikely to be valid for sto-
chastic environments. A stock-recruitment function is also required. Un-
fortunately, the relationship between recruitment and spawning stock
biomass is poorly determined in most cases, particularly when uncertain-
ty in the estimates of stock biomass and recruitment are acknowledged.

For these reasons, we prefer to illustrate our approach with control
policies based on the catch rather than F and Fmsy. Unlike F-based quanti-
ties, the catch can be directly observed and measured in most cases. Fur-
thermore, F-based harvest policies are often translated into a catch or TAC
for actual implementation in a management context. We suggest the con-
dition

    P B B Ct lim s s
t<( ) <=

−| { } ,1
1 α (2)

as an alternative to (1), where future years s (1 ≤ s < t) lie within a time
horizon of t years. In (2), Bt denotes the biomass at the start of the final
year t, given a proposed sequence of annual catches     { }Cs s

t
=
−
1
1. In this paper,

we envisage a fixed catch policy Cs = C, and we examine time horizons t in
the range 1 ≤ t ≤ T. Of course, other control policies could be adopted. For
example, in a strictly precautionary approach, the catch would be set to 0
when Bt < Blim.

An appropriate value for Blim in (1) and (2) is obviously stock specific.
Values of Blim typically are set relative to historical estimates of biomass
and other model parameters. For example, Blim could be specified as a
proportion of the estimated unfished biomass or as the lowest observed
biomass. Thus, both Blim and Bt in (2) can be random variables. We discuss
this issue further in the context of our case study.

Given a definition of Blim and a harvest control policy, (2) can be inter-
preted as a measure of risk; a higher value of α implies a higher risk to the
stock. Similarly, the longest time horizon T provides a measure of sustain-
ability. For example, for large values Ct, the condition in (2) may be met for
short time horizons only. More generally, we define the probability

    αt t lim s s
tP B B C= <( )=| { } 1 (3)

as a measure of risk in a specific year t within a time horizon of 1 ≤ t ≤ T
years.

Estimation and Simulation
To evaluate risk and sustainability from the probability in equation (3) for
a particular fish stock, we conduct the following steps:
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1. Develop a statistical fishery model, tailored to the observed data for
the stock.

2. Apply the model to obtain estimates of the model parameters and the
covariance matrix for these estimates.

3. Draw a sample parameter vector from the multivariate normal distri-
bution estimated in step 2, and thus obtain a sample historical trajec-
tory for the stock. Pick a large number n, and repeat this process n
times to obtain n independent trajectories, each of which reflects the
estimated correlations among model parameters.

4. Choose an appropriate definition for Blim, a range of harvest control
policies based on a constant catch, and a time horizon T.

5. Project forward T years from the final year in each historical trajecto-
ry using simulated recruitments and a constant catch.

6. Repeat step 5 with different choices of constant catch, but using the
same set of n historical trajectories and future recruitment scenarios.

Our analysis could be applied to a wide range of fishery models that pro-
duce biomass and recruitment estimates. We illustrate the process here in
the context of catch-age analysis (Fournier and Archibald 1982; Methot
1989, 1990; Schnute and Richards 1995). We assume for our case study
that recruitment is unrelated to stock size, within the range of stock sizes
of interest. Thus, we can redraw recruitments from the estimated recruit-
ment series and apply the same set of recruitments to each simulated
control policy. However, if Ct ≥ Bt in any future year t, we allow the popula-
tion to crash, setting the remaining future recruitments to zero.

A feature of our approach that differs from other methods is that we
explicitly include uncertainty in the model parameter estimates and in
estimates of current biomass used as a starting point for forward projec-
tions. For example, our forward projections can include uncertainty in
estimates of the natural mortality rate M. A more typical approach would
be to start the forward simulations at the current biomass estimate and
include in the projections only uncertainties in future process. We term
this the “future process error” approach and apply it to demonstrate the
importance of the “full model error” approach.

Case Study
To illustrate our methods, we choose data from a stock of Pacific Ocean
perch (Sebastes alutus) from southern Queen Charlotte Sound, Canada.
For this stock, longevity is up to 90 years, recruitment is sporadic with
strong year classes about once a decade, and recruitment to the fishery
and maturity occur between ages 6-15 years. A complete catch-age analy-
sis is described by Richards et al. (1997), based on the model of Schnute
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and Richards (1995). These papers described stock reconstructions and
their associated uncertainties; we did not consider forward biomass pro-
jections, harvest policies, or appropriate choices of reference points. Here,
we extend our work to examine forward projections of stock biomass un-
der different control policies.

Definition of Blim

Rockfish (Sebastes spp.) stocks along the Pacific coast of North America
were targeted by Soviet and Japanese fleets during the late 1960s and
early 1970s before Canada extended seaward jurisdiction to 320 km. Sev-
eral analyses indicated low levels of biomass by the late 1970s (Ketchen
1981, Kimura 1981, Archibald et al. 1983, Ianelli and Heifetz 1995). The
fishing industry also agreed that our study stock was depleted at this
time. Thus, we choose estimated stock biomass in 1977 (at the time of
extended jurisdiction) as our measure of Blim. Due to uncertainties in stock
and recruitment estimates (Fig. 8 in Richards et al. 1997), we have no
evidence for a stock-recruitment relationship that might provide an alter-
native value for Blim.

Estimation
Our approach follows state-space design principles (Schnute 1994, Schnute
et al. 1998). The state dynamic equations of our catch-age model are ex-
pressed in terms of numbers Nat at both age a and time t. A key feature of
the stock reconstruction is that we assume separability of the proportion
of the fish Nat selected by the fishery into age and time components. Spe-
cifically, we assume that fishery selectivity increases asymptotically with
age and that this pattern is time independent. The initial states for the
model must allow calculation of Na1 for each a; we accomplish this through
estimation of historic recruitments, assuming F = 0 for t < 1. The observa-
tion equation then compares the proportions at age determined from the
state dynamics and the observed proportions at age in the catch. We use a
multivariate logistic function (Schnute and Richards 1995) for this com-
parison. A second observation equation uses a catchability constant to
relate the predicted biomass at the time of the survey to the survey bio-
mass index. Two index series were available, covering different periods
with one year of overlap. We estimate a separate catchability constant for
each, assuming lognormal error.

For Pacific Ocean perch, age proportion data cover the 34-year span
from 1963 to 1996 and the model parameter vector contains 54 terms.
Following the rationale in Richards et al. (1997), we fix one parameter, the
ratio of recruitment process error to survey measurement error. All other
parameters, including the natural mortality rate M, are treated as quanti-
ties to be estimated. Computationally, we require procedures to estimate
the parameter vector by minimizing the negative log likelihood. We obtain
these estimates with the software package AD Model Builder (Otter Re-
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search Ltd. 1994) which provides automatic derivatives (Griewank and
Corliss 1991) for C++ code and a gradient based search algorithm. The
software also facilitates the computation of covariances among parame-
ter estimates and derived quantities based on normal approximations (Ap-
pendix B in Richards et al. 1997).

Biomass Reconstructions and Projections
Given estimates of the model parameter vector and covariance matrix, we
generate multivariate normal random draws and obtain 300 samples from
the multidimensional parameter space. If sample parameter values ob-
tained by this process fall exterior to pre-determined parameter bounds
used during estimation, we set the value at the bound. For example, we
constrain M to the range (0.02,0.08). We also reject a few cases where the
implied historical stock biomass becomes 0. For each random vector, we
then apply the model equations to recreate the perceived population state
dynamics. Thus, we obtain 300 plausible scenarios for the historical bio-
mass trajectory and, consequently, 300 plausible scenarios for the cur-
rent state.

The next step in our analysis requires forward projections of recruit-
ment. Due to the apparent lack of a stock-recruitment relationship (Rich-
ards et al. 1997), we choose to project recruitments by re-sampling from
the estimated 1963 to 1996 recruitment series. Because the historical re-
cruitments are components of the parameter vector, each scenario pro-
vides us with a different series of recruitments for the forward projection.

For each set of 300 scenarios (past estimates and future recruitments),
we apply a constant catch policy and project forward for T = 50 years. We
examine constant catch policies ranging from 0 to 4,000 t. If the projected
biomass in any scenario becomes smaller than the catch, the biomass is
set to 0 and maintained at 0. We also repeat these simulations for the
future process error approach, using one historical scenario represented
by the maximum likelihood parameter estimates. Again, we re-sample from
estimated recruitments on this trajectory to obtain 300 forward projec-
tions of 50 years each. We consider the same catch policies as in the full
model error analysis.

Results
Sample trajectories from the full model error reconstructions consistent-
ly indicate that the stock declined during the late 1960s and early 1970s
from historical highs in the 1960s (Fig. 1A). For most trajectories, biomass
was relatively stable during the late 1970s and early 1980s and then in-
creased through the early 1990s. The historical trend in biomass appears
better determined than the absolute biomass level; trajectories starting
with a high biomass in 1963 tend to lead to a high biomass in 1996, the
final year of historical data. Forward projections, illustrated in Fig. 1A for
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a catch policy of 2,000 t, appear more entangled and overlap to a greater
degree. For the future process error approach, one historical trajectory
identifies the maximum likelihood biomass estimates (Fig. 1B). The for-
ward projections begin at the 1996 biomass estimate and diverge some-
what over the first decade of the simulation. However, even after 50 years,
the projections span a narrower biomass range than the full model error
projections.

Quantiles in Fig. 2 summarize the 300 reconstructions and projec-
tions for full model error under four catch policies. Given our sample size,
the 5%, median and 95% quantiles of the biomass projection appear rela-
tively stable over time. Under a “no fishing” policy, biomass increases to a
level consistent with estimates of historical biomass. Biomass tends to
increase from the 1996 level for catches smaller than about 2,000 t; other-
wise, biomass tends to decrease. In fact, for a catch policy of 3,000 t, 12%
of the simulated stocks become extinct by year T = 50.

As might be anticipated from Fig. 1B, the comparable quantile plots
appear more certain for the future process error approach (Fig. 3). The
range in biomass represented by the 5% to 95% quantiles spans less than

Figure 1. Ten sample trajectories of stock biomass (1,000 t) from model reconstruc-
tions and forward projections under a catch policy of 2,000 t for the (A)
full model error approach and (B) future recruitment error approach.
The vertical dashed line identifies the final year of reconstruction.



192 Richards et al. — Analysis of Limit Reference Points

half that for full model error in Fig. 2. In particular, the entire range in
biomass does not include 0 for a catch policy of 3,000 t. Thus, in contrast
to Fig. 2D, Fig. 3D suggests that a catch policy of 3,000 t is sustainable,
although the stock is reduced to a low biomass level.

In order to apply the condition in equation (2) or the probability in
equation (3) to quantify risk, we must relate Bt to Blim. For full model error,
Fig. 4 portrays the biomass Bt in the final projected year (T = 50) with our
definition of Blim, the estimated 1977 biomass. Estimates of Blim differ for
each historical trajectory, ranging from approximately 10,000 to 60,000 t.
The final projected biomass is obviously correlated with Blim; low esti-
mates of final biomass tend to be associated with low estimates of Blim.
Thus, our interpretation of Blim depends on the model parameter estimates
and the corresponding uncertainty in the 1977 biomass estimate.

For the different catch policies in Fig. 4, points below the 45° line
represent projections where Bt < Blim. This condition never occurs under a
no fishing policy. However, even under a low catch policy of 1,000 t, the
condition is met for 3% of the simulations. The condition is more likely to

Figure 2. Median (heavy line) with 5% and 95% quantiles (light lines) of stock bio-
mass (1,000 t) for each year in the reconstruction and projection for the
full model error approach under catch policies of (A) no fishing, (B) 1,000
t, (C) 2,000 t, and (D) 3,000 t. The vertical dashed line identifies the final
year of reconstruction.
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be met for higher catch policies. Under a catch policy of 3,000 t, 75% of the
simulations lead to final biomass estimates smaller than Blim.

For Fig. 4, we used the long term time horizon T = 50 years. To ensure
sustainability, we must examine the condition in (2) under a range of time
horizons. We compute αt in equation (3) from the proportion of simula-
tions for which Bt < Blim for each year t. When full model error is consid-
ered, α1 = 0.12 at the starting point for the projections, prior to any catch
removals (Fig. 5). Under no fishing, αt decreases to near 0 in the first few
years of the projection. Similarly, under a catch policy of 1,000 t, αt de-
clines to a small, near constant value. Values of αt increase over time for
catch policies of 2,000 and 3,000 t. A catch policy of 3,000 t appears
particularly risky; αt > 0.5 for future years t >16.

For future process error, αt = 0 (no measurable risk) for almost all
years under no fishing or a catch policy of 1,000 t (Fig. 5). Under higher
catch policies, αt = 0 for at least the initial years in the projection. The
apparent risk associated with a catch policy of 2,000 t is substantially
smaller than that suggested for full model error. However, the two error

Figure 3. Historical estimates of stock biomass (1,000 t) with the median (heavy
line) and 5% and 95% quantiles (light lines) for each year of the forward
projections for the future process error approach under catch policies
of (A) no fishing, (B) 1,000 t, (C) 2,000 t, and (D) 3,000 t. The vertical
dashed line identifies the final year of estimation.
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Figure 4. Projected biomass B50 (1,000 t) in relation to historical estimates of Blim

for the full model error approach under catch policies of (A) no fishing,
(B) 1,000 t, (C) 2,000 t, and (D) 3,000 t. The solid line identifies the condi-
tion B50 = Blim.

approaches lead to similar estimates of αt for a catch policy of 3,000 t for
future years removed from the effect of the initial conditions. Thus, even
the future process error approach appears able to detect a high risk pol-
icy in the long term.

Figure 6 relates α50 to the catch policy. This choice of time horizon (T
= 50) captures the overall trend for each policy in Fig. 5. Values α50 in-
crease progressively with larger catches. The increase from 0 is more
rapid for full model error than for future process error over the range of
catch policies of potential interest to fishery managers. For example, α50 =
0.25 for full model error and only 0.12 for future process error under a
catch policy of 2,000 t.

Discussion
We have described an integrated framework for estimation of historical
stock status and simulation of future states. This framework allows us to
demonstrate how uncertainty in model parameter estimates influences
our interpretation of a biomass limit reference point. We have also pro-
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Figure 5. The measure of risk αt as a function of future year t for both error ap-
proaches under catch policies of (A) no fishing, (B) 1,000 t, (C) 2,000 t,
and (D) 3,000 t.

vided an explicit method for evaluating the risk that future stock sizes
will fall below Blim. In particular, we showed that risk can be underestimat-
ed substantially when full model error is not considered. Our approach
could easily be extended to other reference points that can be defined in
terms of model quantities (Schnute and Richards 1998).

A major difficulty in forecasting future states is the knowledge of
future conditions. Because we forecasted recruitments by re-sampling from
the estimated series, we implicitly assume that the future will be consis-
tent with the past. We also assume that the model is correctly specified.
Thus, our results should be interpreted as short-term risk projections,
where the long-term simulations indicate potential trends.

Figure 6 suggests a practical method for portraying risk in an adviso-
ry context. For our case study, small catch policies lead to a measurable
risk. Thus, if managers want to maintain α < 0.05 in (2) for a fixed catch
policy, then the catch must be smaller than 1,500 t (α50 = 0.06). Further-
more, from Fig. 5, the condition α < 0.05 cannot be met in the short term
even with no fishing. Obviously, this analysis points to a compromise
between the definition of Blim and the choice of α. For example, a precau-
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tionary choice of Blim and a moderate value of α could result in the same
catch policy as a less precautionary choice of Blim and a low value of α.

Our results are obtained from a fish population with very low natural
mortality rates and infrequent strong recruitment events. We anticipate
somewhat different patterns in forward projections using data from other
types of stocks. Furthermore, we have only examined constant catch pol-
icies. Potential rebuilding policies with varying catch in equations (2) and
(3) will become an issue for stocks with a current biomass smaller than
Blim.

An obvious extension of our work would incorporate an adaptive
management policy, based on future data. Because we have ignored the
value of future information, we have probably overestimated the long-
term risk. We have also assumed that a constant catch policy can be imple-
mented perfectly. More realistic projections would acknowledge future
data collection activities, adaptive control policies, and uncertainties as-
sociated with policy implementation. Our framework provides tools for
addressing these issues in an integrated modeling environment.

Figure 6. The risk αt measured for the final simulation year T = 50 as a func-
tion of catch policy for both error approaches.
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Joint Time Series Analysis of
Catch-at-Age and CPUE Data
Gudmundur Gudmundsson
Central Bank of Iceland, Reykjavik, Iceland

Abstract
Catch-at-age observations are subject to measurement errors and irregu-
lar variations of natural and fishing mortality rates. By modeling the fish-
ing mortality rates as multivariate time series the stocks can be estimated
from these data without reference to effort or catch per unit effort obser-
vations. Analysis of CPUE data without catch-at-age observations is less
informative.

The paper describes the theoretical models and the application is dem-
onstrated by actual examples. The estimation includes a likelihood func-
tion so that appropriate weighting of respective data sets is implicit.

Relative measurement errors in CPUE data from research vessel sur-
veys are commonly much higher than for catches-at-age. Nevertheless,
joint analysis with such data can reduce uncertainty in the estimation of
stocks and fishing mortality rates. Changes in catchability in CPUE obser-
vations can be modeled and estimated and do not upset estimation of
other quantities.

Estimation of constant rates of natural mortality or unreported catch-
es is very inaccurate. The uncertainty about actual unobserved mortality
amounts to a considerable uncertainty about stock size. Variations in un-
reported catches, different from variations in observed catches, can to
some extent be estimated.

Introduction
In the analyses presented here fishing mortality rates are modeled as time
series. The paper is concerned with the application of the method, with
particular attention to detection and estimation of systematic errors in
either catch-at-age or catch per unit effort (CPUE) data. A full description
of the models will be presented, but not details of the estimation proce-
dure. The basic aspects of the statistical methodology are described by



200 Gudmundsson — Joint Time Series Analysis

Harvey (1989) and modifications required for the present problem by
Gudmundsson (1994).

An infinite number of solutions fit the basic equations of catch-at-age
analysis exactly. In Virtual Population Analysis a selection from these so-
lutions is made by finding the solution with best fit to effort or CPUE
observations. In the present approach discrimination between different
patterns of fishing mortality rates is achieved by requiring that they be
generated by a time series model, determined by a small number of pa-
rameters. When the basic equations are combined with the time series
model, catches are predictable and model parameters are estimated by
the likelihood function of the catch prediction errors. The time series
models do not determine the actual values of the series; stocks and fish-
ing mortality rates are calculated by the Kalman filter according to the
models and the observations.

This methodology enables fish stock assessment from catch-at-age
data without introducing other observations. The quality of the estima-
tion depends on the amount and accuracy of the observations and how
well the actual variations in the fishing mortality rates can be represented
by the model. The method can be extended to include CPUE or other ob-
servations which depend upon the unobserved stock values and thus con-
tain information about them. Comparisons of results from time series
analysis and other methods in fish stock assessment were presented by
ICES (1991 and 1993).

CPUE data are often seriously deficient. The effect of technical change
and regulations upon the effort of commercial fleets is difficult to assess
and environmental changes, affecting catchability, can distort survey re-
sults. In the time series methodology permanent changes in catchability
in the CPUE are modeled and estimated.

Unreported catches and discards are regarded as a major problem in
some fisheries. We shall investigate possibilities of learning something
about this by joint analysis of reported catches and CPUE data. From the
point of view of analyzing such data this mortality is analogous to unob-
served natural mortality.

All applications presented here are based on annual observations of
catches at age of Icelandic cod and CPUE from a bottom trawl survey. The
data were collected by the Marine Research Institution in Reykjavik (1997)
and are reproduced in Tables 1 and 2. Schopka (1994) and Stefansson
(1992) describe recent research on this stock.

 Models
The time series analysis is based on the usual expressions of the relation-
ship between catches, stocks and mortality rates:

    N N eat a t
Za t= − −

− − −
1 1

1 1
,

, , (1)
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Table 1. Catch-at-age of Icelandic cod, thousands of fish.

Age

Year 4 5 6 7 8 9 10 11

1984 31,553 19,420 15,326 8,082 7,336 2,680 512 538

1985 24,552 35,392 18,267 8,711 4,201 2,264 1,063 217

1986 20,330 26,644 30,839 11,413 4,441 1,771 805 392

1987 62,130 27,192 15,127 15,695 4,159 1,463 592 253

1988 39,323 55,895 18,663 6,399 5,877 1,345 455 305

1989 27,983 50,059 31,455 6,010 1,915 881 225 107

1990 12,313 27,179 44,534 17,037 2,573 609 322 118

1991 25,131 15,491 21,514 25,038 6,364 903 243 125

1992 21,708 26,524 11,413 10,073 8,304 2,006 257 46

1993 33,078 15,195 13,281 3,583 2,785 2,707 1,181 180

1994 24,136 19,661 6,966 4,392 1,257 599 508 283

1995 9,102 16,827 13,064 4,115 1,596 313 184 156

1996 14,874 7,366 12,297 9,422 2,155 836 208 76

Table 2. Indices of catch per unit effort.

Age

Year 4 5 6 7 8 9

1985 57,217 53,064 16,085 8,645 3,175 1,630

1986 24,405 21,293 21,342 6,782 2,217 745

1987 82,001 16,926 9,132 9,862 2,150 553

1988 101,089 58,467 7,236 4,099 3,564 429

1989 67,884 60,410 28,395 3,096 1,115 774

1990 10,059 22,290 29,004 12,412 1,130 334

1991 25,418 10,776 13,722 17,950 3,193 389

1992 15,037 12,072 3,824 4,768 4,605 734

1993 36,980 11,767 7,149 1,666 1,193 689

1994 23,676 18,092 3,881 2,445 456 291

1995 5,949 17,694 12,710 2,815 1,071 145

1996 23,850 8,501 11,113 12,008 2,465 549

1996 53,097 27,249 7,437 7,680 5,119 347
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where
Nat = number of fish of age a at the beginning of year t,

Cat = observed number of caught fish of age a in year t,

Fat = fishing mortality rate (corresponding to the observed catches),

Zat = total mortality rate,

εat = measurement errors.

The total mortality rate is defined as

Zat = Fat + Hat

where the hidden mortality rate, Hat, accounts for natural mortality and
unreported commercial catches and discards.

We let a = 1 for the youngest age included in the analysis and t = 1 for
the first year and call the number of ages and years included A and T
respectively.

All measurement errors and residuals in our models are assumed uncor-
related between different years and with zero means. The covariance ma-
trix of εat in year t is σ2∑ t where ∑ t is a given A × A matrix.

Equation (1) is a multivariate time series model, connecting stocks at
ages ≥ 2 with the previous year’s stocks and mortality rates. For the youngest
fish we use the model

N1t = N0 + θ1rt + δ0t, (3)

where N0 is a constant value, rt a recruitment index, θ1 a parameter and δ0t

residuals with variance σ0
2.

The main purpose of the present analysis is to estimate stocks and
fishing mortality rates during the period of observations up to the begin-
ning of year T+1. For that purpose we need a time series model of fishing
mortality rates with a manageable number of parameters, sufficiently flex-
ible to represent the actual variations in Fat. We use the following model:

logFat = Ua,t–1 + Vt–1 + δ1at
 + δ2t.

Permanent variations in logFat are generated by a multivariate random
walk model where joint variations at all ages are represented by

Vt = Vt–1 + b + δ4t

and selectivity by

Ua,t = Ua,t–1 + δ3at, a ≤ am < A,
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Uat = Uamt, a > am,

with the constraint that 
    

δ3
1

0at
a

am

=
∑ = .

where δ1at, δ2t, δ3at and δ4t are residuals. The variances of δ2t and δ4t are σ2
2

and σ4
2 respectively and the covariance matrices of δ1at and δ3at are σ1

2G1

and σ3
2G3 where G1 and G3 are predetermined matrices. The parameters in

this model are σ1 – σ4 and b. The value of am is predetermined, but the
likelihood function can be applied to choose between values.

The residuals denoted by δ1at represent transitory variations of indi-
vidual values of logFat in year t, and δ2t similar joint variations at all ages in
that year. These variations do not affect the Fs in subsequent years. Per-
manent variations in selectivity are produced by the residuals δ3at and
joint permanent variations in logFat at all ages by a constant annual in-
crease b and by δ4t. If σ3 = 0 the fishing mortality rates follow the separable
model apart from the random variations denoted by δ1at. If b = σ3 = σ4 = 0
the values of logFat fluctuate around a fixed mean at each age.

The first difference of logFat,

logFat – logFa,t–1 = δ1at – δ1a,t–1 + δ2t – δ2,t–1 + δ3a,t–1 + δ4,t–1 + b,

is a stationary series, with zero mean unless there is trend in F, and vari-
ance independent of time. If we know something, or discover during the
analysis, that strongly contradicts this assumption the model must be
adjusted accordingly.

The Kalman filter needs initial values of the fishing mortality rates in
the first year. They are determined as follows: The initial logF1,1 is estimat-
ed separately. The initial values of logFa,1 for a from 2 to am are determined
by a third order polynomial in a, with the constraint that the first deriva-
tive at am is zero. LogFa,1 = logFam,1 for a > am. This specification is suffi-
ciently flexible to approximate a large variety of variations in selectivity
with age.

The remaining fishing mortality rates are calculated by the Kalman
filter from the observations in accordance with equations (1) and (2) and
the time series model.

Ideally we should like to estimate a similar model for the rate of hid-
den mortality. But as there are no observations of unreported catches or
natural deaths, this is not practically possible and a simpler deterministic
model will be adopted:

    
log =  log +H M D t

T t
T

t
Tat at at α α α π α π

1 2 3 4

1
2
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+ 





+ 













cos sin . (4)

In this model Mat is a given function and could represent the rate of
natural mortality which is often regarded as known. Dat accounts for pre-
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sumed variations in mortality with age in the hidden catches and is de-
fined a priori. For discards confined to the smallest fish a suitable defini-
tion could be D1t = 1 and all other values zero.

Let us call CPUE observations, carried out at time τ each year, CPUEat.
Their relationship with the variables above is given by

    CPUE e Nat t a
Z

at CPUE at
at= +ψ ετΦ −

, . (5)

The residuals εCPUE,at have covariance matrix σCPUE
2∑CPUE,t. They repre-

sent measurement errors and irregular transitory variations in catchabili-
ty. LogΦa is estimated in a similar manner as the initial values of logFat. For
joint variations of catchability with time we specify the model

logψt = ξ t–1 + δ5t,

ξ t = ξ t–1 + d + δ6t.

In this model permanent variations are produced by a constant annu-
al change d and as random walk by the residuals δ6t with variance σ6

2. Joint
transitory variations are represented by δ5t with variance σ5

2.

Glossary of Terms in the Time Series Models
εat = measurement errors of catch-at-age, covariance matrix σ2∑ t.

εCPUE,at = measurement errors of CPUE observations, covariance matrix
σCPUE

2∑CPUE,t.

rt = recruitment index

δ0t = residuals in recruitment equation, variance σ0
2.

δ1at = transitory variations in logFat, covariance matrix σ1
2G1.

δ2t = joint transitory variations in logFat, variance σ2
2.

δ3at = permanent variations in selectivity in logFat, covariance ma-
trix σ3

2G3.

δ4t = joint permanent variations in logFat, variance σ4
2.

b = annual linear increase in logFat.

ψtφa = catchability in CPUE data

Applications
We present various examples of the application of these models. They are
all based on two sets of annual observations for Icelandic cod; catch-at-
age data from 1984 to 1996 and CPUE values from a bottom trawl survey
from 1985 to 1997. The data are reproduced in Tables 1 and 2. We start by
defining various aspects of the covariance structure of measurement er-
rors and residuals that are not specified by estimated parameters.
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Specifications
The matrices ∑ t, ∑CPUE,t, G1 and G3 are first defined a priori and subse-
quently modified in accordance with examination of residuals. The mag-
nitude of measurement errors obviously varies with the observed values
of Cat and CPUEat. This is accounted for by making the diagonal elements
of ∑ t and ∑CPUE,t proportional to the squared value of a calculated average
for respective age and cohort. Let us call the diagonal elements     k Ca at

2 ˜ .2

The normal value of ka is 1, but bigger values can be inserted if examina-
tion of the data or residuals indicates that measurements at respective
age are relatively less accurate. In the present analysis ka is 1.5 for 4-year-
old fish and 2.5 and 3 for ages 10 and 11 years respectively.

In principle some parameters in the specification of the matrices ∑ t,
∑CPUE,t, G1 and G3 could be estimated. In practice we cannot even estimate
both σ and σ1 and the ratio between them is fixed at 1. By this we ensure
that neither measurement errors of catch-at-age data nor irregular transi-
tory variation of fishing mortality rates are ignored, but some under- or
overestimation is inevitable.

The observed values of Cat are obtained from reports of total catches
and age and length measurements of samples. Errors in assessing the
relative proportion of age groups in the total catch are negatively correlat-
ed and we assume a correlation of –0.2 between the errors of adjacent
ages. Other correlations are defined as 0.

The random variations of logFat, denoted by δat, are defined as inde-
pendent and with the same variance so that the diagonal elements are 1,
except for the 4-year-old fish. The catchability of the young fish is sensi-
ble to variations in growth so that its diagonal element was defined as
2.25. Finally the matrix G3 is defined as diagonal with unit values on the
diagonal except for correlations of 0.2 between the 4-year-olds and 6- to 8-
year-olds

Outliers can have a strong influence on estimates of parameters and
unobserved series. The best way to deal with outliers depends on whether
they represent correct values that do not seem to fit the estimated model,
or measurement errors. In the first case the best course might be to mod-
ify the model so that the values do not appear as outliers. In the present
case I consider that the most practical approach is to assume that they are
measurement errors and reduce their influence accordingly. This is easily
achieved in Kalman filter calculations by increasing the variance of re-
spective value of εat or εCPUE,at. This was done here with εat for 11-year-olds
in 1988 and 1993, 9-year-olds in 1989, and 10-year-olds in 1993. The vari-
ance of εCPUE,at was increased for 8 years in 1996 and 9 years in 1997.

In practice the specifications described here are carried out in two or
more steps. An initial choice is made, based on visual examination of the
data and possibly some other knowledge. Examination of residuals and
statistics calculated from them usually indicates that some modifications
are needed. (Gudmundsson 1994).
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There was a distinct change in exploitation policy beginning with a
substantial drop in catches in 1994. This is modeled by subtracting an
estimated constant value from all logFat after 1993. (If unaccounted for the
change emerges clearly in the residual analysis.)

Mature cod migrates from Greenland to Icelandic waters. For most of
the years examined here this was negligible because stocks in Greenland
waters were small. An exception is 6-year-old cod in 1990 and this was
estimated.

Analysis of the Original Observations
Joint analysis was carried out with the full model for both data sets. CPUE
values for 3-year-old fish were used as a recruitment index. Hidden mor-
tality was fixed at 0.2 year–1 for all ages.

The estimated value for the trend parameter b in the model for logF
was 0.029. This corresponds to an increase of 0.35 in logF over the esti-
mation period, which is far from negligible. But estimation with b fixed at
zero produced practically the same estimates of stocks and fishing mor-
tality rates and a negligible decrease in the likelihood function. There is
no reason to expect a linear trend in logF for Icelandic cod during this
period so that we leave this parameter out of the analyses presented here.
The main reason why a trend parameter as large as this has negligible
effect upon results and goodness of fit is that the Kalman filter can pro-
duce similar variations in logF by means of the random walk variations δ4t.

In the model for CPUE, permanent variations are represented by the
trend parameter d and the residual δ6t with variance σ6

2. The estimated
value of σ6 was practically zero, but the trend parameter d was –0.022.
This implies a decrease of 0.26 in logψt from 1985-1997. However, the
values of ψt obtained by these model parameters are practically the same
as those obtained when both are fixed at zero and the logarithm of the
likelihood function only decreases by 0.3. The bottom trawl survey is de-
signed and conducted with the aim of avoiding permanent variations in
catchability. As there is no evidence against the hypothesis that this has
been achieved it is appropriate to use estimates where σ6 and d are fixed
at 0. The estimated time series parameters when b, σ6 and d were thus
fixed at 0 are presented in the first row of Table 3.

The effect of the policy change in 1994 on logF was estimated as –0.48.
Migration of 6-year-old fish from Greenland in 1990 was estimated as 27
million.

Estimation of standard deviations of parameters by means of the Hes-
sian matrix is often unreliable in this large nonlinear problem, with sever-
al parameters close to the boundary of permissible values and these
estimates are not reported here. The parameters σ and σ1 are well deter-
mined under the restriction that they have the same value. The values of
σ2 and σ3 are not significantly different from zero.

When CPUE observations are from surveys, catching negligible pro-
portions of the total stock, measurement errors and irregular variations in
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Table 3. Parameters in time series models.

C CPUE r H σ = σ1 σ2 σ3 σ4 σCPUE σ5 σ6 d

1 C CPUE CPUE0,t–1 0.2 0.075 0.001 0.001 0.121 0.228 0.289

2 C t 0.2 0.071 0.007 0.022 0.133

3 CPUE CPUE0,t–1 0.2 0.143 0.002 0.043 0.001 0.143 0.142

4 C CPUE t 0.2 0.073 0.000 0.000 0.134 0.212 0.235 0.092 0.005

5 C h1CPUE t 0.2 0.072 0.000 0.000 0.132 0.214 0.139 0.172 –0.016

6 C h2CPUE t 0.2 0.072 0.001 0.001 0.135 0.215 0.123 0.238 0.044

7 C CPUE CPUE0,t–1 H 0.074 0.001 0.000 0.126 0.222 0.281

8 G1C CPUE CPUE0,t–1 0.2 0.072 0.000 0.001 0.166 0.236 0.216

9 G1C CPUE CPUE0,t–1 H 0.072 0.000 0.001 0.152 0.227 0.272

10 G2C CPUE CPUE0,t–1 0.2 0.069 0.041 0.041 0.090 0.228 0.416

11 G2C CPUE CPUE0,t–1 H 0.066 0.000 0.060 0.163 0.235 0.321

12 G3C CPUE CPUE0,t–1 0.2 0.072 0.000 0.000 0.147 0.237 0.238

13 G3C CPUE CPUE0,t–1 H 0.074 0.001 0.001 0.148 0.229 0.215

catchability are indistinguishable. However, in the present case it is obvi-
ous that measurement errors did not produce the large values of σCPUE and
σ5. The magnitude of the joint variations in catchability at all ages from 4
to 9 years is remarkable and indicates that environmental factors, affect-
ing a substantial proportion of the area covered by the survey, have a
major influence on the observed CPUE.

The estimated stocks and mortality rates are presented in Tables 4
and 5, together with the Kalman filter estimates of the standard devia-
tions of the estimated values in the last year. These standard deviations
provide a good assessment of the uncertainty caused by measurement
errors and other random elements in the data. But they do not include
errors caused by wrong model specification or choice of M. (Standard de-
viations in previous years are also calculated. They depend critically upon
the ratio between σ and σ1 which is arbitrarily fixed so that I do not present
them here. But regardless of this ratio they are considerably lower than
the values in the last year.)

With the time series method stocks and fishing mortality rates can be
estimated from catch-at-age data without using any effort or CPUE obser-
vations. In the analysis above we used the survey values as CPUEat in equa-
tion (5) and also for the recruitment index rt in equation (3). If we leave out
the recruitment index, equation (3) entails fluctuations of recruitment
around a constant value. Systematic variations in actual recruitment then
produce bias in the estimation of stocks and mortality rates. In the present
case stocks and recruitment are higher in the first half of the period than
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Table 4. Estimated stock size of Icelandic cod, thousands of fish.

Age

Year 4 5 6 7 8 9 10 11

1984 184,206 77,606 40,313 18,574 13,535 5,271 1,094 1,072

1985 105,798 122,595 44,352 19,476 7,945 4,601 1,936 408

1986 109,932 64,938 67,489 20,743 7,914 2,944 1,636 687

1987 252,308 69,867 29,968 27,283 6,980 2,416 904 496

1988 231,182 151,214 33,530 11,596 8,937 2,051 702 263

1989 135,969 147,292 73,211 12,166 3,507 2,153 508 182

1990 64,265 84,317 103,234 31,912 4,517 1,117 687 165

1991 102,389 40,963 43,447 44,597 11,490 1,480 364 222

1992 74,797 60,818 19,697 16,398 14,445 3,458 427 100

1993 132,149 42,067 26,695 6,701 4,720 4,208 1,011 119

1994 106,498 78,940 20,268 10,110 2,178 1,274 1,088 271

1995 46,643 67,383 45,414 10,130 4,288 806 486 418

1996 95,717 30,592 39,944 24,443 4,831 1,915 359 213

1997 132,145 65,131 18,398 21,298 11,767 2,076 822 154

(21,000) (10,000) (2,600) (3,100) (1,600) (300) (140) (30)

Standard deviations in parentheses, 1997.

Table 5. Estimated fishing mortality rates of Icelandic cod.

Age

Year 4 5 6 7 8 9 10 11

1984 0.21 0.35 0.53 0.65 0.88 0.80 0.78 0.78

1985 0.28 0.40 0.56 0.70 0.79 0.83 0.84 0.83

1986 0.26 0.53 0.70 0.88 0.98 0.98 0.98 0.99

1987 0.31 0.53 0.74 0.92 1.02 1.03 1.03 1.03

1988 0.25 0.53 0.81 0.98 1.21 1.19 1.15 1.14

1989 0.27 0.46 0.63 0.78 0.94 0.94 0.92 0.93

1990 0.25 0.46 0.64 0.82 0.92 0.92 0.93 0.94

1991 0.32 0.53 0.76 0.92 1.00 1.04 1.08 1.06

1992 0.38 0.62 0.88 1.04 1.03 1.02 1.07 1.11

1993 0.32 0.53 0.77 0.92 1.11 1.15 1.11 1.13

1994 0.26 0.35 0.49 0.66 0.79 0.76 0.76 0.76

1995 0.22 0.32 0.41 0.53 0.60 0.60 0.62 0.62

1996 0.19 0.31 0.43 0.53 0.65 0.65 0.65 0.63

(0.03) (0.04) (0.05) (0.07) (0.09) (0.10) (0.10) (0.09)

Standard deviations in parentheses, 1996.



Symposium on Fishery Stock Assessment Models 209

in the last years so we include t as a recruitment index in order to reduce
bias from this.

The estimated time series parameters are presented in row 2 of Table
3. The estimated stocks and fishing mortality rates are practically the
same as those obtained in the joint analysis with CPUEat but the standard
deviations of stocks and fishing mortality rates obtained from the Kalman
filter are higher; about 0.20 for logFat in the last year.

The close agreement between the estimates could be a coincidence.
“Retrospective analysis” is a useful and widely applied method to assess
the accuracy of stocks and fishing mortality rates, estimated from catch-
at-age data. Estimates in years T–1, T–2,…, obtained from the analysis of
the full data set, are compared with the last year’s values when only T–1,
T–2,… years are included in the analysis. The total biomass for ages 4-11
and average F for ages 5-9 obtained in retrospective analyses with the full
data set and also with only catch-at-age data are presented in Fig. 1.

When the last observations of Cat are in 1995 or 1996 the results are
practically the same for the full data set and catch-at-age data only. There
are no major changes in the estimated selection patterns so that these
summary measures are representative for the differences between the
results. The biggest difference between the last year’s estimate and the
estimate obtained from the longest data sets is in 1994 when only catch-
at-age data are included. This was the first year after the drop in fishing
mortality rates, estimated by a separate parameter, which was overesti-
mated in this case. But these results are in agreement with my experience
that it is usually possible to obtain useful estimates of stocks and fishing
mortality rates from catch-at-age data without effort or CPUE observations.

Let us now investigate what can be derived from CPUE data without a
joint analysis with catch-at-age data. We can regard the series CPUEat for
t = 1,2,…,T as an index for stock of age a at the time of the survey. Howev-
er, this is not an optimal use of the data because it neither uses the rela-
tionships between stock values, given by equation (1), nor correlations
between variations in catchability at different ages within the same year.

Fishing mortality rates do not appear separated from total mortality
rates in equations (1) and (5). Nor can variation of total mortality rates
with age be distinguished from the variations in selectivity, denoted by
Φa. For analysis of CPUE data alone it is convenient to do a slight reformu-
lation of equations (1) and (5). We introduce a calendar where the CPUE
observations are made at the beginning of the year and define

    n n eat a t
Wa t= − −

− − −
1 1

1 1
,

, ,

CPUEat = ψt nat + εCPUE,at,

where nat = ΦaNat

and Wa–1,t–1 = Za–1,t–1 – log(Φa/Φa–1).
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Figure 1. Retrospective analyses. Total biomass
and average F 4-9 years. Full and bro-
ken lines show the results from the
longest data sets. Squares and trian-
gles show the results from the last
years’ estimates.
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We use the same time series model for Wat as for Fat and assume that
the CPUE data are free from systematic variations in catchability, i.e., σ6 =
d = 0. The estimated parameters are presented in row 3 of Table 3. The
value of σ1 is defined to be equal to σCPUE.

The random walk variations produce most of the estimated variations
of F when they are estimated from catch-at-age data. But here σ4 is practi-
cally zero and so is the parameter of joint transitory variations, σ2. Apart
from the drop in 1994, estimation based only on the CPUE data fails to
reveal the variations in fishing mortality rates with time. Biomass indices
cannot be calculated without knowing Φa.

Systematic Errors in CPUE Data
In virtual population analysis it is customary to assume that CPUE obser-
vations are proportional to stock size at respective age and time. Our
model allows for systematic departure from this assumption by trend and
random walk variations in catchability, but there was no evidence of such
variations in the data. Let us now construct two new CPUE data sets by
multiplying the observed CPUE values by the functions ht

1 or ht
2, presented

in Fig. 2. (The CPUE values are used unchanged from 1985 to 1991 and
then decrease/increase linearly to half/double observed values.) Joint
analysis of catch-at-age observations and these data sets was carried out
and compared with results from the unadulterated CPUE values. A linear
trend is included in the recruitment equation (3), but no recruitment in-
dex. The estimated time series parameters are presented in rows 5 and 6
of Table 3. Row 4 shows similar estimation with the observed CPUE val-
ues. The effect of changing the CPUE data hardly affects the parameters of
logFat at all, but the magnitudes of random walk and trend parameters of
logψt are increased.

The estimated values of logψt are presented in Fig. 3. With the altered
CPUE data sets the time series models produce large variations in the
second half of the period in accordance with the functions ht

1 and ht
2.

As the variations in catchability, produced by h1 and h2, are success-
fully estimated they have little effect upon the estimation of stocks and
fishing mortality rates. With the results obtained by including the observed
CPUE values as reference, the biomass is underestimated by 4% at the
beginning of 1997 with h1CPUE and overestimated by 10% by h2CPUE. The
results obtained by hiCPUE converge rapidly towards the reference values
as we go back in years.

According to the standard deviations, produced by the Kalman filter,
stocks and fishing mortality rates are somewhat better estimated by in-
cluding the deficient CPUE data than by only using the catch-at-age obser-
vations. But the estimated standard deviations are larger with the
adulterated CPUE data sets than with the observed CPUE values because
the random walk parameter, σ6, is bigger.
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Figure 3. Estimated variations in catchability, logψτ,
from observed values and two altered data
sets.

Figure 2. Log values of two functions, used to produce
systematic variations of catchability in CPUE
data.
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Hidden Mortality
In principle the rate of natural mortality, which was fixed as 0.2 in the
estimates reported so far, is a parameter that can be estimated. In practice
its value has too little effect upon the likelihood function for joint estima-
tion with the remaining parameters of the model, but the maximum likeli-
hood was calculated for or a couple of fixed values of M:

M 0.05 0.10 0.20 0.30 0.40 0.50

LogL (M ) – logL (0.2) 0.00 0.02 0.00 –0.45 –1.40 –2.75

As there is negligible evidence against the conventional value of 0.2
year–1 we have kept it when a fixed value is used. However, values of M
that provide practically the same goodness of fit for these observations
entail substantial differences in estimated stocks and fishing mortality
rates. The biomass estimates for three values of M are presented in Fig. 4.

Estimation of variations in natural or hidden mortality rates with age
is also practically impossible; they cannot be distinguished from varia-
tions of Fat with age and the selectivity of the survey.

Unreported catches are a major problem for fish stock assessment in
some fisheries. Estimation of unreported catches is analogous to natural
mortality so that we have established that the possibilities of estimating a
constant rate of unreported fishing mortality are poor.

All information about fishing mortality rates in catch-at-age and CPUE
data is entailed in ratios between observations. Let us suppose that natu-
ral mortality is known and the unreported catches are a fixed proportion,
k, of the actual catches so that

Hat = M + kFat.

An estimation of the fishing mortality rates, assuming that Hat = M,
would result in the sum of the reported and unreported fishing mortality
rates, i.e. (1+k)Fat, and the stock estimates would underestimate the actual
stocks as Nat/(1+k).

Let us now investigate the possibilities of estimating stocks and mor-
tality rates in the presence of substantial variations of hidden mortality
rates with time, different from the variations of the reported catches. For
this purpose we use the observed CPUE values unchanged but induce time-
varying hidden mortality by using the catch-at-age values gt

iCat where gt
i

are functions presented in Fig. 5.
The actual hidden mortality rate is

Hat = Mat + (1 – gt
i)Fat.

Stocks and fishing mortality rates were estimated for the data sets
gt

iCat and CPUEat, both by using the constant value 0.2 for hidden mortali-
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Figure 4. Biomass estimated with three values of M.

Figure 5. Three functions used to induce hidden mor-
tality.
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ty, and by the model of equation (4) with Mat = 0.2. In order to take into
account that catchability is lower for the youngest fish we used:

D1t = 1 ⁄3 and D2t = 2 ⁄3 when logHat > logMat,

Dat = 1 when logHat ≤ logMat and for all a > 2.

Estimation of variations in hidden mortality is based on discrepancy
between the observed catch-at-age data and the CPUE data. In order to
produce discrepancy, requiring variations in Hat, we must assume that the
catchability in the CPUE data set is free from permanent variations and fix
the parameters σ6 and d as zero; otherwise the discrepancy might be ac-
commodated by random walk or linear trend in logψt.

Our model for hidden mortality rates is a misspecification of the actu-
al hidden mortality produced by multiplying Cat by gt

i. This is in accor-
dance with reality; we would rarely be in a position to specify an almost
correct parametric model of the rates of hidden fishing mortality. The
improvement in goodness of fit achieved by estimating the model can be
judged by comparing the likelihood functions. The results are presented
below:

Catch-at-age data  Cat gt
iCat Gt

2Cat Gt
3Cat

logL (H ) – logL (0.2) 1.89 3.61 5.57 7.76

The model of Hat contains 4 estimated parameters. But some of these
are always superfluous so that the improvement is significant for all gt

iCat

and we could in fact have detected somewhat smaller unreported catches
of the kind presented by (1–gt

I )Cat. For comparison we also estimated the
model for hidden mortality with the unadulterated catch-at-age data, but
here the increase in likelihood, 1.89, is not significant.

The data sets Cat and gt
iCat all represent the same biomass and total

mortality rates. The biomass estimates are presented in Fig. 6.
By estimating hidden mortality, instead of assuming a constant value

of 0.2, the overestimation of the fishing mortality rates, associated with
the observed catches, was reduced but not eliminated in each of our ex-
amples. Estimated values of Hat were too low. However, the pattern and
magnitude of stocks and total mortality rates were much better estimated
by including the model for hidden mortality than with a fixed value.

Conclusions
The results confirm previous experience that stocks and fishing mortality
rates can be estimated from catch-at-age data by time series models, with-
out reference to any effort or CPUE data. On the other hand, analysis of
CPUE data without catch-at-age data could only provide an index of stock
size at each age.



216 Gudmundsson — Joint Time Series Analysis

Figure 6. Estimates with hidden mortality. Unbroken line shows estimate with the
original data set and a fixed hidden mortality 0.2. In top left the broken
line shows an estimate with the original data set and model H for hidden
mortality. In the remaining figures broken lines show estimates from
data with hidden mortality, estimated with fixed hidden mortality 0.2
and also with the model H.
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Joint analysis was carried out of catch-at-age and CPUE data with large
systematic variations of catchability in the last years. The catchability
variations were successfully detected and estimated and thus did not great-
ly affect the estimation of stocks and mortality rates.

Estimation of a constant rate of natural mortality is very inaccurate.
The uncertainty about the actual level of natural mortality amounts to a
considerable uncertainty about stock size.

In a joint analysis with CPUE data, free from systematic variations in
catchability, substantial variations in unreported catches could be detect-
ed when they differed from variations in reported catches. The models
that can be estimated for unreported catches are less flexible than the
time series models for observed catches at age. This implies that unre-
ported catches are likely to be underestimated in relation to reported catch-
es. Estimation of the unreported catches improved the estimation of stocks
and total mortality rates in the present experiments, but we have no fur-
ther experience of this application of the time series methodology.
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Abstract
The reproduction, mortality, and migration of an age-structured fish pop-
ulation can be incorporated into a matrix model. The population projec-
tion matrix for such a model describes the dynamics of age classes within
regions and the migration among regions. Such a model provides a flexi-
ble framework to examine the dynamics of a migratory fish population.
The model can be parameterized to include regional specificity in the
stock-recruitment relationship as well as larval dispersal that is decou-
pled from local reproduction. The subject of oriented movement, where
young fish tend to migrate in the opposite direction of older fish is exam-
ined within the context of the sablefish (Anoplopoma fimbria) fishery in
the northeast Pacific Ocean. We show that fishing at a common rate among
regions may be appropriate for the pooled population but may be detri-
mental to the population in a given region. As an alternative, region-specific
fishing strategies can be devised to meet fishery management objectives
such as maintenance of regional spawning potential.

Introduction
The processes of reproduction, survival, and migration of an age-struc-
tured population can be formulated within the basic framework of matrix
models described in Caswell (1989) and Getz and Haight (1989). Such a
model is a natural extension of the Leslie (1945) matrix population model.
First described by Rogers (1966, 1985), the model has been used exten-
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sively to analyze regional aspects of human populations (Liaw 1980) and
has occasionally been applied to plants, fish, and wildlife (e.g., Fujioka
1978, Lande 1988). The underlying feature of such models is that all de-
mographic features of a population can be formulated within a projection
matrix.

In this paper, we first present a general structure for modeling the
dynamics of a migratory age-structured fish population subject to exploi-
tation. We focus on showing how the model can be used to efficiently
track and project changes in abundance over time and space. After pre-
senting the basic equations that describe the general model structure, we
apply the model to the sablefish (Anoplopoma fimbria) population in the
northeast Pacific Ocean. In addition, we examine how the model can be
used for management of the sablefish fishery. In particular we show how
a regional per-recruit analysis can be undertaken. Detailed derivations of
the mathematical equations and methods to examine the equilibrium, sta-
bility, and transient properties of the model are provided in Heifetz (1996).
Applications of the model with hypothetical data are in Heifetz (1996) and
in Quinn and Deriso (1998). For fisheries that occur in different geograph-
ic areas, are prosecuted by different user groups, and in some instances
may cross international boundaries, knowledge of how a fishery in one
area interacts with another may lead to improved management.

Model Specification
The General Age-by-Region Model
The stage-classified matrix model described in Caswell (1989) forms the
basis for this model. We translate the formulation into that commonly
used for age-structured fish populations (e.g., Quinn and Szarzi 1993). In
our notation variables in bold denote matrices or vectors. Let

Na,t,i = abundance at age a, year t, and region i,

θa,t(i→k) = migration proportion from region i to k at age a and year t,

K = number of regions,

A = oldest age,

fa,i = net fecundity at age a and region i,

M = instantaneous rate of natural mortality,

sa,i = fishery selectivity at age a and region i,

Ft,i = instantaneous rate of full-recruitment fishing mortality (i.e.,
sa,i = 1) in year t and region i,

Za,t,i = M + sa,iFt,i = total instantaneous mortality at age a, year t,
and region i,

Sa,t,i = exp(–Za,t,i) = survival at age a, year t, and region i, and

r = recruitment age and usually first appearance of fish in the
database.
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Note that 
    k

K

a,t i k
=1

1∑ → =θ ( )  and that the probability of staying in the same

region 
    
θ θa t a t

k i

K
i i i k, ,( ) ( ).→ = − →∑

≠
1  In our formulation, absence of age or

region subscripts for abundance denotes summation over the missing
subscript, and absence of a time subscript denotes equilibrium (i.e., t →
∞). For other model parameters absence of a subscript indicates the pa-
rameter is constant over the missing subscript.

The assumptions for such a model are generally the same as that for
many age-structured fishery models (e.g., Deriso et al. 1985) with the add-
ed dimension of region. Migration rates θa,t(i → k) are assumed to depend
on age, year, and region. The migration process is assumed to be Mark-
ovian because for a given year and region all fish of the same age have the
same migration probabilities regardless of their previous history. Net fe-
cundity fa,i is assumed to depend on age and region and is computed from
the product of proportion of females mature at age and fecundity of a
mature female at age. Alternate formulations of the model are conceptual-
ly possible such as age-, year-, and region-specific natural mortality, year-
specific fecundity and selectivity, and migration rates that depend on year
class, population density, or season. Migration is assumed to occur in-
stantaneously just after the start of a year followed by natural and fishing
mortality.

The basic recursive equation that describes the dynamics of the pop-
ulation is

New population = survival (old population – emigration + immigration)

    
N S N N i k N k ia t i a t i a t i a t i a t a t k

k i
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Equation (1) simplifies to
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k

K
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=
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, , , , , , ,( ) .θ (2)

From the Baranov catch equation, the exploitation fraction is
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, ,
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Hence from (2), catch is
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k

K
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=

µ θ
1

(4)

Egg production in year t and region i is
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a

A
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=

(5)

which assumes that egg production takes place before migration at the
start of the year. In the absence of migration during the early life stages,
the relationship between recruitment and egg production can be written

    N l N Nr t r i r i t i i t i, , , , , , ,( ),+ = 0 0ψ (6)

where lr,i is early life survival from age 0 up to recruitment age r without
density dependence, and ψi(N0,t,i) is a function representing density de-
pendence in a region. If, however, recruitment is decoupled from local
reproduction by movement (e.g., dispersal of planktonic larvae or move-
ment of prerecruits), then

    
N l N N k ir t r i r i t k t k t

k

K

, , , , , , , ,( ) ( ),+
=

= →∑ 0 0 0
1

ψ θ (7)

which assumes that density dependence precedes dispersal, and dispers-
al occurs up to the recruitment age r followed by survival. Note that equa-
tion (7) is the same as (6) if θ0,t(i → k) = 0 for k ≠ i and θ0,t(i → k) = 1 for k = i.
A more complex model that incorporates physical factors such as oceano-
graphic currents can more realistically account for dispersion (e.g., Pos-
singham and Roughgarden 1990), but the simpler model may be adequate.

Putting the model described in equations (1)-(7) in the form of a pro-
jection matrix is a convenient way of examining the dynamics of such a
model (Caswell 1989). Given the vector of abundance at age and region Nt,
the matrix Pt in the equation Nt+1 = PtNt is the projection matrix. As an
example, consider the hypothetical example of three age groups and three
regions, without density dependence, without migration during early life
stages, and constant fecundity, survival and migration over time. The pro-
jection matrix P is

P =

→ → →

→ → →
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where the population vector for abundance Nt can be written as
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The entries in the first, fourth, and seventh rows of P are termed the
fertility coefficients and the other entries are termed the survival-migra-
tion coefficients. To introduce migration and/or density dependence at
early life stages requires modification of the fertility coefficients. For ex-
ample from equations (6) and (7), the element P1,1 (row 1, column 1) is

    

P l f f N

l f N

a a t
a

A

t

11 1 11 1 1 1
1

0

1 11 1 0 1 0

1 1

1 1

, , , , ,
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ψ θ

ψ θ

and the element P1,4 (row 1, column 4) is

    P l f N t14 1 12 2 0 2 0 2 1, , , ,( ) ( ).= →ψ θ

With the addition of density dependence, this is no longer a constant lin-
ear Leslie matrix because elements of P are now functions of abundance
and ψ can be any function.

Equations (2) and (5) are equivalent to the traditional Leslie matrix
model with migration when ψ(x) = 1, and survival, fecundity, and migra-
tion are constant over time. Note that Caswell (1989, Chapter 4) describes
this model extensively. For many populations such a model is not ade-
quate. A more realistic model can be formulated by inclusion of density
dependence to account for nonlinearity in the relationship between egg
production and recruitment. Density dependence can result in a station-
ary population and stable age-by-region structure, or in complex behavior
such as limit cycles and chaotic fluctuations (Nisbet and Gurney 1982,
Caswell 1989). Details of alternative ways that regional density depen-
dence can be formulated are in Heifetz (1996).
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Application of the Model to Sablefish
Traditional Leslie Matrix with Migration
Sablefish, one of the most valuable commercial fish in waters off Alaska,
is used to illustrate the application of the model. Migration rates based on
tagging experiments were estimated by Heifetz and Fujioka (1991). Popu-
lation parameters and age-specific migration rates are shown in Tables 1
and 2, respectively. There are five regions which correspond to the five
North Pacific Fishery Management Council (NPFMC) regulatory areas (Fig.
1). Note that the population parameters are assumed to be the same in
reach region. Estimates of egg production and number of recruits at age 3,
and early life survival, are in Table 3. These were derived by Heifetz (1996)
based on the results of an age-structured stock assessment model of Alas-
ka’s sablefish population (Sigler 1993, updated by pers. comm., M. Sigler,
Nat. Mar. Fish. Serv., Juneau, AK 99801, Oct. 1995). The median early life
survival of 1.00 × 10–6 from Table 3 can be used as an estimate of lr (Quinn
and Szarzi 1993). To initialize the population we used the regional age
composition of the population in 1991 estimated by Heifetz (1996). The
most recent year where age data were collected from all NPFMC regulatory
regions was 1991.

During 1992-1995 the transition matrix P is applied with F rates from
Sigler (Pers. comm., October 1995). These F rates were 0.088, 0.094, 0.111,
and 0.105 for 1992, 1993, 1994, and 1995, respectively. Projection of fu-
ture abundance starting in 1996 is made with the F value (Fst) that results
in stationary population abundance. The Fst value of 0.143 was determined
with a nonlinear search procedure.

The projected population reaches a stable age-by-region equilibrium
in about 25 years (Fig. 2). The initial dip in numbers of age > 10 sablefish
is due to the poor recruitment in recent years. The regional distribution
stabilized in about 5 years which was much faster than the age distribu-
tion. Thus for sablefish, the amount of mixing among regions is rapid
relative to the progression of a cohort through the age classes. This is
partly due to sablefish being long lived, the considerable time for the
initial population to die out, and that additions to the overall population
are only made at the youngest age. On the other hand, movement is rapid;
annually 19-72% of the population in a region migrates to other regions
(found by subtracting each diagonal term in Table 2 from 1), and exchange
occurs among all regions.

Density Dependence
To introduce density dependence, egg production and subsequent recruits
from Table 3 can be used to estimate a stock-recruitment relationship.
When plotted, the data are suggestive of a Ricker type relationship (Fig. 3)
of the form Nr,t+r = αN0,texp(–βN0,t ). Parameters for this equation were
estimated using a nonlinear search procedure.
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Table 1. Estimates of population parameters for sablefish in the north-
eastern Pacific Ocean.

Age (a) 3 4 5 6 7 8 9 10 11 12  ≥13

Natural 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
mortality, Ma

Maturity, ma 0.002 0.032 0.232 0.629 0.868 0.949 0.977 0.988 0.993 0.998 1.00

Selectivity, sa 0.15 0.32 0.48 0.63 0.73 0.82 0.88 0.93 0.97 1.00 1.00

Female von Bertalanffy Female allometric weight-
length-age model length model Fecundity model

La(cm) = L∞{1 – exp[–k(a – t0)]} weighta (kg) = cLa
b fa(eggs) = ma0.02349(La)3.88

L∞ = 81.4 c = 3.15 × 10–6

k  =  0.249 b = 3.290

t0 = –0.770

Fraction mature at age, selectivity at age, and growth parameters are from Sigler and Fujioka (1993).
Fecundity parameters are adapted from  Lowe et al. (1991).

Table 2. Annual movement rates from one area to another for
different age groups of sablefish.

From To area (k)
area (i) EG CG WG BS AL

Age 3-4

EG 0.489 0.378 0.109 0.012 0.012

CG 0.194 0.484 0.229 0.047 0.046

WG 0.078 0.322 0.308 0.145 0.147

BS 0.010 0.073 0.160 0.710 0.047

AL 0.005 0.040 0.093 0.049 0.813

Age 5-8

EG 0.712 0.227 0.054 0.003 0.004

CG 0.273 0.476 0.199 0.023 0.029

WG 0.134 0.409 0.285 0.072 0.100

BS 0.029 0.165 0.246 0.494 0.066

AL 0.013 0.077 0.128 0.034 0.748

Age ≥ 9

EG 0.751 0.200 0.044 0.002 0.003

CG 0.472 0.426 0.074 0.011 0.017

WG 0.262 0.116 0.517 0.046 0.059

BS 0.095 0.181 0.259 0.287 0.178

AL 0.047 0.103 0.155 0.018 0.677

Adapted from Heifetz and Fujioka (1991).

EG, Eastern Gulf of Alaska; CG, Central Gulf of Alaska; WG, Western Gulf of Alaska; BS,
Eastern Bering Sea; AL, Aleutians.
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Figure 1. Northeast Pacific ocean showing North Pacific Fishery Management Coun-
cil (NPFMC) regulatory areas. Abbreviations used throughout the text are
in parentheses.

The best fit to the data is with parameter values of 2.214 × 10–5 for α
and 2.037 × 10–7 for β. Such a fit indicates an extremely strong level of
density dependence and is probably unrealistic (Fig. 3). Thus, the stock-
recruitment relationship is mainly used for illustrative purposes. Given
the large uncertainty in this relationship, alternative levels of density de-
pendence that are reasonably consistent with the data are based on values
of β one-half (medium density dependence) and one-quarter (weak densi-
ty dependence) of the best fit estimate of β (Fig. 3).The results with medi-
um density dependence (i.e., α = 6.86 × 10–6; β = 1.02 × 10–7 ) are used to
illustrate the application of the model.

We assume that density-dependent effects within a region are from
the population as a whole, with the same stock-recruitment relationship
among regions (i.e., “Case 1” in Heifetz 1996). In this case the stock-
recruitment relationship represents the entire population pooled over re-
gions so that early life survival in the absence of density dependence (α)



Symposium on Fishery Stock Assessment Models 227

Table 3. Stock and recruitment data for sablefish
in the northeast Pacific Ocean.

Eggs Recruitment at Survival to
Year (1012 ) age 3 (106) age 3 (10–6)

1976 7.09 23.09 3.26

1977 7.05 44.19 6.27

1978 7.61 40.60 5.33

1979 8.57 31.09 3.62

1980 8.95 38.01 4.25

1981 9.50 41.70 4.39

1982 10.87 13.82 1.27

1983 13.41 15.25 1.14

1984 16.41 14.27 0.87

1985 19.23 10.10 0.53

1986 21.94 5.05 0.23

1987 23.64 5.16 0.22

1988 23.78 4.15 0.17

1989 22.70 4.49 0.20

1990 21.35 8.69 0.41

1991 19.63 4.57 0.23

median = 1.00

Estimated by Heifetz (1996).

and the level of density dependence (β) are independent of region. Such a
model can be written as
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The term N0,t,i insures that recruits are apportioned to region i in direct
proportion to the number of eggs produced in that region.

The population was initialized with the estimated 1991 population
and projected with F = 0.1 (near the current level). Figure 4 shows the
trajectories of population number by region for a medium level of density
dependence. In general the approach to the equilibrium population was a
succession of damped oscillations.

Characteristic of the Ricker stock-recruitment relationship is that cer-
tain parameter values can cause instability of the equilibrium population.
Such populations may exhibit stable limit cycles or chaotic fluctuations.
For example in Fig. 5, early life survival in the absence of density depen-
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Figure 2. Estimated abundance of sablefish by age and region from 1991 to 1995
and projected abundance from 1996 to 2031 based on the traditional
Leslie matrix approach with migration, median early life survival of 1.00 ×
10 –6, and Fst = 0.143. EG, Eastern Gulf of Alaska; CG, Central Gulf of
Alaska; WG, Western Gulf of Alaska; BS, Eastern Bering Sea; AL, Aleu-
tians.
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Figure 3. Observed recruitment versus egg production and three Ricker stock-
recruitment curves for sablefish in the Northeast Pacific Ocean. Strong,
medium, and weak density dependence are defined with (α, β) = (2.21 ×
10 –5, 2.04 × 10 –7), (6.86 × 10 –6, 1.02 × 10 –7), and (2.65 × 10 –6, 5.09 × 10 –8).

dence (i.e., α) in one region (EG) was increased from 6.86 × 10–6 to 1.00 ×
10–3. The resulting regional population numbers exhibit undamped oscil-
lations with periodic shifts in the proportion of the population in each
region. An interesting cyclical occurrence is the periodic, nearly equiva-
lent population numbers in EG and CG accompanied by the peak in the
proportion of the population in the other regions. Detailed examination of
the mathematical properties that govern the dynamic behavior exhibited
by stock recruitment relationships is provided in May (1974) and Clark
(1976).

Management Application: Per-Recruit Analysis
The age-by-region model can be easily adapted to examine harvest strate-
gies. For most commercial fisheries there is great difficulty in reliably
defining the stock-recruitment relationship. Per-recruit analysis is frequent-
ly used when there is uncertainty in the stock-recruitment relationship
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Figure 4. Estimated regional abundance and regional distribution of sablefish from
1991 to 1995 and projected abundance from 1996 to 2050 with F = 0.1
and density dependence defined by a Ricker stock-recruitment relation-
ship with (α, β) = (6.86 × 10 –6, 1.02 × 10 –7) . EG, Eastern Gulf of Alaska;
CG, Central Gulf of Alaska; WG, Western Gulf of Alaska; BS, Eastern Bering
Sea; AL, Aleutians.
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Figure 5. Estimated regional abundance and regional distribution of sa-
blefish from 1991 to 1995 and projected abundance from 1996
to 2090 with F = 0.1 and density dependence defined by a Rick-
er stock-recruitment relationship with (α, β) = (6.86 × 10 –6, 1.02
× 10 –7) and αEG = 1.00 × 10 –3. EG, Eastern Gulf of Alaska; CG,
Central Gulf of Alaska; WG, Western Gulf of Alaska; BS, Eastern
Bering Sea; AL, Aleutians.
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(Clark 1991). Thus our management application of the model focuses on
per-recruit analysis.

In per-recruit analysis, the consequences of fishing are surmised from
following a cohort as it passes through the fishery during its life span. By
rewriting equations (2) and (4) as a series of equations to be updated, per-
recruit analyses can be undertaken. Given initial and perhaps arbitrary
recruitment numbers by region (Nr,i), the abundance for each age and re-
gion after migration can then be written as

    
′ = →∑ >

=
N k N a ra i a a k
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The catch-at-age and region is
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and the updated abundance-at-age after movement and survival is
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One example of an initial recruitment vector is to start with 1,000 recruits
per region. Another is to distribute them in proportion to estimates from
a survey or stock assessment. Catch, yield (Y), and spawning biomass (SB)
per recruit can be computed from
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where wa,i is weight at age and region and ma,i is the proportion mature at
age and region. The total number of recruits for all regions combined, Nr,
is used because recruitment from all regions may contribute to yield and
spawning biomass within a given region. As shown in Heifetz et al. (1997),
per-recruit estimates can be sensitive to assumptions about the regional
distribution of recruitment.

Commonly used reference fishing mortality rates such as Fmax, F0.1,
and F35% (Clark 1991), can be determined for each region and all regions
combined. The use of Fmax, the F value that maximizes yield per recruit,
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has mostly passed out a favor because this rate is typically very high and
will likely deplete spawning biomass too drastically (Clark 1991). We present
Fmax values, however, because they are useful benchmarks for comparing
among regions. F0.1 is the rate where the slope of the yield per recruit
curve as a function of F falls to 10% of the value at the origin. F35% is the
rate required to keep spawning biomass per recruit at 35% of the unfished
level. For sablefish F0.1 is close to F35%, and F35% is close to the current har-
vest strategy (Fujioka 1995). (At the time our analysis was done, F35% was
the harvest strategy for sablefish in Alaska.) Thus, only results for Fmax and
F35% are shown.

We examine two management applications of the model based on per-
recruit analysis. The implications for fishery management are first exam-
ined with a constant fishing rate among regions. Second, we show how
regional specific fishing rates can be devised that result in the population
in a given region meeting a specific criterion.

F Common among Regions
To illustrate per-recruit analysis we use the distribution of regional re-
cruitment estimated with F = 0 based on the traditional Leslie matrix with
migration. Recruitment was distributed in the following proportions by
region 0.439 in the EG, 0.270 in the CG, 0.146 in the WG, 0.039 in the BS,
0.106 in the AL.

We examine yield per recruit (YPR) and spawning biomass per recruit
(SBPR) as a function of a common F among regions. YPR and SBPR ex-
pressed relative to the maximum within a region are shown in Fig. 6. The
value of F that maximized YPR (Fmax) differed dramatically by region. These
Fmax values are 0.20 for the EG, 1.02 for the CG, 0.86 for the WG, 1.44 for BS
and 0.74 for the AL. Spawning biomass per recruit (SBPR) values also dif-
fered as a function of F by region. The values of F that reduced the SBPR to
35% of its unfished level (F35%) in a region were 0.09 for the EG, 0.12 in the
CG, 0.13 in the WG, 0.20 in the BS, and 0.16 in the AL. The pooled F35% value
of 0.112 is close to the currently used exploitation strategy for sablefish
in waters off Alaska. Fishing at the pooled rate will result in SBPR main-
tained at ≥ 35% of the unfished level for all regions except the EG.

The result that F values that maximize yields and maintain spawning
biomass differ by region can be explained from the combination of two
factors. The first factor is from differences in the rate at which abundance
of a cohort changes with time due to “natural survival” (i.e., the combina-
tion of natural mortality and migration). All other parameters being equal,
in traditional YPR and SBPR analyses that do not consider migration, Fmax

and F35% values are correlated with natural mortality M. The population
with the greatest M will have the greatest values of Fmax and F35%. For the
age-region model, migration rates and natural mortality determine the
level of natural survival of a cohort in a given region. This phenomenon is
exemplified in Fig. 7 which traces the relative abundance of a cohort through
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Figure 6. Yield per recruit (YPR) and spawning biomass per recruit (SBPR) for sable-
fish relative to the maximum within a region for F common to all regions.
EG, Eastern Gulf of Alaska; CG, Central Gulf of Alaska; WG, Western Gulf
of Alaska; BS, Eastern Bering Sea; AL, Aleutians.
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Figure 7. Abundance of a cohort relative to the maximum in a region with F = 0 for
sablefish in the Northeast Pacific Ocean. EG, Eastern Gulf of Alaska; CG,
Central Gulf of Alaska; WG, Western Gulf of Alaska; BS, Eastern Bering
Sea; AL, Aleutians.

time in each region in the absence of fishing. In general, the quicker the
abundance declines in a region, the higher the Fmax and F35% values.

The second factor that may influence per-recruit rates is fishery inter-
ceptions. For example, the lower value of Fmax and F35% in the EG compared
to the other regions can in part be explained by the relationship between
F and the regional distribution of yield and spawning biomass. As F in-
creases an increasingly greater proportion of the yield is taken in other
regions, especially in the CG (Fig. 8). This phenomenon is paralleled for
spawning biomass where an increasingly greater proportion of the spawn-
ing biomass is present in the CG as F is increased. Young sablefish (age 3-
5) mostly migrate north and westward from the EG to other regions but
return as they get older (Heifetz and Fujioka 1991).

Region-Specific F
The results of the preceding section indicate that fishing at a constant
rate which may be appropriate for the pooled population may be detri-
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Figure 8. Proportion of yield and proportion of spawning biomass by region versus
F for sablefish in the Northeast Pacific Ocean. EG, Eastern Gulf of Alaska;
CG, Central Gulf of Alaska; WG, Western Gulf of Alaska; BS, Eastern Ber-
ing Sea; AL, Aleutians.
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mental to the population in a given region. Alternatively there may be sets
of region-specific fishing rates that meet fishery management goals. A
fishery management goal can be formulated as an objective function to be
optimized. For example, a reasonable goal of fishery management might
be to choose a set of region-specific F values that maintain the regional
distribution of spawning potential at unfished levels and at the same time
maintain pooled spawning biomass per recruit at a specified target level.
Just as with other harvest policies that are commonly used to manage fish
populations (Quinn and Deriso 1998) this goal is based on equilibrium
conditions. Departures from the equilibrium population are expected be-
cause of variation in recruitment, migration, and other population param-
eters. The objective function for such a goal comprises two parts: (1) the
sum over regions of the squared deviations between regional-specific pro-
portions of spawning biomass (SBP) with and without fishing and, (2) the
squared deviation between the reduction in pooled spawning biomass per
recruit (SBPR) relative to unfished levels and a target level of reduction (x),
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To illustrate this approach for sablefish, we set the target level of
reduction for SBPR at 35% of the unfished level (ie., x = 0.35; Case 1 in
Table 4). We also determined sets of F values that minimized the objective
function given a fixed fishing rate (0.04-0.16) in a given region (EG) (Cases
2-5; Table 4). We used the distribution of regional recruitment based on F
= 0 as determined from the traditional Leslie matrix with migration. Re-
cruitment was distributed in the following proportions by region 0.439 in
the EG, 0.270 in the CG, 0.146 in the WG, 0.039 in the BS, 0.106 in the AL.
Based on this distribution of recruitment, equilibrium spawning biomass
was distributed in the following proportions by region 0.502 in the EG,
0.254 in the CG, 0.133 in the WG, 0.028 in the BS, 0.083 in the AL.

A target level of spawning biomass per recruit of 35% of the unfished
level and regional preservation of the distribution of spawning biomass at
unfished levels is obtained at regionally specific F values (Case 1) that
differ substantially from the constant regional F35% value of 0.112 (Case 6;
Table 4). Pooled yield was nearly identical for the constant F values and
regional F values. The constant F value results in pooled spawning bio-
mass per recruit meeting the target but disruption of the distribution of
spawning biomass. An exact solution to the objective function was found
at regional specific F values of 0.042 for the EG, 0.164 for the CG, 0.128 for
the WG, 0.284 for the BS, and 0.180 for the AL. Thus, relative to the con-
stant F value, the level of fishing would need to be reduced considerably
in the EG, moderately increased in the CG, WG, and AL, and increased
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Table 4. Regional F values, sum of squared deviations (SSQ), spawning
biomass relative to unfished levels (SBPR/SBPRF=0), spawning bio-
mass (SB), proportion of spawning biomass (SBP), and yield.

Region F SSQ (106) SBPR/SBPRF = 0 SB SBP Yield Case

EG 0.042 0.01 0.350 32,784 0.502 1,886 1

CG 0.164 0.350 16,646 0.255 4,519

WG 0.128 0.350 8,670 0.133 1,829

BS 0.294 0.350 1,820 0.028 1,169

AL 0.180 0.350 5,406 0.083 1,755

Pooled 0.350 65,325 11,158

EG 0.040 6.19 0.351 32,853 0.504 1,781 2

CG 0.168 0.348 16,525 0.253 4,623

WG 0.130 0.348 8,619 0.132 1,855

BS 0.291 0.351 1,824 0.028 1,157

AL 0.179 0.350 5,408 0.083 1,745

Pooled 0.350 65,228 11,161

EG 0.080 1,231.51 0.330 30,915 0.475 3,435 3

CG 0.108 0.377 17,932 0.276 3,122

WG 0.097 0.372 9,219 0.142 1,449

BS 0.338 0.337 1,749 0.027 1,319

AL 0.200 0.340 5,256 0.081 1,919

Pooled 0.349 65,072 11,244

EG 0.120 4,907.24 0.310 29,072 0.447 4,965 4

CG 0.060 0.403 19,166 0.295 1,810

WG 0.070 0.395 9,794 0.151 1,091

BS 0.355 0.338 1,756 0.027 1,394

AL 0.216 0.336 5,184 0.080 2,059

Pooled 0.348 64,973 11,318

EG 0.160 10,495.05 0.291 27,263 0.421 6,363 5

CG 0.022 0.425 20,189 0.312 684

WG 0.049 0.416 10,309 0.159 792

BS 0.346 0.351 1,827 0.028 1,396

AL 0.226 0.336 5,185 0.08 2,162

Pooled 0.347 64,773 11,397

EG 0.112 5,652.76 0.303 28,407 0.435 4,521 6

CG 0.112 0.372 17,710 0.271 3,216

WG 0.112 0.387 9,573 0.147 1,738

BS 0.112 0.504 2,618 0.040 558

AL 0.112 0.452 6,984 0.107 1,311

Pooled 0.350 65,292 11,344
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substantially in the BS to meet regional management goals. Analogous to
the analysis of constant F values in the preceding section, differences in F
values among regions can be explained from the influence of different
natural survival rates among regions and fishery interceptions.

Fixing F for a variety of values for the EG and solving for the F values
in the other regions shows the relationship among the regional F values
(Cases 2-5; Table 4). In general as FEG is increased, F values in the CG and
WG decrease substantially while F values in the BS and AL remain relative-
ly constant. While resulting in larger deviations in regional spawning dis-
tribution than the F values that optimized the objective function (Case 1),
these sets of F values give some alternatives and consequences of adopt-
ing regionally specific harvest strategies.

Discussion
We have presented a general framework to model the regional dynamics
of an age-structured fish population. The model has its origin in the ge-
neric stage-classified matrix model described in Caswell (1989). Compared
to age-structured models that aggregate the populations in different re-
gions, at a minimum the additional parameters needed to construct an
age-by-region model are estimates of age-specific migration rates among
regions. The model can accommodate dispersal patterns at early life stages
and regional differences in the stock-recruitment relationship and demo-
graphic parameters. Data needed to incorporate such complexity are of-
ten not available for fish populations or may be difficult to collect, although
for some species dispersal of early life stages is becoming better under-
stood. Temporal and stochastic variation in model parameters can be in-
corporated to account for variability due to environmental or other extrinsic
causes (e.g., Caswell 1989, Chapter 8). In cases where estimates of age-
specific migration rates are not available, size rather than age can be used
for stage classification (Caswell 1989), or techniques based on stock-pro-
duction models may be better suited (e.g., Die et al. 1990, MacCall 1990).

The age-by-region model can be modified to include a more compli-
cated representation of migration dynamics such as density-dependent
migration patterns. Such density-dependent migration patterns can result
in damping of population cycles (Emlen 1984). The “basin model” of Mac-
Call (1990) incorporates density-dependent migration patterns but has
not been extended to age-structured populations. An appealing feature of
the basin model is the incorporation of possible interactions between pop-
ulation density, the geographic range of distribution of a population, and
habitat suitability. Exploration of such an ecologically based model within
the context of our model formulation might be warranted.

For some fish species inclusion of seasonal migration patterns may
be required to adequately describe population dynamics. Examples of sea-
sonal migrations are the latitudinal shifts of many Mid-Atlantic Ocean fishes
(e.g., bluefish [Pomatomus saltatrix]) related to seasonal changes in water
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temperature (Tyler 1971, Colvocoresses and Musick 1983) and the sea-
sonal spawning migrations of Pacific whiting (Merluccius productus; Swartz-
man et al. 1987), Atlantic cod (Gadus morhua; Rose et al. 1995), and Pacific
cod (Gadus macrocephalus; Shimada and Kimura 1994). Whether sable-
fish undergo seasonal migrations is not known. To evaluate the interac-
tion between seasonal migration and exploitation patterns may require
that such migrations be included in the model structure. Accounting for
seasonal changes in the fraction of the overall population that is available
to fishing in a given region would require incorporation of an additional
dimension to the model structure and a shorter time step.

Although Beverton and Holt (1957) and more recent studies such as
Fujioka (1978), Polacheck (1990), Die et al. (1990), and Deriso et al. (1991)
included spatial dynamics into their population models, most models used
to describe the dynamics of exploited fish populations are based on the
assumptions of a stock that is spatially homogeneous with uniform fish-
ing mortality. We describe methods to examine the regional dynamics of
an exploited fish population. These methods parallel those commonly used
for a single stock or populations pooled over regions (Getz and Haight
1989). First we assume there is a proportional relationship between stock
size and recruitment. Then we modified the assumption of a proportional
relationship between stock size and recruitment by inclusion of a stock-
recruitment relationship that incorporates density dependence.

Our application of the model focused on population projection and
evaluation of harvest strategies. Other uses for the model include estima-
tion of population abundance and parameters, environmental impact stud-
ies, and general ecological studies. An essential component of fisheries
science is estimation of population abundance (i.e., stock assessment).
For many species the method of obtaining regional estimates of abun-
dance is by first obtaining the abundance of the population pooled over
regions through age-structured modeling and then partition this estimate
by regional specific estimates of relative abundance (i.e., fishery or sur-
vey catch per unit effort). Quinn et al. (1990) describe an alternative to
this method called migratory catch-age analysis. The underlying equa-
tions that describe the dynamics of the population for their method are
analogous to equations (1) and (2) in our formulation. Migration parame-
ters were assumed to be known and were not estimated within the model.
While generally improving the precision of regional estimates of abun-
dance, a problem encountered was that negative abundance estimates
occurred for some areas due to inconsistency of data sources or model
deficiencies. To alleviate this problem, perhaps migration rates could be
determined within the estimation procedure if sufficient data are avail-
able. Although adding complications to the estimation procedure, incor-
poration of estimation of migration rates into a stock assessment may
improve estimates of stock abundance as was the case for Pacific whiting
(Dorn et al. 1991). For sablefish incorporation of tag data in the estimation
procedure along with survey estimates of relative abundance may assure
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that regional estimates of abundance are consistent with the migratory
character of the population.

Our management application of the model was used to show how a
regional per-recruit analysis can be undertaken that enables estimates of
reference harvest rates such as F35% to be computed. Our method is a log-
ical extension of the fishing strategy advocated by Clark (1991) that is
used to recommend catch quotas for many groundfish species in the North
Pacific Ocean and elsewhere. In Clark’s procedure, a fishing mortality rate
that reduces the spawning biomass per recruit to 35% of the unfished
level was shown to obtain a high proportion of maximum sustainable yield
over a range of life-history parameters and stock-recruit relationships.
The approach to selecting a region-specific harvest strategy requires the
same life-history parameters used in Clark’s procedure with the addition
of age-specific migration rates.

 We applied the regional per-recruit analysis to management of sable-
fish in the northeast Pacific Ocean. Although the application developed
for sablefish was designed primarily as an exploration of the approach,
some implications for fishery management were demonstrated. Fishing at
a rate that may be appropriate for the pooled population may differential-
ly affect the populations in each region. Region-specific harvest rates that
are designed to maintain regional spawning potential are a major depar-
ture from the harvest strategy that is currently used to manage sablefish
in Alaska. At present, the sablefish fishery is managed by individual fish-
ing quotas (IFQs) which are allocated by region. Adoption of region-specif-
ic harvest rates makes biological sense; however, there is the potential for
more conflicts among user groups if such fishing rates are used because
individual quota shares for sablefish are directly related to fishing rates.
Use of the regional specific fishing rates would likely be met with strong
resistance by some fisherman and embraced by others.

The region-specific fishing rates that we compute are only appropri-
ate for the assumption that regional recruitment strengths depend on re-
gion-specific spawning biomass. Given the high migration rates exhibited
by pre-recruit sablefish (McFarlane and Saunders 1997) such an assump-
tion may not be appropriate. In addition, we did not incorporate uncer-
tainty in model parameters, especially movement rates (Heifetz and Fujioka
1991). The analysis is thus an initial step in identifying a region-specific
harvest strategy. A more in-depth study would need to consider alterna-
tive hypothesis about regional recruitment dynamics, perhaps within a
decision analysis framework. These hypotheses could consider larval and
juvenile dispersal patterns and incorporate oceanographic conditions.

For sablefish as with many other species, migration is not directly
considered in the stock assessment process. For sablefish, catch is appor-
tioned among regions based on an exponentially weighted average of sur-
vey estimates of regional-specific relative biomass over time (Sigler et al.
1997). Such a policy adapts to current information, does not require esti-
mates of migration rates for implementation, and reduces the effects of



242 Heifetz & Quinn — Migratory Population and Management of Sablefish

measurement errors associated with regional biomass estimates (Heifetz
et. al 1997). As long as reliable estimates of region-specific relative abun-
dance indices are available, then this method is adequate. This method
however, does not foster understanding about why changes in regional
population abundance occur. In addition, integration of the migratory
nature of a population into the stock assessment process enables estima-
tion of regional recruitment strengths and may help assure that regional
estimates of abundance are consistent with the migratory character of the
population. Thus, to account for annual changes in regional abundance
the migratory character of a population should be considered in the stock
assessment and management decision process.

In conclusion, recognition of the importance of migration to the dy-
namics of exploited fish populations will enhance our understanding of
how fisheries in different regions may interact with each other. We have
presented a model framework that enables analysis of such populations.
While not without pitfalls, especially with regard to data requirements,
use of such a model may permit a reasonably realistic description of a
migratory fish population that can reveal dynamic processes that will other-
wise be obscured.
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Abstract
Maximum likelihood and Bayesian assessments for the stock of gemfish
off eastern Australia are described. The values of the parameters of an
age- and sex-structured population dynamics model are estimated using
information on catches, catch rates, the fraction of winter fishery catches
consisting of females, and the age-composition and length-frequency of
catches. Estimated parameters include virgin biomass, recruitment steep-
ness, annual recruitment anomalies, selectivity, and natural mortality. For
the Bayesian assessment, priors were constructed as part of the stock
assessment process by a working group involving fishermen, managers,
and scientists. The working group also reviewed all data inputs, and de-
termined base-case analyses and sensitivity tests. The latter included sen-
sitivity to weightings on data, levels of historical catches, and the possibility
of auto-correlated recruitment anomalies. The results of the Bayesian anal-
yses are used as the basis for risk assessment and evaluation of future
harvest strategies for the stock.

Introduction
The gemfish (Rexea solandri) resource off eastern Australia is fished main-
ly by demersal trawling on the upper continental slope in depths ranging
from 350 to 500 meters. The fishery commenced in the early 1960s and
catches peaked in the early 1980s (Fig. 1). Quota management was intro-
duced in 1988, initially as a competitive quota, and subsequently based
on individual transferable quotas. Monitoring of the age and size compo-
sition of the catches indicated a series of weak year classes spawned in
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Figure 1. Alternative historical catch series for the winter fishery.

the late 1980s, and a zero TAC was set in 1993 and maintained until 1996.
The gemfish fishery is part of the multispecies South East Trawl Fishery,
and is managed by the Australian Fisheries Management Authority (AFMA).
AFMA set as a criterion for reopening the gemfish fishery that there be a
greater than 50% chance that the current biomass (of 5+ males and 6+
females) exceeds 40% of the corresponding biomass in 1979.

Stock assessment for eastern gemfish is currently undertaken by the
Eastern Gemfish Assessment Group (EGAG) which was set up in early 1996.
This group comprises fishery managers, industry (catching and process-
ing sectors), scientists (government and independent), an economist, and
a conservation member. EGAG’s principle objectives are to undertake stock
assessments, evaluate future harvest strategies, and set research priori-
ties. Previous assessments of eastern gemfish have used a variety of age-
structured assessment techniques, including cohort analysis (Allen 1989),
CAGEAN (c.f. Deriso et al. 1985), ad hoc tuned VPA (c.f. Pope and Shepherd
1985) and integrated analysis (e.g., Methot 1989, 1990; Punt 1996; Bax
1996). EGAG has adopted an assessment approach based on maximum
likelihood and Bayesian methods, as described in this paper. Industry and
management members of EGAG, together with the scientific members,
have played a critical role in the assessment process through review of
data, identification of key assumptions and uncertainties, and in construct-
ing prior distributions for the parameters of the Bayesian assessment.
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The assessment is conducted using an age- and sex-structured popu-
lation dynamics model. The values for the parameters of this model which
are not determined from auxiliary information are obtained using data on
catch rates, the fraction of females in the winter fishery catches and infor-
mation about the age-composition and length-frequency of the catches.
The results of the maximum likelihood analyses are used to (a) identify
the sensitivity of important management-related outputs (e.g., current
depletion) to the data and model specifications, (b) understand the behav-
ior of the model, (c) assess whether the model fits the data adequately,
and (d) assess the impact of the various data sources on the assessment
results. The Bayesian results provide a more suitable basis for evaluating
the consequences of alternative harvest strategies because the Bayesian
approach takes greater account of the uncertainty about the fit of the
model to the data.

The methodology upon which the maximum likelihood analyses are
based is similar to the “stock synthesis” approach (Methot 1989, 1990)
while the Bayesian analyses use an extension of the methodology described
in McAllister et al. (1994), Punt et al. (1994) and Punt (1996). Although
Bayesian stock assessment methods are relatively new in fisheries (for
instance, see Hilborn et al. 1994, McAllister et al. 1994, Walters and Lud-
wig 1994, Givens et al. 1995, Punt and Hilborn 1997, McAllister and Ianelli
1997), they allow the analyst to incorporate (subjective) prior distribu-
tions for model parameters, and provide a consistent framework for deci-
sion analysis.

Methods
Population Dynamics Model
The population dynamics model considered in this analysis (Appendix I)
is age- and sex-structured and takes account of ages up to 12 years, with
ages over 12 being pooled into a plus-group. The trawl fishery for gemfish
comprises a summer and a winter component, the latter targeting a pre-
spawning run northward along the east coast. The summer and winter
fisheries are modeled as pulses at the start of December and at the end of
June respectively. The “year” in this paper runs from July to June because
spawning occurs during the winter fishery. The number of 0-year-olds at
the start of the year (July) is taken to be related to the egg production at
the end of the preceding year by a Beverton and Holt stock-recruitment
relationship, which allows for lognormally distributed recruitment anom-
alies. (The term “recruitment anomaly” is used to refer to the logarithm of
the relative difference between the estimated number of births [also re-
ferred to as the year-class strength] and the value predicted from the [de-
terministic] stock-recruitment relationship.) The sex ratio at birth is taken
to be 1:1.
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The model assumes that the population was distributed about its un-
exploited equilibrium level at the start of 1962 when the first substantial
catches are assumed to have been taken during the winter spawning run
fishery (see Punt et al. 1997). The selectivity pattern for the winter fishery
is assumed to follow a logistic curve, while that for the summer fishery is
assumed to be dome-shaped. The assumption of sex-specific natural mor-
tality rates is needed to mimic the age-composition of the catches by sex.

Parameter Values
Table 1 lists the values for the fixed model parameters (i.e. those taken to
be known exactly). The values for the growth parameters were estimated
from data collected during the winter spawning run (Rowling 1990) and so
pertain (roughly) to the start of July. In order to calculate length-at-age for
the summer fishery, the value for a in equation (I.6) is replaced by a – 0.583
(0.583 is the fraction of a year between the start of December [the as-
sumed middle of the summer fishery] and the end of June [the assumed
middle of the winter fishery]). The CVs for length-at-age are computed by
linear interpolation from those listed in Table 1. Table 2 lists the priors
chosen by EGAG for the remaining parameters (EGAG 1996).

Data and the Likelihood Function
The data used in the stock assessment include catches by fishery since
1962, the fraction of the winter catch (in number) which consists of fe-
males, catch rate based indices of relative abundance, length-frequency
data (in 2 cm size-classes), and catch-at-age data (Punt et al. 1997). Catch
rates are assumed to be proportional to abundance, based on previous
results supporting this assumption (Allen 1989).

A major uncertainty in the assessment identified by EGAG is the level
of historical catches, particularly catches in the early period of develop-
ment of the fishery. EGAG identified two historical catch series which rep-
resent plausible upper and lower bounds (Fig. 1), but was unable to agree
on the relative credibility of these catch series. In this paper, the higher
catch series (series A) is used for the reference analysis. The two catch
series, and other data inputs to the analysis, are described in Punt et al.
(1997).

Length-frequencies are available for some of the years for which age-
length keys are missing as well as being available for all of the years for
which age-composition data are available. If age-composition data are avail-
able, these are used in preference to length-frequency data and length-
frequencies by sex are used in preference to unsexed length-frequencies.
Appendix II details the contributions of the various data sources to the
negative of the logarithm of the likelihood function.

When fitting the model, it is necessary to provide specifications for
the catchability coefficient, q, and the residual standard deviation for catch
rate, σc. For the maximum likelihood analyses, the estimate of q is obtained
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Table 1. The values for the fixed parameters of the population dynamics
model.

Parameter Male Female Both sexes

L∞(cm)a 97.5 109.4

κ (yr–1)a 0.212 0.180

t0 (yr)a –0.54 –0.63

CV of length-at-ageb 0.066 (age 3) 0.050 (age 4)

0.046 (age 9) 0.044 (age 11)

b1 (gm cm–3)b 0.143 × 10–5

b2
b 3.39

plus-group = x (years)c 12

σr
c 0.6

a Rowling and Reid (1992).
b K. Rowling, NSW Fisheries, Sydney, Australia.
c EGAG.

Table 2. The prior distributions specified by EGAG for the model param-
eters.

Parameter Male Female Both sexes

B0 U[5,000 t, 50,000 t]

M (yr–1) U[0, 0.8] U[0, 0.8]

Steepness = h See Fig. 2

L full = summer fishery     U[ , ]L L2
1

4
1

L50% = summer fishery     U[ , ]L L2
1

10
1

L50 = winter fishery     U[ , ], ,L Lm m
4
2

6
2

    U[ , ], ,L Lf f
4
2

6
2

L95 = winter fishery     U[ , ], ,L Lm m
4
2

8
2

    U[ , ], ,L Lf f
4
2

8
2

lnq U[–∞, ∞]
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analytically (equation II.3). The prior for q is taken to be uniform on a log-
scale for the Bayesian analyses. This choice of prior can be shown to be
non-informative for B0 (Pikitch et al. 1993) although it may not be non-
informative for other quantities of management interest (Cordue and
Francis 1994). The value for σc is pre-specified instead of being assigned a
prior as has been the case in several other Bayesian assessments (e.g.,
McAllister et al. 1994, Givens et al. 1995).

The values assumed in the Bayesian analysis for the residual standard
deviations are 0.15 for σc and 0.1 for σf , σa, σs, and σl. These choices are
similar to the maximum likelihood estimates for the corresponding resid-
ual standard deviations based on preliminary fits to the data. The contri-
butions to the likelihood function are multiplied by “weighting factors” to
account for relative (a priori) perceptions of the reliability of the various
data sources. The weights for the age-composition, fraction female, and
winter length-frequency data are set equal to 1 while that for the summer
length-frequency data is set equal to 0.1. This lower weight is based on
the observation that selectivity to the summer fishery varies markedly
from year to year. This violates the assumption underlying equation (II.7)
that all of the error is observational. The assumption of a lower weight for
the summer length-frequency data accounts for this to some extent. The
weight assigned to the catch rate data is varied until the estimated resid-
ual standard deviation for these data is 0.15. For the reference analysis,
this weight is 3.0.

The contributions to the likelihood function by the age-composition
and length-frequency data are based on the assumption that the observed
data are lognormally distributed about their expected values with a CV
which depends on the inverse of the square root of the expected propor-
tion (see Section C of Appendix II). The justification for this approach is
dicussed in Punt (1997a). This specification differs from the possibly more
conventional assumption of a multinomial distribution (e.g., McAllister
and Ianelli 1997).

The age-composition data included in the likelihood function are re-
stricted to males older than 4 years and females older than 5 years. The
length-frequency information for males is restricted to animals of 56 cm
and larger while the length-frequency information for females is restrict-
ed to animals larger than 64 cm. The 64 cm restriction also applies to
unsexed length-frequencies for the winter fishery and the fraction female
data are defined in terms of animals larger than 64 cm. The model-esti-
mates of the fraction of the catch falling into each age-class take account
of the possibility of age-reading error (see equation II.9). The length-fre-
quency and age-composition data that are included in the likelihood func-
tion are restricted to large and/or old animals, because early maturation
may have occurred during the period of poor recruitment, and because
the length-frequencies for some recent years represent bycatch, which
may be biased toward small fish.
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The performance of the estimator deteriorates markedly if the likeli-
hood includes contributions for ages and lengths that constitute only a
small fraction of the catch. The age-composition data for animals age 10
years and older are pooled at age 10 and the winter length-frequency data
for animals larger than 80 cm (males) and 94 cm (females and unsexed)
are pooled to remove this problem. The length-frequency data for the
summer fishery are restricted to the range 36-78 cm for the same reason.
The data for the summer fishery are restricted further by omitting those
years in which the sample size is less than 1,000 (1976, 1985, 1987, 1990,
1991, and 1992). This restriction is imposed because the likelihood in
Section C of Appendix II gives the same weight to each year irrespective of
the number of animals measured.

Estimation Procedures
The prior distributions listed in Table 2 are incorporated into the maxi-
mum likelihood analyses to enhance the comparability of these and the
Bayesian analyses. This is achieved by using the limits of the uniform
distributions in Table 2 as bounds for the estimates of the model parame-
ters; if a parameter is outside its bounds (for example, if B0 exceeds 50,000 t),
the negative log-likelihood is set to a very large value. The prior distribu-
tion for steepness was included in the maximum likelihood analyses by
subtracting the logarithm of the prior probability for the value of steep-
ness (Fig. 2). The lognormal prior distributions for the recruitment anom-
alies (both those which constitute the initial conditions and those which
apply to births after 1962) are included in the maximum likelihood analyses
by adding the following component to the negative of the log-likelihood
function:

    

ε
σ
y

ry

2

22
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where the summation is taken over the 46 recruitment anomalies, and σr

is assumed to be 0.6 (see Table 1). The choice σr = 0.6 was made because
0.6 is close to the median of the estimates of σr for teleost species ob-
tained by Beddington and Cooke (1983).

This treatment of the recruitment anomalies is equivalent to treating
the year class strengths (in absolute terms) as parameters while at the
same time allowing for a stock-recruitment relationship (e.g., Fournier
and Archibald 1982; Methot 1989, 1990). The implication of the inclusion
of equation (1) in an analysis is that a recruitment anomaly will be as-
sumed to be zero (i.e. recruitment is equal to the prediction from the
deterministic component of the stock-recruitment relationship) unless there
are data which indicate otherwise. Another way of interpreting the results
from the maximum likelihood analyses is that they are Bayesian modal
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results. This is because the parameter estimates from the maximum like-
lihood analyses correspond to the maximum of the posterior distribution
of the Bayesian analysis.

In summary then, for the reference maximum likelihood analysis, the
values for 57 parameters (see Table 3) are obtained by minimizing the
sum of the negative of the log-likelihood function, the negative of the
prior probability for steepness, and equation (1), while the posterior dis-
tributions for these parameters are obtained by integrating the likelihood
function over the prior distributions. The Sample-Importance-Resample
(SIR) method (see Appendix III) is used to perform the numerical integra-
tion needed to calculate the posterior distribution for the Bayesian calcu-
lations.

Alternative Analyses
A large number of sensitivity tests was specified by EGAG and undertaken
for the maximum likelihood analyses (Table 4). The results are presented
elsewhere (see Punt 1997b). The number of Bayesian analyses has been
restricted to five due to the computational demands of conducting the
Bayesian integrations numerically. Catch series A is used for the reference
analysis and for three of the four other analyses.

Figure 2. The prior distribution assumed for the steepness of the Bever-
ton and Holt stock-recruitment relationship (Pers. comm., J.
Ianelli, National Marine Fisheries Service, Seattle).
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Table 3. The estimated parameters of the model.

Parameter type Details # Parameters

Population-model-related B0, M
f, Mm, h 4

Selectivity Lfull, L50%,     L
s
50,     L

s
95 6

Catchability q 1

Recruitment anomalies       εa a x: , , , ,= −{ }0 1 2 1K 12

      
εy y: , , , ,={ }1963 64 95 96K 34

Table 4. Hypotheses considered as part of the assessment of the eastern
stock of gemfish.

No Description

Data-related sensitivity tests

D1 Changing the weight assigned to the CPUE data

D2 Changing the time series of historical catches

D3 Changing the weight assigned to the age composition data

D4 Changing the weight assigned to the length-frequency data

D5 Changing the vessel used when standardizing the catch and effort
information

D6 Ignoring the age-composition data

D7 Ignoring the summer length-frequency data

D8 Ignoring the winter length-frequency data

D9 Ignoring the fraction female information

D10 Analyzing the catch and effort data using a GLM approach

Model-related sensitivity tests

M1 Changing the form of the stock-recruitment relationship to a Ricker or
the Thompson (1993) form

M2 Changing the assumed extent of variation in the recruitment
anomalies, σr

M3 Allowing for autocorrelation in the recruitment anomalies

M4 Allowing for density-dependent selectivity

M5 Allowing for density-dependent growth

M6 Ignoring age-reading error
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The five Bayesian analyses are:

a. The reference analysis (abbreviation “Catch series A”).

b. Replacing catch series A by catch series B (abbreviation “Catch series
B”).

c. Decreasing the weight assigned to the daily catch rate data from 3.0
to 1.5 (abbreviation “wCPUE = 1.5”).

d. Increasing the weight assigned to the daily catch rate data from 3.0 to
4.5 (abbreviation “wCPUE = 4.5”).

e. Allowing for auto-correlation among the recruitment anomalies (ab-
breviation “Correlated recruitment”).

The weight assigned to the catch rate data for catch series B is altered
from 3.0 (the value for the reference analysis) so that the fit to the catch
rate data is comparable to that for catch series A. This is to enhance com-
parability between these analyses. Analyses (c) and (d) explore the effect
of decreasing and increasing the weight on the catch rate data for the
reference analysis.

The reference analysis suggests that there is considerable covariance
between successive recruitment anomalies—this is hardly surprising if
the reason for the recruitment anomalies is the impact of some (autocor-
related) environmental variable (or variables). However, the (joint) prior
distribution for the recruitment anomalies (equation 1) assumes that these
anomalies are independent and this could potentially bias the results. A
sensitivity test examines the consequences of replacing the contribution
of the recruitment anomalies to the likelihood function (equation 1) by an
expression which allows for the possibility of inter-annual correlation in
recruitment anomalies (see Appendix IV for details):
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where τ is the correlation between recruitment anomalies for adjacent
years.

The extent of autocorrelation for the “Correlated recruitment” analy-
sis was set equal to the estimate of autocorrelation among the recruit-
ment anomalies for the reference maximum likelihood case (which is based
on the assumption τ = 0). This was estimated to be τ = 0.5.
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Exploration of the consequences of future harvest strategies is limit-
ed to making projections for the stock under future fixed levels of catch.
These projections are based on 200 draws from the posterior distribu-
tions for the Bayesian analyses. Future recruitments are based on the log-
normal distribution of anomalies about the levels predicted by the
deterministic stock recruitment relationship. In the case of autocorrelat-
ed recruitment anomalies, the autocorrelation structure also applies to
future recruitment anomalies.

Results
Three different biomass series are computed:

a. The winter biomass is the biomass of selected animals in the middle
of the winter fishery (see equation I.17).

b. The spawner biomass is the selected biomass of females at the end of
the year (i.e. after the winter fishery) (see equation I.4).

c. The 5+/6+ biomass is the biomass at the end of the year of all males
aged 5 and older and all females aged 6 and older:
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The management-related statistics used to summarize the results are:

B0 the unexploited equilibrium winter biomass.

Mm the (age-independent) rate of natural mortality for males.

Mf the rate of natural mortality for females aged 3 and older (see
equation I.7).

h the “steepness” of the stock-recruitment relationship.

B96/B0 the ratio of the winter biomass during 1996 to the unexploit-
ed equilibrium level (expressed as a percentage).

E96/E79 the ratio of the 5+/6+ biomass at the end of 1996 to that at
the end of 1979 (expressed as a percentage).

The closeness of fit of the model to the data is summarized by the
estimates of the residual standard errors for each data type.

The largest weight assigned to a single parameter combination in the
posterior distribution is 0.066 (catch series A) and 0.061 (catch series B)
which implies that an adequate numerical representation of the posterior
has been achieved. Of the 10,000 parameter combinations used to con-
struct Figs. 7-9, 3,769 were unique for catch series A and 4,738 for catch
series B. The largest weights are larger than those obtained by McAllister
and Ianelli (1997) for the assessment of the yellowfin sole (Limanda aspera)
resource in the eastern Bering Sea and notably larger than those obtained
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by McAllister et al. (1994) for the assessment of the New Zealand’s western
stock of hoki (Macruronus novaezelandiae). This is not unexpected be-
cause the current assessment is based on considerably more data (the
yellowfin sole assessment was based on relative abundance data and sex-
aggregated age composition data while the hoki assessment was based
solely of relative abundance data).

Maximum Likelihood Analyses
Results for the maximum likelihood analyses are shown in Tables 5 and 6
and in Figs. 3 to 6. As noted earlier, these are not true maximum likelihood
estimates, but are posterior modal estimates for the Bayesian analyses.
They incorporate the prior distributions used in the Bayesian analyses, to
enhance comparability between estimation methods. Table 5 shows sum-
mary results for the reference analysis (catch series A) and for the catch
series B sensitivity test. The model fits the data reasonably well. The weight-
ings on the CPUE data have been set to achieve a residual CV for those
data of approximately 15%. The fit to the fraction female data is good (σ =
0.07), while the age data are better fitted for females than males. The
poorest fit is to the summer size data (σ = 0.17), which are given a low
weighting in the analysis because of the variable nature of this mainly
bycatch fishery. The fit to the catch rate data is shown in Fig. 4. The fits to
the two catch series are very similar.

Table 5 and the upper panels of Fig. 3 indicate that the biomass was
reduced rapidly from 1962 as a consequence of the catches (particularly
for the reference analysis) and a string of weak year classes. Lower catch-
es between 1968 and 1973 combined with a series of good year classes
from 1971 led to an increase in biomass after 1972. After peaking in 1977,
the winter biomass declined under the impact of catches in excess of 3,000 t.
Although the catches after 1983 are somewhat lower than those between
1977 and 1982, there is no increase in biomass owing to another sequence
of poor year classes. The winter biomass is estimated to have declined
continuously until 1994 and to have recovered somewhat primarily as a
result of the strong 1990 year class. The current (winter) biomass is esti-
mated to be at about 22% of the unexploited equilibrium level for the
reference analysis. This corresponds to about 55% of the 1979 5+/6+ bio-
mass, which is higher than the management target of 40% for reopening of
the fishery. For catch series B, the estimated level of unfished biomass B0

is considerably lower than for catch series A. This is not unexpected given
the lower historical catches. The estimated level of depletion is not as
great (32% compared with 22% for catch series A), but the level of 5+/6+
biomass relative to 1979 is similar.

For both catch series, the natural mortality rate for males is larger
than that for females. This is a consequence of the age-composition data
in which males dominate the catch of the younger (<5-year-old) individu-
als while females comprise the bulk of the catch of older (>7-year-old)
animals. The estimate of steepness for the reference analysis is 0.504.
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Table 6. Posterior correlations among four of the
parameters of the population dynamics
model based on a normal approximation to
the posterior.

Parameter B0 Mm Mf h

B0 –0.061 –0.075 –0.238

Mm 0.089 0.951 –0.598

Mf 0.077 0.940 –0.614

h –0.257 –0.497 –0.507

Results are shown for analyses based on catch series A in the upper trian-
gular and for catch series B in the lower triangular.

Table 5. Summary statistics corresponding to the mode of the
posterior distribution (maximum likelihood).

Quantity Catch series A Catch series B

Estimates of precision

CPUE 0.148 0.151

Fraction female 0.070 0.068

Age data (males) 0.131 0.131

Age data (females) 0.097 0.096

Size data (summer) 0.170 0.169

Size data (winter, unsexed) 0.090 0.090

Size data (winter, male) 0.108 0.107

Size data (winter, females) 0.096 0.095

B0 20337 14555

Mm 0.486 0.593

Mf 0.317 0.409

h 0.504 0.379

B96/B0 0.225 0.321

E96/E79 0.547 0.514

Results are shown for analyses based on the two alternative series of catches.
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Figure 3. Time trajectories of winter biomass, EXP(recruitment anoma-
ly), the spawner-birth information, and the estimated stock-
recruitment relationship, corresponding to the mode of the
posterior distribution (the maximum likelihood analysis). Re-
sults are shown for catch series A (this page) and for catch
series B (facing page).
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Figure 3. (Continued.)
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Figure 4. Observed (solid dots) and model-predicted (dotted lines) catch
rates.
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Figure 5. Observed (solid lines) and model-predicted (dashed lines)
female length-frequency distributions for the winter fish-
ery for 1983 and 1995. The catch length-frequency distri-
butions for the year classes in the population are also
shown. The model predictions are based on the posterior
mode for catch series A.
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Figure 6. Time-trajectories of winter biomass, and fits to the catch rate
information, for analyses based on catch series A which differ
in the weight assigned to the CPUE data.
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This is quite a low level considering the prior in Fig. 2 (which has a mean
of 0.735) and suggests that this is a relatively unproductive stock. For
catch series B, the estimate of steepness is even lower, but the estimates
for male and female natural mortality are higher. Table 6 shows the corre-
lations among four of the parameters. There is a very high positive corre-
lation between the sex-specific natural mortalities, and a high negative
correlation between natural mortality and steepness.

The middle panels of Fig. 3 show the time series of recruitment anom-
alies. One feature evident in these time series is the sequences of below
average and then above average recruitment anomalies. Of particular note
are the runs of above expected recruitments from the early 1970s to the
mid-1980s, and the extremely poor recruitments in the late 1980s. The
1990 year class is estimated to be very much larger than that predicted by
the stock-recruitment relationship. It currently forms the mode of the
length-frequency distribution for the winter fishery (Fig. 5). The current
size distribution of the catch is notably different from that in the early
1980s (contrast the 1995 and 1983 size frequency distributions in Fig. 5).
Note that, although the 1990 year class is much larger than expected, it is
no stronger in absolute terms than the average of the sizes of the year
classes during the 1970s and early 1980s (Fig. 3 lower panel). The 1992
and particularly the 1993 year classes are estimated to be poorer than
expected while the 1994 year class is estimated to be better than expected.

The effects on the reference analysis of increasing and decreasing the
weight put on the catch rate data are shown in Fig. 6. Decreasing the weight
tends to result in higher predicted stock sizes and vice versa. Not surpris-
ingly, increasing the weight assigned to the catch rate data improves the
fit to these data. Qualitatively, however, the results are little changed from
those for the reference analysis.

Bayesian Analyses
The results of the Bayesian analyses are shown in Table 7 and Figs. 7 to 9
for the reference analysis and for catch series B. Other sensitivities are
considered in Table 8.

Table 7 lists for several parameters the posterior means, 90% inter-
vals, and the ratios of the posterior variances to those of the priors. For
most of the parameters of the model, the prior distributions are updated
markedly by the data. The main exception is the selectivity parameter afull

for the summer (bycatch) fishery, for which the age composition data are
largely non-informative. In terms of means, the results are qualitatively
(and quantitatively) similar to those for the reference maximum likeli-
hood analysis shown in Table 5. This implies that the results of the Baye-
sian analysis are dominated by the data rather than by the choice of priors.
Figure 7 shows the prior, post-model–pre-data, and posterior distributions
for B0 and the implicit prior and posterior for B96/B0. The post-model–pre-
data distribution is different from the prior because model projections
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Table 7. Results for the Bayesian analysis showing posterior mean
and lower and upper 5% points corresponding to several
parameters and model-derived quantities. Also shown are
the ratios of posterior to prior variances for parameters.

(a) Catch series A

Posterior Variance Lower 5% Upper 5%
Quantity mean ratio (%) point point

B0 18920 7.7 14360 25340

B96 4944 – 4148 5938

B62/B0 1.071 – 0.754 1.474

B96/B0 0.269 – 0.185 0.355

E96/E79 0.544 – 0.458 0.631

h 0.479 15.6 0.350 0.631

Mm 0.534 4.3 0.450 0.600

Mf 0.355 2.6 0.290 0.403

afull 2.590 42.4 2.051 3.263

a50% 6.245 2.9 4.992 7.798

a50 (males) 4.760 2.0 4.635 4.888

a95 (males) 6.325 4.8 5.943 6.762

a50 (females) 5.596 1.6 5.475 5.713

a95 (females) 6.839 4.1 6.489 7.253

(b) Catch series B

Posterior Variance Lower 5% Upper 5%
Quantity mean ratio (%) point point

B0 14390 5.4 10270 19370

B96 5009 – 4069 5891

B62/B0 1.104 – 0.752 1.582

B96/B0 0.362 – 0.240 0.481

E96/E79 0.517 – 0.429 0.615

h 0.370 11.9 0.238 0.506

Mm 0.620 2.4 0.564 0.687

Mf 0.431 1.6 0.385 0.480

afull 2.758 69.7 2.066 3.528

a50% 7.169 4.8 5.527 9.184

a50 (males) 4.799 2.0 4.655 4.932

a95 (males) 6.332 4.6 5.969 6.796

a50 (females) 5.606 2.0 5.457 5.744

a95 (females) 6.810 4.9 6.335 7.211
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Table 8. Results for the Bayesian analyses of 20-year projections at fixed
catch levels, for the reference assessment and four variants
thereof.

(a) The probability that the winter biomass exceeds BMSY at the end of the projec-
tion period.

Catch level

Scenario 0 t 500 t 1,000 t 1,500 t

Reference 0.970 0.760 0.395 0.110

wCPUE = 1.5 0.890 0.665 0.305 0.070

wCPUE = 4.5 0.970 0.700 0.305 0.030

Catch series B 0.865 0.510 0.150 0.030

Correlated recruitment 0.940 0.700 0.315 0.115

(b) Lowest value that the 5+/6+ biomass drops to over the 20-year projection
period, expressed as the median for Ey /E79.

Catch level

Scenario 0 t 500 t 1,000 t 1,500 t

Reference 0.546 0.546 0.376 0.011

wCPUE = 1.5 0.549 0.490 0.366 0.011

wCPUE = 4.5 0.543 0.493 0.317 0.002

Catch series B 0.521 0.403 0.083 0.001

Correlated recruitment 0.549 0.549 0.423 0.002
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Figure 7. Post-model–pre-data (open bars) and posterior (solid bars)
distributions for virgin biomass and current (1996) de-
pletion. The prior distribution for B0 is indicated in the
upper panels. Results are shown for catch series A (this
page) and for catch series B (facing page).
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Figure 7. (Continued.)



268 Smith & Punt — Stock Assessment of Gemfish in Eastern Australia

Figure 8. Medians and 90% probability intervals for winter biomass for
catch series A (upper panel) and catch series B (lower panel).
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Figure 9. Medians and 90% probability intervals for the time series of
EXP(recruitment anomaly) for catch series A (upper panel)
and catch series B (lower panel).
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from 1962 to 1996 which result in stock extinction are given zero likeli-
hood.

Figure 8 shows the time series for winter biomass for catch series A
and B for the Bayesian analysis. Note that what are shown are not trajecto-
ries in the normal sense of the word, but rather the medians and 90%
probability intervals of the posterior distributions for the population size
for each successive year. The winter biomass for the pre-1970 period is
much more uncertain than for the later years. This is because catch rate
data are only available from 1973, and catch composition data from 1975.
Figure 9 shows time series for the expected (multiplicative) recruitment
anomalies, again as posterior distributions for each year rather than as
trajectories. The patterns are very similar to the maximum likelihood re-
sults (Fig. 3), while the 90% probability intervals for the early and most
recent recruitment anomalies are very wide. This is because the available
data do not provide information about these recruitments, so that the
posteriors approximate the priors in these years. However the posterior
distributions for the 1970s and 1980s suggest that the sequences of strong
and then weak year classes are significant.

Table 8 shows the results of 20-year fixed catch level projections for
the reference analysis and four variants. Part (a) of Table 8 shows the
probability that the biomass at the end of the 20 years exceeds BMSY. BMSY is
the biomass corresponding to the maximum yield assuming no recruit-
ment variability, and is computed for each projection. In general, the ref-
erence analysis is the most optimistic, while the most pessimistic outcomes
occur if catch series B is assumed to be correct. At higher levels of catch,
the correlated recruitment scenario is the most optimistic. Levels of catch
in excess of 500 t achieve satisfactory outcomes for this indicator for all
variants. Part (b) of Table 8 indicates the lowest level to which the biomass
is reduced over the 20 years, expressed as the median for the ratio Ey /E79

for 5+/6+ biomass. Most of the variants do not meet the management
criterion even at 500 t levels of catch. This is because the stock is predict-
ed to decline further during 1997 as the strong 1990 year class starts to
die out, and is followed by several more weak year classes.

Discussion
The Bayesian analysis described and developed in this paper is similar to
the approach developed by McAllister and Ianelli (1997). It incorporates a
wider set of data types than that analysis, including length frequency and
proportion female, but uses similar methods for the Bayesian integration
and estimates a similar set of parameters. A novel feature of this analysis
is the incorporation of autocorrelation in the recruitment residuals for
one of the sensitivity tests. There is good evidence that this stock exhibits
extended periods of strong recruitment, as well as multiple successive
years of weak recruitment, even after taking account of a relatively signif-
icant underlying relationship between stock and recruitment.
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In general, the model fits the data well and there are no major incon-
sistencies or conflicts among separate data sources. The results are not
notably sensitive to either selection of data or the weighting placed upon
alternative sets of data. The only exception is that the assessment of stock
status is sensitive to uncertainty in the historical time series of catches, a
source of uncertainty not often addressed in stock assessment. The re-
sults do not seem sensitive to the selection of priors, given the low vari-
ance ratios of posteriors to priors for most parameters. One surprising
feature of the results is the low estimates for stock recruitment steepness.
These may be a consequence of a temporal change in the environmental
determinants of recruitment rather than reflecting a true density depen-
dent effect.

The stock assessment methods which have been applied to the east-
ern gemfish resource have not been examined by simulation to assess
their likely levels of bias. Such analyses (e.g., Punt 1989, Cordue and Francis
1994) could indicate that the methods which have been applied to this
stock are either markedly biased or highly imprecise.

The results of the Bayesian analyses form the basis for inferring the
current status of the eastern gemfish population, and also provide a basis
for evaluating risks and benefits associated with alternative future man-
agement strategies for this resource. In terms of AFMA’s current reference
point, all of the Bayesian analyses have posterior means for the ratio E96/E79

that exceed 0.4. The status of the population relative to the unexploited
equilibrium biomass is much less certain and depends very much on the
catch series selected. The posterior mean for the ratio B96/B0 is 0.27 for
catch series A and 0.36 for catch series B. However, the results for all of
the Bayesian analyses indicate that some recovery has occurred since 1991
owing to the strong 1990 cohort recruiting to the fishable biomass.

One consequence of the relatively high level of recruitment variabili-
ty in this stock, coupled with autocorrelation between recruitment anom-
alies in successive years, is that constant harvest strategies are likely to
perform particularly poorly, relative to more adaptive strategies, in rela-
tion to risks of overfishing, and longer term average catches. This tradeoff
was recognized in the process of determining a quota for the stock in
1997. Since all analyses suggested that the criterion for reopening the
fishery had been exceeded, a non-zero quota was set for this stock in 1997
for the first time since 1992. However it was also recognized that the
current recovery was based mainly around one strong year class. A deci-
sion was made to adopt a very flexible strategy for setting quota, involv-
ing fishing the stock while there were strong year classes present, and
being prepared to close the fishery again at short notice if the reference
point would be exceeded.

One of the notable features of the assessment for eastern gemfish is
the process by which it was developed. This assessment was developed
and undertaken by the Eastern Gemfish Assessment Group (EGAG) which,
as noted in the introduction, comprises a diverse membership including
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fishermen, scientists, and managers. It took about 18 months and six
meetings for EGAG to develop the current assessment. One key to its suc-
cess was that EGAG initiated an industry-sponsored trawl survey in 1996,
which provided the first opportunity for targeted fishing of gemfish since
1992, and the first reliable index of relative abundance since 1991. Anoth-
er key to success was the opportunity for the fishing industry to have real
input into the stock assessment for the first time for this fishery. One of
the direct consequences of this involvement was the identification of the
uncertainties surrounding historical catches, previously unidentified, which
turned out to be the major uncertainty in the assessment. A very impor-
tant consequence of this involvement was also a much better acceptance
by the fishing industry of both the science and the management process.
The EGAG structure and process seems to have been a particularly effec-
tive one, and is currently being adopted more widely as a model for the
stock assessment process in federally managed fisheries in Australia.

The next step for EGAG is to further explore alternative future harvest
strategies for eastern gemfish, including feedback strategies. The Baye-
sian assessments will form the basis for such an exploration and evalua-
tion (e.g., Smith et al. 1996). The medium term aim is to develop an agreed
management procedure (a combination of monitoring strategy, assess-
ment method, and harvest control law), along the lines of those developed
in the International Whaling Commission and in some South African fish-
eries (Donovan 1989, Butterworth and Bergh 1993).
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Appendix I: The Population Dynamics Model
The model considered in this appendix is age- and sex-structured, takes
account of two pulse fisheries, and assumes that the number of births is
related to the total egg production of the population by means of a Bever-
ton and Holt stock-recruitment relationship.

A. Basic Population Dynamics
The resource dynamics are modeled using the equations:

    

N

N a

N a x

N N a x

y a
s

y
s

y a
s

y x
s

y x
s

+

+

−

−

=

=

≤ ≤ −

+ =










1

10

1

1

0

1 1,

,

,

, ,

˜

˜ ˜

if 

if 

if 

(I.1)

where

    Ny a
s
, is the number of fish of sex s and age a at the start of year y,

    
˜

,Ny a
s is the number of fish of sex s and age a at the end of year y,

    
˜ ( ), , ,

,
,
,N N e C e Cy a

s
y a
s t M

y a
s t M

y a
sa

s
a
s= − −− −1 21 2 (I.2)

Ny
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,0 is the number of 0-year-olds of sex s at the start of year y,

  Ma
s is the rate of natural mortality on fish of sex s and age a,
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,1 is the catch (in number) of fish of sex s and age a during the

summer fishery of year y,
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,
,2 is the catch (in number) of fish of sex s and age a during the

winter fishery of year y,

t1 is the time between the start of the year and the mid-point of the
summer fishery,

t2 is the time between the mid-point of the summer fishery and
that of the winter fishery (t1 + t2 = 1 because the winter fishery is
assumed to occur at the end of the year), and

x is the maximum age considered (taken to be a plus-group).

B. Births
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where

SBy is proportional to the total egg production at the end of year y:
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    Sa
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on fish of sex s and age a, and
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εy is the recruitment anomaly for year y [    ε σy rN~ ( ; )0 2 ],

σr is the standard deviation of the logarithm of the multiplicative
fluctuations in births (approximately the coefficient of variation
of these fluctuations), and

α,β are the stock-recruitment relationship parameters.

This formalism assumes that egg production is determined by the
biomass of females which survives the winter spawning run fishery and
that maturation is the same as selectivity to the winter fishery. Some of
the catches during the winter fishery occur after spawning (the “back run”).
However, these catches are generally a small fraction of the total winter
catch (~5-10%, K. Rowling, pers. comm.) so this complication has been
ignored here.

C. Natural Mortality

The rate of natural mortality for animals of age a and sex s,   Ma
s , is given

by:
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This formalism implies that, in the absence of exploitation, the size of
the male and female cohorts are the same at age 3 and diverge thereafter
due to different rates of natural mortality. The specification that the rate
of natural mortality for animals aged 2 and less is the same as that of
males is based on the assumption that the rate of natural mortality for
males is larger than that for females. However, the algorithm used to spec-
ify natural mortality for animals aged 2 years and less is largely irrelevant
because the fishery hardly impacts animals younger than 3 years.
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D. Initial Conditions
Were there no fluctuations in recruitment, the resource would be assumed
to be at its unexploited equilibrium level, with the corresponding age-
structure, at the start of exploitation (1962). Instead, because of historical
fluctuations in recruitment, the sizes of the cohorts at the start of 1962
are drawn from distributions that allow for this fluctuation, and the initial
biomass is thus similarly distributed about the corresponding determin-
istic equilibrium level. The initial numbers-at-age are given by the equa-
tions:
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where

R0 is the number of 0-year-olds at the deterministic equilibrium that
corresponds to an absence of harvesting, and

εa is a random variable from     N r( ; )0 2σ .

Note that the equation for the plus-group does not incorporate a re-
cruitment variability term because this group comprises a large number
of age classes which will largely damp out this effect.

A value for R0 is calculated from the value for the unexploited equilib-
rium biomass at the end of the year, B0 (where this biomass is defined
using the selectivity pattern for the winter fishery and the mass-at-age
vector is calculated from data collected during the winter spawning run),
using the equation:
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Values for the stock-recruitment function parameters α and β are cal-
culated from the values of R0 and the “steepness” of the stock-recruitment
relationship (h). The “steepness” is the fraction of R0 to be expected (in the
absence of recruitment variability) when the egg production is reduced to
20% of its pristine level (Francis 1992), so that:
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E. Catches
The catch (in number) of fish of sex s and age a during the summer fishery
of year y,     Cy a

s
,
,1 , is calculated from     C̃y

1 , the catch (in mass) during the sum-
mer fishery, using the equation:
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a y y a
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1 1 1 1= − (I.11)

where

    Sa
1 is the selectivity of the gear used during the summer fishery on

fish of age a (assumed invariant of sex), and

    Fy
1 is the exploitation rate on fully selected fish during the summer

fishery of year y :
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The catch (in number) of fish of sex s and age a during the winter
fishery of year y,     Cy a

s
,
,2 , is calculated from     C̃y

2 , the catch (in mass) during the
winter fishery, using the equation:
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where

    Fy
2 is the exploitation rate on fully selected fish during the winter

fishery of year y :
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F. Selectivity
The selectivity functions are sex- and fishery-specific. The selectivity func-
tion for the winter fishery is assumed to have the logistic form:
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where

    L
s

50
2, is the length-at-50%-selectivity for fish of sex s during the winter

fishery, and

    L
s

95
2, is the length-at-95%-selectivity for fish of sex s during the winter

fishery.

The logistic form was chosen because selectivity to the winter fishery
is equivalent to being mature and the probability of a fish being mature
increases with size and age. The selectivities for ages 0 and 1 are set equal
to zero because fish aged less than two years have never been encoun-
tered during the winter spawning run.

The length-frequencies for the summer fishery suggest that the selec-
tivity function for this fishery is dome-shaped. The simplest functional
form with this shape is a normal distribution:
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where

    L full
1 is the length corresponding to maximum selectivity during the

summer fishery, and

    L50
1

% is the length at which selectivity during the summer fishery drops
to 50% of the maximum.

G. Data Series
The catch rate data for the winter fishery are assumed to be proportional
to the exploitable biomass in the middle of the winter fishery:
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The age-structure information is taken to be proportional to the mod-
el-predicted catches-at-age (i.e.     { },

,
,
,C Cy a

s
y a

s1 2and ). The estimate of the frac-
tion of the catch in length-class L (where length-class L ranges from 28 +
2L to 30 + 2L cm and L = 1,2,…,43) in year y (for a given sex and fishery) is
calculated using the equation:
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where

Φ(a,L ) is the probability that a fish of age a lies in length-class L:
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La is the mean length of a fish of age a (computed using the von
Bertalanffy growth equation, see equation I.6), and

φa is the standard deviation of the logarithm of the length of a fish
of age a (approximated here by the CV of La).
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Appendix II: The Likelihood Function
A. The Catch Rate Data
The catch rate indices are assumed to be lognormally distributed about
their expected values with a constant (and known) coefficient of variation,
i.e.:

      l ln nO qB Ny y y y c= +( ) ~ ( ; )2 20η η σ (II.1)

where

Oy is the catch rate for year y,

q is the catchability coefficient, and

σc is (approximately) the coefficient of variation of the noise about
the catch rate-abundance relationship.

The contribution of the catch rate information to the likelihood func-
tion is:
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where the product is taken over all years for which catch rates are avail-
able.

The maximum likelihood estimate for q is given by:

      
ˆ exp ( / )q n O Bn y y
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1 2l (II.3)

where

nc is the number of catch rate data points.

The integral of the likelihood over the prior assumed for q (see Walters
and Ludwig 1994, Punt and Butterworth 1996) is:
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where p(lnq) = 1.

B. Fraction of the Winter Catch Which is Female
The estimates of the fraction of the catch during the winter fishery (in
numbers) consisting of females are assumed to be normally distributed
about the model-estimates with a standard deviation of σf. The contribu-
tion of the female fraction data to the likelihood is therefore:
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where
Q y is the fraction of the winter catch during year y (in numbers) of

animals larger than 64 cm which consists of females, and

    Q̂ y is the model-estimate of Q y:
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The product in equation (II.5) is taken over the number of years for
which estimates of Q y are available.

C. The Age-Composition Data
The age-structure data contain information about the total number of fish
landed as well as about the age-composition of the catch. The former is
used (implicitly) when projecting the model forward (equations I.12 and
I.14) so only the information about the age-composition of the catches is
included in the likelihood function. The observed fraction of the catch (by
number) taken in year y composed of fish of age a is assumed to be log-

normally distributed about its expected value with a CV of 
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s
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the contribution to the likelihood function of the catch of animals of sex s
by the winter fishery is:
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where

    ρy a
s obs
,
, is the observed fraction (by number) of the winter fishery catch

during year y of sex s which animals of age a make up of the
catch of animals not younger than age     aa y

s
, :
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    aa y
s
, is the lowest age included in the likelihood for sex s and year y,

    Cy a
f s obs
,
, , is the observed catch during year y of animals of sex s and age

a by fishery f (summer or winter), and

    χ ′a a, is the probability that an animal of (real) age a′ will be assigned
age a when its age is determined (the age-reading error matrix).

The products in equation (II.7) are taken over all years and ages for
which age-composition data are available. For improved numerical stabil-
ity, the fractions for ages 10+ are pooled.

D. The Size-Composition Data
The treatment of the size-composition data is analogous to that of the
age-composition data except that no account needs to be taken of age-
reading error. When fitting to the unsexed length-frequency data, the model-
estimated proportion of the catch falling into each 2 cm length interval is
computed by combining the model-estimates of the catches-at-length for
the two sexes.
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Appendix III: The Sample Importance Resample
(SIR) Algorithm
The sample-importance-resample (SIR) algorithm (Rubin 1987, Van Dijk et
al. 1987) is a method for approximating the posterior distribution for high
dimensional problems. The purpose of the SIR algorithm is to sample a
set of parameter combinations       { : , , }θ i i =1 2 K  from the posterior distribu-
tion,     π θ θ θ θ( ) ( ) ( | ) ( )∝ =g L D p . This sample can then be used as input to a
decision analysis or for inference about the values of quantities of inter-
est to management (Punt and Hilborn 1997). Evaluation of     L D( | )θ  involves
projecting the age- and sex-structured population dynamics model for-
ward, using known catches, to predict stock biomasses and then calculat-
ing the likelihood for the projection. If the population becomes extinct
before the most recent year, the likelihood is set equal to zero. This is
equivalent to placing an improper prior distribution on the current deple-
tion which is uniform above 0 (Punt and Hilborn 1997).

The SIR algorithm requires an approximation to the posterior distri-
bution to generate a sample from   π θ( ) . This approximation,   ̃ ( )π θ , referred
to as the importance function, must have non-zero probability wherever

  π θ( ) has non-zero probability and must be easy to sample from. The sim-
plest choice for   ̃ ( )π θ  is the prior distribution,     p( )θ , although this choice
may not be very efficient if the likelihood supports only a small part of

    p( )θ . For the purposes of the present study, the importance function has
been taken to be a multivariate normal distribution with mean given by
the values which maximize     g( )θ —the mode of the posterior distribution—
and variance-covariance matrix determined by fitting a quadratic surface
to     g( )θ  at its mode. The SIR algorithm proceeds as follows.

a. Generate a vector,   θ i , from the distribution   ̃ ( )π θ .

b. Calculate     Y gi i= ( )θ  and the importance weight     w Yi i i= / ˜( )π θ  where

    ̃ ( )π θ i  is the probability of generating the vector   θ i .

c. Repeat steps (a) and (b) a very large number of times (20,000,000 for
the calculations of this paper).

d. Select 10,000 parameter combinations from the 20,000,000 with re-
placement, assigning a probability of selecting a particular parameter
combination proportional to its importance weight.



Symposium on Fishery Stock Assessment Models 285

Appendix IV: The Derivation of Equation (2)
The correlated recruitment sensitivity test is based on the assumption
that the recruitment anomaly for year y, εy, is correlated with those for all
previous years. For the purposes of the analyses of this paper, it is as-
sumed that this correlation structure can be modeled by an ARMA-1 pro-
cess:

    ε τε χεy y y= + ′−1 (IV.1)

where
ε′y is a independent random variate from N(0;12).

The variance of εy: y = 1,2,…,∞ is defined to be equal to     σ r
2 so
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The term E(εy–1ε′y) is equal to zero because εy–1 and ε′y are independent
and both have expectation zero. Solving for   σ r

2 leads to an expression for
χ:

  χ τ= −1 2 (IV.3)

Equation (IV.1) can therefore be rewritten as:

    ε τ ε τ εy y y= + − ′−1
21 (IV.4)

As the recruitment anomalies are not uncorrelated, their joint prior is
not simply the product of the individual (independent) priors; equation
(1) of the main text is the negative of the logarithm of such a prior after
the removal of constants. It is necessary to construct a joint multivariate
normal prior for the recruitment anomalies which incorporates the corre-
lation structure of equation (IV.4). The generic form for such a prior is
given by:
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where

n is the number of elements in ε
V is the variance-covariance matrix, i.e.:
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for case of n = 3.
The elements of V are determined as follows (for i > j ):
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Substituting equation (IV.7) into equation (IV.5), taking logarithms,
negating, and dropping the term under the radical (because given fixed
values for σr and τ  it is a constant) leads to equation (2).
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Abstract
Under an agreement among U.S. commissioners of the Pacific Salmon Com-
mission (Allen 1996), the allowable catch of chinook salmon in Southeast
Alaska for 1997 depended on abundance in the fishery. Historically, abun-
dance has been forecast prior to the summer fishery and evaluated later,
from numerous information sources, by the Chinook Technical Commit-
tee of the Pacific Salmon Commission. Here, early catch rates during the
summer fishery are shown to reflect abundance and are used to update
the preseason forecast for use by the commissioners in assessing the al-
lowable catch. The Bayesian calibrative distribution for the updated abun-
dance provides the inseason statistical description of its uncertainty arising
from unknown parameter values and random variables of underlying
models. Cross validation shows that the mode of the Bayesian calibrative
distribution would have produced more accurate forecasts than either the
preseason forecast or a maximum likelihood forecast from the early catch
rates alone.

Introduction
Allowable catch to be taken from a stock is commonly assessed in ad-
vance of the fishing season. Computation of a recommended catch pre-
sumably includes a forecast of abundance and possibly some measure of
its precision. In some cases, the recommended catch could be updated
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within the fishing season by correcting the abundance from that forecast.
The revision would be based on new information on abundance derived
from inseason monitoring of escapement, the fishery, or both. Therefore,
instead of specifying a fixed recommended catch prior to the season, the
fishery manager would more reasonably provide an allowable catch sub-
ject to revision as incoming information better delimits abundance. Many
salmon fisheries in Alaska are conducted under similar programs (e.g.,
Minard and Meacham 1987; Mundy et al. 1993; Geiger et al. 1997).

The Pacific Salmon Treaty of 1985 provided the opportunity for coop-
erative research and management of Canadian and American stocks that
intermingle in coastal fisheries. Among the five species, none surpasses
chinook salmon for allocation and management problems because of its
high value and migratory nature. In general, stocks of chinook salmon
migrate northward varying distances from their home streams along the
North American coast and into the Gulf of Alaska; they mature most com-
monly from two to four years later and encounter coastal fisheries during
the return migration. As a result, many stocks of the American Pacific
Northwest are caught in both British Columbia and Alaska, and many stocks
of British Columbia are caught in Alaska. At the time of the treaty signing,
most chinook stocks were judged in need of rebuilding which was to be
implemented through negotiated harvest ceilings.

To aid in monitoring the condition and rebuilding of chinook stocks,
the Chinook Technical Committee (CTC) of the Pacific Salmon Commis-
sion (PSC) developed a numerical computer model (CTC model) to repre-
sent the life history and population dynamics of all chinook salmon stocks,
using detailed information regarding stocks and fisheries. Information
sources comprising catches, escapements, recoveries of coded-wire-tagged
hatchery releases, recruitment forecasts, and auxiliary experiments were
integrated by the CTC model. The structure of the CTC model continues
to evolve, accommodating members’ concerns.

Forecasts of relative abundance in regional fisheries are currently pro-
duced from the CTC model prior to the fishing season. These forecasts are
based in part on predictions of magnitudes of component recruitments
from stocks or stock groups provided by participating government agen-
cies. Further, the regional forecasts require predicted geographical distri-
butions of the component recruitments, as well as updated estimates of
magnitudes and areal distributions of components for older age groups.
The estimates for older ages are generated by the CTC model from catch
and escapement counts of tagged and untagged fish subsequent to the
forecasts. When new information is processed using the CTC model, the
outcome is called a calibration and denoted by the year followed by the
order within that year, e.g., 9702 is the second CTC model calibration in
1997 that produced the CTC model values used in this study. The estimat-
ed relative abundance in each regional fishery is updated annually through
the calibrations. At present, calibrations are not updated during the fish-
ing season for any regional fishery.
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The sports and commercial fisheries of Southeast Alaska (SEAK) are
one of the regional fisheries identified by the model. The commercial troll
fleet takes the preponderance of the SEAK catch. From 1985 through 1996,
negotiated harvest ceilings were set for the SEAK fishery under the Pacific
Salmon Treaty and its coastwide rebuilding program. The ceilings were
based on long-term forecasts of abundance and allowable harvest rates.

In 1995, the Alaska Department of Fish and Game (ADFG) proposed to
assess the allowable catch with near-term forecasts of abundance and a
baseline harvest rate (Koenings et al. 1995). The abundance was to be
estimated from inseason catch rates. The ADFG plan was critically reviewed
and found wanting in its implementation, particularly the assessment of
abundance (CTC 1995). The plan was challenged successfully in U.S. Fed-
eral court, and the fishery was limited by court order. In the fall of 1996,
the states of Alaska and Washington signed a letter of agreement directing
that SEAK catch would be varied in relation to abundance provided an
acceptable method of abundance estimation could be developed. Canada
did not participate in the agreement and remains opposed to the separate
implementation of abundance-based management in the SEAK fishery with-
out attending to the remaining fisheries.

This report describes and compares methods of abundance estima-
tion for revising SEAK abundance forecasts from the CTC model by fish-
ery performance data within the season. The benefits of combining the
two kinds of information are contrasted with their separate use. Bayesian
and maximum likelihood calibration methods (Aitchison and Dunsmore
1975) are used in the updating, and the future relative abundance index
from the CTC model for the 1997 SEAK fishery is assessed. This assess-
ment was used to set the SEAK catch ceiling for 1997.

Methodology
Problem Statement and Assumptions
Annual relative abundance (abundance for brevity) in the SEAK fishery is
assessed from historical records by the CTC model. Practically, the as-
sessment is subject to error so that the values for annual abundance are
estimates. These historical values for abundance are the best available
and no attempt to improve them is considered here. Rather, current abun-
dance in the summer of 1997 cannot be assessed in the same manner as
past abundance because all information is not yet available, but a pre-
season forecast has been made from the CTC model. Annual forecasts (z)
and abundances (τ) are available for 1987 through 1996, from which a
forecast error distribution can be derived (Table 1). For future reference,
the sequence of their paired logarithms will be denoted as Df = {[ln (zi),ln(τi)],
i = 1, 2,…,10}, and the subsequence composed of the first j pairs, by Df [j].
(Let Df ≡ Df [10].) Further, historical series of annual abundance and corre-
sponding measures of fishery performance—inseason indices called the
power troll statistic (x)—are available for 1980 through 1996 (Table 1),
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Table 1. Historical series for the Southeast Alaska
chinook salmon fishery.

Abundance CTC Power troll
Year index (τ) forecast (z) statistic (x)

1980 1.03 – 20.55

1981 0.91 – 22.39

1982 1.21 – 26.55

1983 1.29 – 46.53

1984 1.30 – 24.34

1985 1.17 – 32.39

1986 1.30 – 29.68

1987 1.51 1.89 45.83

1988 1.78 2.01 67.20

1989 1.73 1.83 78.61

1990 1.81 1.99 65.74

1991 1.90 1.91 97.11

1992 1.75 1.71 74.92

1993 1.87 1.76 79.24

1994 1.60 1.82 71.31

1995 0.95 0.81 41.38

1996 0.90 0.79 42.33

The abundance index and its forecast from the CTC model, and the pow-
er troll statistic (PTS), or numbers caught per power troll permit landing
catches during the first five days of the summer season.

and the power troll statistic covaries with abundance. The sequence of
their paired logarithms will be denoted as Dc = {[ln(xi),ln(τi)], i = 1, 2,…,17}.
After the power troll statistic for the current 1997 season was observed,
what could be said about current year abundance in light of the forecast
and the historical records? Several answers are compared. First, the cur-
rent power troll statistic is ignored by adhering to the CTC model fore-
cast. Second, the current CTC model forecast is ignored by assessing
abundance with a maximum likelihood method (maximum likelihood cal-
ibration) applied to the current power troll statistic and historical data, Dc.
Third and last, both pieces of information are combined with the histori-
cal background of Df and Dc by using Bayesian methods (Bayesian calibra-
tion) to quantify the plausibility of possible values for current abundance.
(The maximum likelihood and Bayesian methods used both share “calibra-
tion” in their designation, which will not cause confusion with the more
recent name given by the CTC to its model updates.) The first tack needs
no further description, but the other two do: notation that is introduced
for combining the information by Bayesian calibration covers that needed
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subsequently for separate assessment from the power troll statistic by
maximum likelihood calibration.

Bayesian Calibration
Several assumptions underlie the application of the Bayesian method.
Annual records of abundance (τi in the i th year) are statistically indepen-
dent, given the corresponding forecasts (zi) and the preceding forecasts
and abundances, Df [i–1],and their logarithms have a probability distribu-
tion described by a parametric model, p [ln(τi) | ln(zi),Df [i–1],ψ]. Annual records
of the power troll statistic (xi) are statistically independent, given corre-
sponding abundances (τi), and their logarithms have a probability distri-
bution described by a parametric regression model, p [ln(xi) | ln(τi),β]. The
initial sources of information regarding parameters ψ and β are indepen-
dent, so p(ψ,β) = p(ψ)p(β). The current and unknown logarithm of abun-
dance, ln(τnow), given the corresponding forecast value, ln(znow), and Df, is
drawn from the same density, p[ln(τnow) | ln(znow),Df,ψ), as were the histori-
cal records.

Given the assumptions, Aitchison and Dunsmore (1975) show that the
posterior predictive distribution for ln(τnow) (a predictive distribution in-
cludes the uncertainty from unknown parameters and unobserved ran-
dom variables; see sec. 1.3 of Gelman et al. 1996), which they call its
calibrative distribution, viz.,
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now now now f c

now now f c

[ln( ) | ln( ),ln( ), , ]
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where

      p z D p z D p D dnow now f now now f f[ln( ) | ln( ), ] = ln lnτ τψ ψ ψ∫ [ ( ) | ( ), ,  ] ( | )ψ (2)

is the predictive conditional probability density of current logarithm of
abundance given the current CTC model forecast and historical data,

      p x D p x p D dnow now c now now c[ln( ) | ln( ), ] = ln lnτ τβ β β β∫ [ ( ) | ( ),  ( | )] (3)

is the predictive conditional density for the current logarithm of the pow-
er troll statistic given current abundance and historical data,
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p(ψ |Df) and p(β |Dc) are probability assessments of ψ and β with the histor-
ical data, viz.,
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∫ (5)

p(ψ) and p(β) are the prior densities for ψ and β without the historical
data,

p(Df |ψ) = Πp [ln(τi) | ln(zi),Df [i–1],ψ] is the likelihood function for ψ given the
historical data,

p(Dc|β) = Πp[ln(xi) | ln(τi),β] is the likelihood function for β given the histor-
ical data,

p[ln(τnow) | ln(znow),Df ,ψ] is the density function for the current logarithm of
abundance given the current forecast, historical data, and forecast
model parameters, ψ, and

p[ln(xnow) | ln(τnow),β] is the density function for the current logarithm of
the power troll statistic given the logarithm of current abundance and
inseason regression parameters, β,

p[ln(τnow),ln(xnow) | ln(znow),Df ,Dc] is the joint predictive density of the cur-
rent logarithms of abundance and power troll statistic given the fore-
cast and historical data, and

p[ln(xnow) | ln(znow),Df ,Dc] is the marginal predictive density of the current
logarithm of power troll statistic given the forecast and historical data.

Three statistical models, p(Df |ψ), with increasing temporal dependence
of CTC model forecast errors are constructed from Df : independent, auto-
correlated, and linear trending errors. Several aims underlie this extended
modeling: to reflect to some extent the apparent diversity of initial beliefs
of CTC members about the reliability of the CTC model forecasts; to focus
attention on the importance of understanding the statistical behavior of
the CTC model forecast; to illustrate the flexibility of Bayesian calibration
for dealing with this behavior; and to provide a check on robustness of the
current year abundance estimation. These models are used with the current
forecast and noninformative prior densities for parameters, p(ψ), to de-
rive three corresponding predictive densities, p[ln(τnow) | ln(znow),Df ]. These
predictive densities can be employed before the fishing season and are
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called the independence, autocorrelation, and trend priors for current
abundance.

A regression model, p(Dc|β ), relating the power troll statistic to the
abundance index is developed from Dc. This model is used with a non-
informative prior density for its parameters, p(β ), to derive the predictive
conditional density for the current logarithm of the power troll statistic
given abundance, p[ln(xnow) | ln(τnow),Dc], which hereafter is called the pre-
dictive power troll density.

Corresponding to each of the three abundance priors, the joint predic-
tive density at equation (1a), p[ln(τnow),ln(xnow) | ln(znow),Df,Dc], hereafter called
the log-log bivariate density, is estimated by kernel smoothing from a Monte
Carlo sample of 10,000 pairs, [ln(τnow)*,ln(xnow)*]. This sample is drawn us-
ing equation (1b) and the method of composition (sec. 3.3.2 of Tanner
1996) with the appropriate abundance prior and the predictive power troll
density (Appendix). The estimated log-log bivariate density is transformed
by probability calculus to the original scales of measurement, i.e.,
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p x z D D e e
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now now now f c
xnow now

[ , | ln( ), , ]

[ln( ),ln( ) | ln( ), , ] / ]ln( ) ln( )

τ

τ τ= × , (6)

and the result, p(τnow,xnow) | ln(znow),Df,Dc), is called the retransformed bi-
variate density. A numerical approximation to a normalized section through
this retransformed bivariate density at xnow is the reported Bayes calibra-
tive density for abundance measured in its original scale, i.e.,
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Maximum Likelihood Calibration
The maximum likelihood method was originally proposed by the CTC for
a comparative study of possible forecast methods (CTC 1997). This classi-
cal solution to the calibration problem is to maximize a likelihood func-
tion for the logarithm of current abundance, ln(τnow), and the power troll
regression parameters, β, viz., p [ln(xnow) | ln(τnow),β ] × p (Dc | β ) =
p[ln(xnow) | ln(τnow),β ) × Πp[ln(xi) | ln(τi),β ). Here, the likelihood function arises
from a linear regression model relating the logarithm of the power troll
statistic to logarithm of abundance. Therefore, the maximum likelihood
estimate for β is the least squares estimate from Dc and that for ln(τnow) is
obtained by solving the least squares regression line for ln(τnow) corre-
sponding to ln(xnow) (sec. 10.7 of Aitchison and Dunsmore 1975). The fore-
cast for abundance (τnow) is set equal to the exponentiated maximum
likelihood estimate for ln(τnow), i.e., to the estimated median value in the
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original abundance scale. The maximum likelihood method does not use
the prior density for ln(τnow).

Cross Validation
The CTC model forecast, maximum likelihood estimator, and Bayes esti-
mator of abundance are compared by cross validation (Mosteller and Tukey
1977, CTC 1997) for years 1987 through 1996. The CTC performed 10
separate calibrations using the current structure of the CTC model to hind-
cast its forecast for SEAK abundance from data available prior to each
fishing season (CTC 1997). Annual cross validation estimates for the max-
imum likelihood and Bayes calibration methods are computed by reserv-
ing test year data from Df and Dc, i.e., only data from years preceding and
succeeding the test year are used.

Box-Cox Power Transformation
The lognormal distribution is assumed for both forecast errors and sam-
pling variation of the power troll statistic. The assumption is more readily
acceptable for forecast errors in view of its standard usage to describe
recruitment variability. Appropriateness of the assumption for the power
troll statistic is checked by data analysis. The profile likelihood method
(Aitkin et al. 1994) is used to estimate the appropriate power parameter, λ,
of the Box-Cox (Box and Cox 1964) transformation for the power troll sta-
tistic by minimizing –2 × pl(λ), where pl(λ) is the profile log-likelihood
function. Minimization of –2 × pl(λ) with respect to λ is performed with
the Fortran program NPSOL (Gill et al. 1986) in the range [–5, 5] with an
initial guess, 1.0.

Kernel Smoothing
The log-log bivariate density is estimated with the function bkde2D of
KernSmooth (Wand 1997). Bandwidths are chosen with the function dpik
using the biweight kernel. Contours of density values from bkde2D for
300 × 300 equally-spaced points covering the Monte Carlo sample’s range
are plotted with MathSoft’s S-plus contour function.

Results
The general calibration methodology is applied to estimation of chinook
salmon abundance in the SEAK fishery during the summer of 1997. The
earliest that the CTC will evaluate this abundance (τnow) will be later in the
spring of 1998 when all the various data sources are available; the CTC
model calibrations are published as PSC reports. The CTC had forecast
from its model a point estimate of abundance (znow) of 1.33 in advance of
the initial fishery opening in July of 1997; this abundance would be inter-
mediate among values since 1980.



Symposium on Fishery Stock Assessment Models 295

Predictive Prior Densities for 1997 Abundance Index
Hindcasts of CTC model forecasts (z) agree well (  ̂ρ  = 0.93, n = 10) with the
abundance indices (τ) for 1987-1996 (Fig. 1). In the logarithm scale, fore-
casts standardized to corresponding abundance (r = z/τ) are additive fore-
cast errors, i.e., ln(r) = ln(z) – ln(τ): negative values result from low forecasts;
zero, from a correct forecast; and positive values, from high forecasts.
These logarithms appear weakly and positively autocorrelated (lag-1 au-
tocorrelation coefficient = +0.33, n = 9, one-tailed p = 0.19) if at all (Fig. 2).
However, their time series seems to trend downward (slope = –0.032 yr –1,
t = –3.72, two-tailed p < 0.01) with interruptions in 1990 and especially in
1994 (Fig. 3). Although predictions from an ideal forecaster would be un-
biased with independent annual errors, in reality the CTC model predic-
tions tend to be too high in early years and too low in recent years.
Nonetheless, the forecast series is short and exceptions to the trend in
forecast error occur, so projecting future forecast error is problematic.

Next, CTC forecast errors are modeled under three assumptions re-
garding their stochastic nature: the ln(r) are assumed to be normally dis-
tributed and either (1) independent, (2) autocorrelated, or (3) trending.
The distributional assumption is adopted in view of its routine use for
describing recruitment variability about expected recruitment (Hilborn
and Walters 1992); forecasts are projections of future abundance from
approximations to expected abundance. Each model is used to derive a
predictive prior density for 1997 abundance, ln(τnow), given the 1997 CTC
forecast, ln(znow), and possibly other historical data of Df: the steps include
defining the probability model for current ln(r), p[ln(rnow) |Df,ψ], from the
basic assumption; transforming it to a probability model for current abun-
dance, p[ln(τnow) | ln(znow),Df,ψ], by the relationship that ln(τnow) = ln(znow) –
ln(rnow); and integrating this result by the Monte Carlo method (see equa-
tion [2] and Appendix) over uncertainty in ψ as described by the probabil-
ity model, p(ψ |Df). In the following model descriptions, notice that when
the density for ln(rnow) is N(a,b) for any a and b, then the density for ln(τnow)
is N[ln(znow) – a,b] due to the linear relationship between these random
variables and fixed ln(znow). The local definition of parameter ψ at equa-
tions (2) and (4) is provided in the heading for each model.

1. Independence prior, ψ = σf: unbiased forecasts with
independent lognormal errors.

Logarithms of the standardized forecasts are assumed to be normally
distributed [ln(r) ~ N(µf,σf

2)]. If true, the expected value of r is exp(µf +
1⁄2σf

2). Then unbiasedness of forecasts, i.e., E(r) = 1, is equivalent to the
equality constraint, µf = –1⁄2σf

2. Therefore, a single parameter (e.g., σf) will
describe the error distribution. If a noninformative, improper prior is used
for σf, viz., p(σf) ∝ 1, the posterior for σf (if n forecasts were available) is its
likelihood function,
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Figure 1. Time series of the abundance index (B) and its hindcasted CTC model
forecast (ı), 1987-1996.
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Figure 2. Logarithms of standardized forecasts in successive years for 1987-1996
(ln[ri+1] vs. ln[ri]) joined in temporal order (1987-1988 to 1995-1996),
and the estimated mean from fitting a linear regression model.
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Figure 3. Time series of logarithms of standardized forecasts (B), ln(ri), and fitted
values from a linear trend regression model (ı), 1987-1996.
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The normalized version of the posterior for σf is a skewed distribution
with maximum occurring at the maximum likelihood estimate for σf,
0.118345 (Fig. 4). The conditional density, p[ln(τnow) | ln(znow),σf], is N[ln(znow)
+ 1⁄2σf

2,σf
2]. To obtain the predictive density, p[ln(τnow) | ln(znow),Df ], the prod-

uct of this conditional density and the posterior density for σf is integrat-
ed over the range of σf as in equation (2).

2. Autocorrelation prior, ψ = (φ0, φ1, σf
2) ′: autocorrelated,

lognormal forecast errors.
The time series of ln(r) from 1987 onward is next modeled as a first-order
autoregressive process,

      ln( ) = + ln( ) + , = 1,2, ,r r ii i i+ +1 0 1 1 9φ φ ε K (9)

where
ri = zi /τi is the standardized forecast for the ith year,

φ0 and φ1 are the autoregressive intercept and slope, respectively, and

εi+1 is a normal random annual disturbance with mean of zero and
variance of σf

2.

If the annual disturbances are independent and the random process
begins with a fixed value at 1987, then the maximum likelihood estimators
for the parameters are those from ordinary least squares regression of
ln(ri+1) on ln(ri) (sec. 3.2 of Harvey 1994) (Table 2, Fig. 2). The estimated
slope,   φ̂1

, is positive but not significant (one-tailed p ≈ 0.19), and the mod-
el only explains about 11% of the variation in the ln(r) of 1987-1996.

Using the noninformative prior density, p(φ0,φ1,σf
2) ∝ σf

–2, the posterior
density for the autoregressive parameters, p(φ0,φ1,σf

2|Df), equals the prod-
uct of an inverse chi square and conditional bivariate normal density,

    p s pf f f( | ) ( , | ˆ ,ˆ, )σ φ φ φ φ σ2 2
0 1 0 1

2×  (pp. 17-19 of Tanner 1996),

where

    p s s p N D Df f f f f( | ) = 7  and ( , | ˆ , ˆ, ) = [(ˆ ,ˆ) , ( ) ]2 2 2
7

2
0 1 0 1

2
0

2σ χ φ φ φ φ σ φ φ σ φ φ
− −′ ′

1
1 ,

  
ˆ ˆφ φ0 1 and  are the intercept and slope estimates from the least squares

fit of the autoregressive model to the 9 (= n – 1) data pairs, [ln(ri),
ln(ri+1)],

sf
2 is the mean square error with 7 (= n – 3) degrees of freedom, and

Dφ is the matrix of independent variables for these data.
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Figure 4. Posterior density for lognormal parameter, σf , when CTC model forecasts
are unbiased and errors are independent. The mode occurs at the maxi-
mum likelihood estimate.
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The conditional density, p [ln(τnow) | ln(znow),Df,φ0,φ1,σf
2], is N [ln(znow)

–φ0–φ1ln(r1996), σf
2]. To obtain the predictive density, p[ln(τnow) | ln(znow),Df ),

the product of this conditional density and the posterior for the parame-
ters is integrated over the range of φ0, φ1, and σf

2 as in equation (2).

3. Trend prior, ψ = (κ0,κ1,σf
2) ′: linearly trending, lognormal

forecast errors.
The time series of ln(r) from 1987 onward is modeled as a linear process
in time,

      ln( ) , , , ,r i ii i= + + =κ κ ν0 1 8 9 17K (10)

where
ri = zi/τi is the standardized forecast for the ith year, after 1979,

κ0 and κ1 are the linear process intercept and slope, respectively, and

νi is a normal random annual disturbance with mean of zero and vari-
ance of σf

2.

If the annual disturbances are independent, then the maximum likeli-
hood estimators for the parameters are those from ordinary least squares
regression of ln(ri) on i (Table 3, Fig. 3). The estimate of the slope parame-
ter, κ1, is negative and significant (two-tailed p < 0.01), and the model
explains about 63% of the variation in the logarithms of standardized fore-
casts of 1987-1996.

Table 2. Statistics from fitting a linear autoregression model to
logarithms of standardized forecasts in successive years.

Autoregressive model:
ln(ri+1) = φ0 + φ1 ln(ri) + εi+1,

where
ri = standardized forecast in year i, and
εi = random error for year i, iid N (0,σf

2).

Parameter Estimate Standard error t-statistic P-value

Intercept (φ0) –0.0093 0.0384 –0.24 0.82

Slope (φ1)  0.3016 0.3277  0.92 0.39

Variance (σf
2) (0.1071)2 on 7 degrees of freedom

R2 = 0.11
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Using the noninformative prior density, p(κ0,κ1,σf
2) ∝ σf

–2, the posterior
density for the linear process parameters, p (κ0,κ1,σf

2 | Df ), equals

    p s pf f f( | ) ( , | ˆ ,ˆ , )σ κ κ κ κ σ2 2
0 1 0 1

2×  (pp. 17-19 in Tanner, 1996) where

    p s s p N D Df f f f f( | ) = 8  and ( | ˆ ,ˆ , ) = [(ˆ ,ˆ ) , ( ) ],2 2 2
8
2 2 2σ χ κ κ κ κ σ κ κ σ κ κ

− −′ ′0 1 0 1 0 1
1

  ̂ ˆκ κ0 1 and  are the intercept and slope estimates from the least squares
fit of the linear trending model to the 10 (= n) data pairs, [ln(ri),i ],

sf
2 is the mean square error with 8 (= n – 2) degrees of freedom, and

Dκ is the matrix of independent variables for these data.

The conditional density, p[ln(τnow) | ln(znow),κ0,κ1,σf
2], is N [ln(znow)–κ0–18κ1,

σf
2]. To obtain the predictive density, p[ln(τnow) | ln(znow),Df], the product of

this conditional density and the posterior for the parameters is integrated
over the range of κ0, κ1, and σf

2 as in equation (2).

Predictive Density for 1997 Power Troll Statistic as
Related to Abundance
A survey of potential inseason indices using years 1980 through 1996
(CTC 1997) selected the power troll statistic (PTS), or the number of chi-
nook salmon caught per power troll permit that landed catches during the
first five days of the summer season (Table 1). Abundance trended up-
ward for much of the era (1980-1993), but in recent years (1994-1996)
declined sufficiently to expose an apparent changing relationship with
the PTS (Fig. 5). Specifically, the PTS for given abundance in recent years
appears greater than in earlier years: in 1995 and 1996, the PTS was nearly
twice that of 1980-1981 even though abundance in 1995 and 1996 was

Table 3. Statistics from fitting a linear trend regression model to
logarithms of standardized forecasts.

Linear trend regression model:
ln(ri) = κ0 + κ1 i + νi,   i = 8, 9,…, 17,

where
ri = standardized forecast in year i, and
νi = random error for year i, iid N(0,σf

 2).

Parameter Estimate Standard error t-statistic P-value

Intercept (κ0) 0.4266 0.1106 3.86 0.005

Slope (κ1) –0.0321 0.0086 –3.72 0.006

Variance (σf
2) (0.0783)2 on 8 degrees of freedom

R2 = 0.63
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Figure 5. Observed inseason index or power troll statistic, vs. annual abundance
index from CTC model (ı) and estimated median values of the inseason
index for completely fixed (dashed line) and trending intercept (O) mod-
els, 1980-1996 (Note that observed- and trending-intercept fitted values
are serially connected with dotted and solid lines, respectively).
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about as low as in 1980-1981. Any proposed model relating the PTS to
abundance must accommodate probable trends in its expected value at
fixed abundance. A linear regression model relating logarithms of the PTS
and abundance is next considered in which both the intercept and slope
are allowed to trend in order to approximate the dynamic relationship.

The relationship of the power troll statistic and abundance is exam-
ined for the 17 years of available data from 1980 to 1996 (Table 1, Fig. 5)
using the model,

      y i i ii i i i= + + + × + =0 1 2 3ln( ) ln( ) , , , ,β β β τ β τ η 1 2 17K (11)

where
yi is the logarithm of the PTS in the ith year,

τi is the abundance from the CTC model for the ith year,

β0, β1, β2, and β3 are constants, and

ηi is the normal random annual error with mean of zero and variance
of ση

2.

The combination, β0+β1i, is a trending intercept and the combination, β2+β3i,
is a trending slope for the relationship between ln(PTS) and ln(τ). The fit to
the data, Dc, indicates slope does not trend detectably (i.e., β3 = 0), but the
intercept does (β1 ≠ 0). The reduced model with intercept (β0) (p < 0.0001),
intercept trend (β1) (p < 0.0001) and fixed slope (β2) (p < 0.0001) accounts
for 89% of the variation in the dependent variable (Table 4). The estimate
of β1 implies that the PTS at fixed abundance increased at roughly 5% per
annum, i.e., exp(  β̂1

) ≅ 1.05. Assuming the actual relationship changed with
time, possible causes currently contemplated by the CTC that require fur-
ther study include increased susceptibility to SEAK fishing, improvements
in vessel efficiency, or changes in abundance before the summer fishery
induced by earlier fishing activity (CTC 1997). Median model values for
untransformed PTS from a completely fixed model (fixed intercept and
fixed slope) and trending intercept model (fixed slope) are obtained by
exponentiating expected values from equation (11) with estimated values
(Table 4) replacing unknown parameters (Fig. 5). Median values from the
completely fixed model tend to overestimate the PTS in early years and
underestimate the PTS in recent years; those from the trending intercept
model are more accurate.

The logarithmic transformations of both the power troll statistic and
abundance for the inseason regression model at equation (11) are justi-
fied by the outcome of a search for a good power transformation and the
reasonable model that results. The estimated power from the Box-Cox
analysis,   ̂λ  = 0.05, corresponds approximately to the natural logarithm
transformation, i.e., λ = 0. The fit of the regression model to the power-
transformed inseason index with either value for λ produces negligible
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Table 4. Inseason regression models and statistics of their fit.

PTS regression model:
ln(xi) = β0 + β1 i + β2 ln(τi) + β3 i × ln(τi) + ηi, i = 1, 2,…,17,

where
xi = PTS in year i,
τi = abundance index in year i, and
ηi = random error for year i, iid N(0, ση

2).

Parameter Estimate Standard error t-statistic P-value

Intercept (β0) 3.3351 0.1188 28.08 2.20×10–14

(not included) (β1) 0 0

Slope (β2) 1.5374 0.2937 5.23  0.0001

(not included) (β3) 0 0

Variance (ση
2) (0.3089)2 on 15 degrees of freedom

Model 1: Fixed intercept and fixed slope, R2 = 0.65

Intercept (β0) 2.9806 0.1206 24.72 2.59×10–12

Intercept trend (β1) 0.0500 0.0108 4.62 0.0005

Slope (β2) 1.1240 0.5829 1.93 0.0759

Slope trend (β3) 0.0109 0.0470 0.23 0.8210

Variance (ση
2) (0.1874)2 on 13 degrees of freedom

Model 2: Trending intercept and trending slope, R2 = 0.89

Intercept (β0) 2.9653 0.0972 30.52 3.29×10–14

Intercept trend (β1) 0.0511 0.0094 5.45 0.0001

Slope (β2) 1.2515 0.1798 6.96  6.69×10–6

(not included) (β3) 0 0

Variance (ση
2) (0.1810)2 on 14 degrees of freedom

Model 3: Trending intercept and fixed slope, R2 = 0.89
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difference in the multiple correlation coefficient (R): R2 = 0.8867 (  ̂λ  = 0)
and R2 = 0.8865 (  ̂λ = 0.05). The retransformed (from the logarithmic fit)
relationship between the inseason index and abundance approaches the
origin as abundance approaches zero, thereby agreeing with common
sense.

Using the noninformative prior density, p(β0,β1,β2,ση
2) ∝ ση

–2, the poste-
rior density, p(β0,β1,β2,ση

2|Dc), equals     p s p( | ) ( , , | ˆ , ˆ, ˆ , )σ β β β β β β ση η η
2 2

0 1 2 0 1 2
2×  (pp.

17-19 of Tanner 1996) where

    

p s s

p N

( | ) = 14  and

( , , ) | ˆ , ˆ , ˆ ), ) = [(ˆ , ˆ , ˆ ) , (D ,D ) ],

2 2 2
14

2

0 1 2 0 1 2
2

0 1 2
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η η β β

σ χ
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ˆ , ˆ, ˆβ β β0 1 2 and  are the estimated coefficients from the least squares fit

of the inseason regression model to the 17 (= n) annual observa-
tions,

ση
2 is the mean square error with 14 (= n–3) degrees of freedom, and

Dβ is the matrix of independent variables for these data.

The conditional density, p[ln(xnow) | ln(τnow),β0,β1,β2,ση
2] is N[β0 + 18β1 + β2

ln(τnow),ση
2]. To obtain the predictive power troll density, p[ln(xnow) | ln(τnow),Dc],

the product of this conditional density and the posterior for the parame-
ters is integrated by the Monte Carlo method (see equation [3] and Appen-
dix) over the range of the parameters, β0, β1, β2, and ση

2.

Kernel Smoothed Density Estimates
The estimated log-log bivariate densities are roughly symmetric with the
direction of the long axis reflecting the positive dependence of the insea-
son index on abundance (Fig. 6, left side). Their centers of mass are to the
right of (greater than) the logarithm of the forecast, and they shift pro-
gressively to the right and upward (toward greater values of both vari-
ables) with increase in dependence of forecast error assumed in the priors
for abundance, i.e., from independence to autocorrelation to trend priors.
The center of mass on the abundance axis is determined from that of the
abundance prior, and the abundance prior results at Equation (2) from the
weighted averaging of the conditional density, p[ln(τnow) | ln(znow),Df,ψ], for
uncertainty in the parameters, ψ. The expected value for this conditional
density, i.e., E [ln(τnow) | ln(znow),Df,ψ] = ln(znow) – E [ln(rnow)], increases with
temporal dependence of the prior from ln(znow) + 1⁄2σf

2 (independence), to
ln(znow) – φ0–φ1ln(r1996) (autocorrelation), to ln(znow)–κ0–18κ1 (trend). Recent
forecasts have been below corresponding abundance (r < 1, ln(r) < 0) (Figs.
1-3) and are projected to remain so or to become more biased from the
models underlying the abundance priors.

The retransformed bivariate densities in the original scales of mea-
surement are asymmetric and their centers of mass are shifted similarly
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Figure 6. Bivariate predictive densities—logarithm scale (left) and original scale
(right)—for 1997 SEAK abundance index and inseason index resulting
from prior densities of abundance based on increasing temporal depen-
dence of forecast errors: independent (top), autocorrelated (middle), and
trending (bottom).



308 Pella et al. — Forecast Methods for Chinook Salmon

(Fig. 6, right side). The relative positions of the mode, median, and mean
of the calibrative density, i.e., normalized section of the retransformed
bivariate density, for any value of the power troll statistic are maintained:
the mode is smallest, the median is intermediate, and the mean is largest
(Fig. 6, right side). If these parameters of the calibrative density are used
to estimate abundance, the mode is most conservative, i.e., estimated
abundance is smallest, and the mean is least conservative, i.e., estimated
abundance is largest. The influence of an increasing PTS on estimated
abundance continuously diminishes as can be seen from the accelerating
curvature of mode, median, and mean lines toward the vertical (Fig. 6,
right side); ultimately, increase in the PTS has no further effect on estimat-
ed abundance. The abundance priors limit estimated abundance.

In this initial application of the method, the CTC model in spring 1997
forecast a middling abundance of 1.33, but the power troll statistic from
the summer fishery of early July (106.5 fish per permit) was the largest on
record. As a result, the probability mass of each of the three prior densi-
ties for 1997 abundance shifts rightward and mildly concentrates in the
corresponding calibrative density (Fig. 7). The calibrative distributions
under the independence, autocorrelation, and trend priors (Fig. 8) have
modes at 1.46, 1.51, and 1.60, respectively. Corresponding calibrative
variances equal 0.041, 0.047, and 0.027, down 5.2%, 10.4%, and 17.5%
from the prior variances, respectively. Using the mode as an estimate of
the abundance from future postseason analysis with the CTC model, that
record PTS increases estimated abundance 10% to 20% from the forecast
value, depending on the prior.

Cross Validation
The cross validation experiment shows that in retrospect Bayesian cali-
bration is moderately superior to CTC model forecasts or maximum like-
lihood calibration if judged by mean percent error or mean absolute percent
error (Table 5). The Bayesian calibration from the trend prior performs
well (<9% error) in nine of ten years; its annual absolute percent errors are
less than or equal to those of the CTC model forecasts in eight of ten
years, and those of maximum likelihood calibration in seven of ten years.
Bayesian calibrations from the independence or autocorrelation priors have
smaller maximum percent errors (independence prior, 15%; autocorrela-
tion prior, 19%) than from the trend prior (23%) or the other methods (CTC
model, 25%; maximum likelihood calibration, 22%).

Afterword
The calibrative density integrates the information on forecast error by the
CTC model, the regression relationship between the inseason index and
abundance, the current forecast from the CTC model, and the current
summer fishery performance. In doing so, it accounts for uncertainty in
the unknown parameters of specified models comprising the predictive
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Figure 7. The prior and calibrative densities for 1997 SEAK abundance given the
inseason index of 106.5 fish per permit, corresponding to increasing tem-
poral dependence of forecast errors: independent (top), autocorrelated
(middle), and trending (bottom).
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Figure 8. The calibrative densities and modes for 1997 SEAK abundance given the
observed inseason index of 106.5 fish per permit, corresponding to prior
densities of increasing temporal dependence of forecast errors: indepen-
dent (solid line), autocorrelated (dotted line), and trending (dashed line).
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Table 5. Annual abundance indices from the CTC model and their fore-
casts from the CTC model, maximum likelihood calibration of
the inseason indices, and Bayesian calibration combining CTC
model forecasts and inseason indices.

Abundance CTC model forecast Maximum likelihood
Year index Projected % Error Projected % Error

1987 1.51 1.89 +25 1.43 –5

1988 1.78 2.01 +13 1.88 +6

1989 1.73 1.83 +6 2.09 +21

1990 1.81 1.99 +10 1.68 –7

1991 1.90 1.91 +1 2.31 +22

1992 1.75 1.71 –2 1.73 –1

1993 1.87 1.76 –6 1.72 –8

1994 1.60 1.82 +14 1.52 –5

1995 0.95 0.81 –15 0.96 +1

1996 0.90 0.79 –12 0.96 +7

MPE +3 +3

MAPE 10 8

Bayesian calibration
Abundance Independence Autocorrelation Trend

Year Index Projected % Error Projected % Error Projected % Error

1987 1.51 1.73 +15 – – 1.57 +4

1988 1.78 1.95 +10 1.88 +6 1.74 –2

1989 1.73 1.88 +9 1.84 +6 1.68 –3

1990 1.81 1.86 +3 1.86 +3 1.80 –1

1991 1.90 1.98 +4 1.94 +2 1.88 –1

1992 1.75 1.70 –3 1.69 –3 1.67 –5

1993 1.87 1.73 –7 1.71 –9 1.76 –6

1994 1.60 1.71 +7 1.81 +13 1.97 +23

1995 0.95 0.83 –13 0.77 –19 0.87 –8

1996 0.90 0.81 –10 0.80 –11 0.88 –2

MPE +1 –1 –0.1

MAPE 8 8 5

Bayesian calibration includes three priors for 1997 SEAK abundance based on independent and un-
biased errors, autocorrelated errors, or time trending errors. MPE is the mean percent error, and MAPE
is the mean absolute percent error.
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priors for abundance and the predictive power troll density as well as in
random variables depending on the parameter values, i.e., all the densi-
ties are Bayes predictive densities. At present, the Bayesian calibrative
distribution has been accepted by the CTC as a satisfactory technical de-
scription of uncertainty in chinook salmon abundance in the SEAK fishery.

Future application of the Bayesian methodology to abundance esti-
mation in regional fisheries may well depend on interplay with CTC mod-
el development. The CTC may wish to incorporate Bayesian estimation in
their model: at present, only point values are computed for abundance
without measures of their precision or accuracy. The CTC has chosen the
mode as a point estimate of abundance, but recommends that the PSC
consider fuller use of the calibrative density (CTC 1997). A risk or utility
function is customarily specified by Bayesians for selecting an estimator,
and this approach uses the complete calibrative density. An acceptable
function for this purpose might require predicting long-term consequences
of errors in abundance estimates on the chinook stocks and their subse-
quent abundance in fisheries. Such prediction would require detailed
modeling of stock and fishery dynamics similar to that by the CTC model.
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Appendix
Ten thousand pairs of pseudorandom values are sampled from each of
three log-log bivariate densities corresponding to the independence, auto-
correlation, and trend priors. These pairs are obtained by Monte Carlo
sampling from the appropriate abundance prior and the predictive power
troll density, using the method of composition (pp. 52-54 of Tanner 1996).
In this sampling, draws from posterior densities for parameters of normal
linear models are performed (pp. 17-19 of Tanner 1996). To draw samples
from the posterior density at Equation (8), the transformation method
(Press et al. 1989) is used. The distribution function is evaluated at 500
equispaced points in the range of σf between 0.001215 and 0.607500. The
integrations for evaluating the distribution function are performed with
subroutine QSIMP (parameters eps = 10–5 and Jmax = 20) (Press et al. 1989).
At σf = 0.001215, the distribution function is approximately zero; and at
0.607500, the distribution function is 0.99999. For each draw, a uniform
random number between 0 and 1 is generated and the sampled value of σf

is set equal to that point among the 500 equispaced points with distribu-
tion function value nearest the uniform number.

The bth pair of values from a log-log bivariate density was computed
as follows:

Step 1. Sample a pseudorandom value, ln(τnow,b)*, from (1), (2), or (3) below:

(1) Independence prior—draw random σf,b* from the posterior distribu-
tion, p(σf |Df), at equation (8) using the transformaton method. Next,
draw ln(rnow, b)* ~ N(–1⁄2σf,b*

2 , σf,b*
2). Compute ln(τnow,b)*

 = ln(znow) –
ln(rnow, b)*.

(2) Autocorrelation prior—draw wb* from the chi-square distribution with
7 degrees of freedom and compute σf,b

2* = (7sf
2)/wb*. Next, draw φb* =

(φ0,b*, φ1,b*)′ from the bivariate normal distribution with mean   
ˆ (ˆ ,ˆ)φ φ φ= ′0 1

and covariance matrix, σf,b
2*(Dφ′Dφ)

–1. Finally, draw εb* ~ N(0, σf,b
2*). Com-

pute ln(rnow,b)* =  φ0,b* + φ1,b*ln(r1996) + εb*, then ln(τnow,b)* = ln(znow,b) –
ln(rnow,b)*.

(3) Trend prior—draw wb* from the chi-square distribution with 8 degrees
of freedom and compute σf,b

2* = (8sf
2)/wb*. Next, draw κb* = (κ0,b*,κ1,b*)′

from the bivariate normal distribution with mean   ̂ (ˆ ,ˆ )κ κ κ= ′0 1  and co-
variance matrix, σf,b

2*(Dκ′Dκ)
–1. Finally draw νb* ~ N(0, σf,b

2*). Compute
ln(rnow,b)* = κ0,b* + 18κ1,b* + νb*, then ln(τnow,b)* = ln(znow) – ln(rnow, b)*.

Step 2. Sample a pseudorandom value, ln(xnow,b)* given the draw, ln(τnow,b)*,
at step 1: Draw wb* from the chi-square distribution with 14 degrees of
freedom and compute ση,b

2* = (14sη
2)/wb*. Next, draw βb* = (β0,b*,β1,b*,β2,b*)′

from the trivariate normal distribution with mean   
ˆ (ˆ , ˆ, ˆ )β β β β= ′0 1 2

 and cova-
riance matrix, ση,b

2*(Dβ′Dβ)
–1. Finally, draw ηb* ~ N(0,ση,b

2*). Compute ln(xnow,b)*
= β0,b* + 18β1,b* + β2,b* ln(τnow,b)* + ηb*.
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Abstract
Stock assessments for many U.S. Pacific coast groundfish stocks are de-
veloped using the catch at age method known as Stock Synthesis. The
Stock Synthesis computer program attempts to reconstruct the demograph-
ic history of a stock from observed changes in fish age or size distribu-
tions, coupled with auxiliary information such as an index of stock biomass
developed from a research survey or an index of fishing mortality based
on fishing effort. In this study Monte Carlo simulation techniques were
used to generate fishery and survey data with known characteristics. The
simulated data were then analyzed with the age-structured version of the
Stock Synthesis program and results from the program were compared
with the true values to evaluate the influence of measurement errors on
the accuracy of the Stock Synthesis results. Data sets were constructed
with low and high levels of random error in each of four types of sample
data (fishery age composition, a fishing effort index, survey age composi-
tion, and a survey index of stock biomass). A series of experiments, based
on a fractional factorial design, was conducted to examine the importance
of eight factors: low versus high rates of natural mortality; constant ver-
sus variable annual recruitment; low versus high rates of increase in fish-
ing mortality; dome-shaped versus asymptotic fishery selectivity; short
versus long data series; low versus high variability in the fishing effort
index; low versus high variability in the survey biomass index; and small
versus large samples for age composition. On average the Stock Synthesis
estimates for total biomass, exploitable biomass, recruitment, and fishing
mortality in the ending year were slightly positively biased (3.5-6.1%) but
less variable than the input data. In general, the number of years in the
data series and the size of the age samples were the most influential fac-
tors, with increased amounts of data producing less biased and less vari-
able estimates.
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Introduction
Although fisheries managers and the fishers they regulate generally ap-
preciate that exploited fish stocks have limited productive capabilities
and therefore cannot support unconstrained harvests, the fisheries scien-
tists who advise the managers are rarely able to provide highly accurate
estimates of the size or potential productivity of any stock. The patchi-
ness and inaccessibility of most fishes, coupled with natural variability
and an uncontrolled environment, make it particularly difficult to mea-
sure, let alone predict, the stock size and dynamics of wild fish popula-
tions. Inaccurate perceptions of stock size and dynamics can be costly,
however. Estimates that are too small can result in lost fishing opportuni-
ties due to regulations that are too restrictive; estimates that are too liber-
al can result in overfishing, overcapitalization of the fishing fleet, and
decreased long-term productivity of the fish stock.

Fisheries managers rely on fish stock assessments to provide them
with a biological foundation for their management decisions. These as-
sessments supply fundamental information about the status of the stocks,
whether the stocks are increasing and can support increased levels of
harvest, or whether they are decreasing and require stricter control of
harvests. Often the stock assessments recommend annual catch quotas to
act as upper bounds on the rates of fish removals. Although fisheries
scientists are normally aware of the tremendous variability associated
with fisheries data, stock assessment documents often do not state ex-
plicitly that the estimates of the current stock size can be highly inaccu-
rate, and that recommended catch quotas may consequently fail to meet
management objectives.

Determining a stock assessment’s level of accuracy is a very involved
process. In many modern stock assessments age-structured population
models (Megrey 1989) are applied to catch at age data collected from multi-
stage sampling schemes (Gavaris and Gavaris 1983, Quinn et al. 1983). It
is a daunting challenge to estimate sampling variances for catch at age
data. To trace the consequences of these sampling errors on the final stock
assessment estimates is an even more formidable problem. However, there
have been some attempts to do so (Pope and Garrod 1975, Mohn 1983,
Rivard 1983, Sampson 1987, Prager and MacCall 1988, Kimura 1989, Rivard
1989, Pelletier and Gros 1991, Restrepo et al. 1992). If stock assessments
could routinely provide estimates of their accuracy and measures of the
relative importance of different sources of uncertainty, then it would be
possible to identify which inputs were most in need of improvement. Ap-
propriate modifications to the sampling programs could then be speci-
fied.

The stock assessments for many U.S. Pacific Coast groundfish stocks
are developed using a catch at age method known as Stock Synthesis (Methot
1990, Pacific Fishery Management Council [PFMC] 1996). This program,
which elaborates on the methods of Fournier and Archibald (1982) and
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Deriso et al. (1985), attempts to reconstruct the demographic history of a
stock from observed changes in fish age distributions, coupled with aux-
iliary information such as survey indices of stock biomass. Stock Synthe-
sis uses time series of catch biomass and age (or size) composition to
derive maximum likelihood estimates of numerical stock abundance, stock
biomass, and related parameters. It is a very powerful tool for examining
fisheries data; it offers considerable flexibility in the types of data that it
can accommodate.

In this study we evaluated the influence of random sampling errors in
fishery and survey data on the accuracy of a suite of estimates output by
the age-structured version of the Stock Synthesis assessment program.
We used Monte Carlo simulation techniques (Rubinstein 1981) to generate
fishery data with known characteristics. The random data sets were then
analyzed using the Stock Synthesis program and estimates from Stock
Synthesis were compared with the true values. There have been few pub-
lished Monte Carlo evaluations of the Stock Synthesis program.

Stock Synthesis Approach
The Stock Synthesis program uses standard deterministic equations to
describe the dynamics of an age-structured population (Methot 1990). The
number of fish in a given year class follows an exponential decay func-
tion,

N N M S Fya y a a y= × − + ×− − − −1 1 1 1, exp[ ( )] ,

where Nya denotes the number of fish at the start of year y that are a years
old, M is the instantaneous rate of natural mortality, Sa is the selectivity
coefficient for age a fish, and Fy is the instantaneous rate of fishing mor-
tality in year y for fully selected ages. For simplicity here, M is constant
and the Sa do not vary from year to year. The number of fish in the oldest
(terminal, T) age class is given by

    
N N M S F N M S FyT y T T y y T T y= × − + × + × − + ×− − − − − −1 1 1 1 1 1, ,exp[ ( )] exp[ ( )].

The Synthesis program hosts a range of methods for modeling the
selectivity coefficients. We used the four parameter “double-logistic” func-
tion, which produces a selectivity versus age relationship that is some-
times described as being “dome-shaped,”

    
S

b a a b a a

Sa =
+ − × −( )[ ]{ } × + × −( )[ ]{ }− −

1 1 1 1 2 2
1 1

exp exp

Max
 ,

where a1 controls the inflection age and b1 controls the slope for the
ascending portion of the curve, and a2 and b2 exert similar controls over
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the descending portion of the curve. MaxS, which is the maximum value of
the numerator for integer values of age up to the terminal age, scales the
selectivity coefficients so that at least one age class has a selectivity coef-
ficient of one and thus suffers the full rate of fishing mortality. If parameter
b2 is zero, the selectivity function degenerates to a so-called “asymptotic”
selectivity versus age relationship.

The catch at age (in numbers of fish) is given by the following catch
equation,

    
C

N S F M S F

M S Fya

ya a y a y

a y

=
× − − +( )[ ]{ }

+

1 exp
 .

The yield at age (catch in weight) is given by

  Y C Wya ya a=  ,

where Wa denotes the average weight of age a fish in the fishery, here
assumed to be time-independent.

As it is typically configured, the Synthesis program assumes that the
data for catch biomass are measured with perfect accuracy and it adjusts
the estimates for Fy so that the estimate of total catch biomass,

  
Y Yy ya

a
= ∑  ,

equals the observed total catch biomass.
All methods for analyzing catch at age data require additional auxilia-

ry information for tuning the analysis (Pope and Shepherd 1982, Shep-
herd and Nicholson 1991). It is otherwise impossible to distinguish a stock
that is increasing from one that is decreasing. For tuning a Stock Synthesis
analysis one can use survey indices of stock biomass or numerical abun-
dance, or data series for fishing effort or catch per unit effort. If survey
biomass data are used and the survey is conducted at the beginning of the
year, the expected value of the survey biomass index is given by

  
E B Q N W Sy ya a a

a
′[ ] = ′ ′ ′∑  ,

where Q ′ denotes the survey catchability coefficient, W ′a is the average
fish weight at age in the survey, S ′a is the survey selectivity coefficient for
age a fish. If fishing effort data (f ) are used, the expected value of the
effort is related to the rate of fishing mortality by

  
F QE fy y= [ ] ,
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where Q denotes the fishery catchability coefficient.
The Stock Synthesis program is very flexible in allowing the user to

either fix or estimate the various parameters that define the population
structure and dynamics. For parameters that are estimated rather than
prespecified, the values are maximum likelihood estimates and satisfy a
total likelihood function of the form

  
L L etotal i i

i
= ∑  ,

where Li denotes the log-likelihood value for likelihood component i and ei

is the so-called “emphasis value” for component i. An application with the
Synthesis program will include a likelihood component and emphasis val-
ue for each type of input data that contains observation error, e.g., the
fishery age composition data, the fishing effort data, the survey age com-
position data, and the survey biomass index. If the entire model has been
correctly defined, which includes properly specifying the measurement
error associated with each type of observation, the emphasis values should
all be equal to one.

By assuming that age determination is exact and that simple random
samples of fish are obtained (either from the fishery or the survey), then
the age composition data are distributed as multinomial random variables
and the likelihood component for these data is

    
L J p E p p page y

y
ya ya ya ya

a
= ∑ × × [ ]( ) − × ( ){ }∑ log log  ,

where Jy is the number of fish in the sample for year y, pya is the observed
proportion at age in the sample for year y, and E [pya] is the true proportion
at age in the sample for year y. If the observed proportions at age are all
equal to the expected proportions at age, the Lage likelihood component
will be zero.

If the survey estimates of biomass are distributed as a lognormally
distributed random variable, then the likelihood component for these data
is

    

L
B

E Bsurvey Sy
Sy

y

y
y

= − − ×
′

′[ ]








∑log( ) logσ

σ
1

2 2

2

 ,

where B ′y is the observed survey estimate of biomass in year y and E [B ′y] is
its expected value, and σSy is the true, log-scale standard deviation for
these data,

    
σSy Sycv= +( )log 1 2  .
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The term cvSy is the true, arithmetic-scale coefficient of variation of the
survey biomass estimate in year y.

If the fishing effort data also follow a log-normal distribution, the
likelihood component for these data is

    

L
f

E feffort F
F

y

y
y

= − − ×
′

′[ ]








∑log( ) logσ

σ
1

2 2

2

,

where f ′y is the observed fishing effort in year y and E [f ′y ] is its expected
value, and σF is the true, log-scale standard deviation for these data,

    
σF Fcv= +( )log 1 2 .

The term cvF is the true, arithmetic-scale coefficient of variation for the
fishing effort series.

One can configure the Stock Synthesis program to include likelihood
components that tend to constrain the estimates of annual recruitment to
conform to a spawner recruit relationship. We specified zero emphasis on
the spawner recruit components.

Methods
We used a brute-force approach for evaluating the performance of the
Stock Synthesis program. We generated random data sets with known char-
acteristics, analyzed the data sets using the Stock Synthesis program, and
then compared estimates from Synthesis with the true values. We used
the Windows 95 version of Stock Synthesis, which was provided to us in
June 1997 by the program’s author (Richard Methot, National Marine Fish-
eries Service, Northwest Fisheries Science Center, Seattle, WA). We pro-
duced the random data sets using two C++ programs developed by Yanshui
Yin. The first program simulates the dynamics of an age-structured popu-
lation using the same deterministic equations (described above) that un-
derlie Methot’s Stock Synthesis program. The second program takes the
true demographic data produced by the first program and generates ran-
dom data sets that can be analyzed directly by the Stock Synthesis pro-
gram.

Stock Synthesis Configuration for this Study
We simulated a simple fishery system: a single fishery with data available
annually on total catch, age composition, and nominal fishing effort; and
a single survey that provided estimates of annual stock biomass and age
composition. In all cases we generated the simulated random data in such
a manner that they would be unbiased, and we gave the Synthesis pro-
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gram the true parameter values as the initial values with which to begin
its iterative search for the set of maximum likelihood parameter estimates.
We conducted a small sensitivity study to examine the influence of using
the true parameter values as the initial values. For all simulated stocks we
generated a set of errorless data that we analyzed with Stock Synthesis
and thereby verified an exact correspondence between the deterministic
population equations of the data simulator and those of Stock Synthesis.

The Stock Synthesis program assumes that the data on catch biomass
are exact, but in our simulations the catch biomass data were estimates
that were lognormally distributed with a 10% relative accuracy (on the
arithmetic scale). The age composition data were generated as simple ran-
dom samples from the true catch and were not roughened to mimic ran-
domness due to age-reading errors, nor were they distorted to mimic
age-reading bias. The Stock Synthesis program was configured to treat the
age composition data as being without reading error but with multinomial
sampling error, and the program was given the true sample size. The fish-
ing effort data for a given simulation were generated as lognormally dis-
tributed random variables with expected values equal to the true values
(F/Q ) and with a fixed coefficient of variation (cvF) for all years. The Stock
Synthesis program was configured to treat the effort data as being lognor-
mally distributed and was given the true log-scale standard deviation for
these data (σF). The survey estimates of biomass for a given simulation
were generated as lognormal random variables with expected values equal
to the true values (Q ′ × ∑aNyaW ′aS ′a) and with a fixed coefficient of variation
(cvS) for all years. The Stock Synthesis program was configured to treat the
survey biomass estimates as being lognormally distributed and was given
the true log-scale standard deviation for these data (σS).

For each of the types of simulated data that were lognormally distrib-
uted (the catch biomass, fishing effort, and survey biomass) the mean and
standard deviation on the arithmetic scale (E [Y ], V [Y ]) were related to the
mean and standard deviation on the log scale (µ,σ) by the following:

    E Y[ ] = +( )exp .µ σ0 5 2  ,

    
V Y 2 2[ ] = +( ) × ( ) −[ ]exp exp2 1µ σ σ  ,

i.e., the parameters defining lognormal random data were adjusted so
that the generated random data did not have transformation bias.

The fish stock in all the simulations was unfished prior to the start of
the simulated period and suffered an instantaneous rate of fishing mor-
tality (F ) of 0.07/yr during the first year, with F increasing a fixed amount
at the start of each year thereafter. Also, the instantaneous rate of natural
mortality (M) was constant with age and through time, and the Stock Syn-
thesis program was configured with M fixed at its correct value. The true
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fishery catchability coefficient and the survey catchability coefficient were
constant throughout each simulated period (E[Q] = 0.003, E[Q′ ] = 0.1); the
selectivity coefficients for the fishery and survey were also constant
throughout each simulated period. There was no sexual dimorphism in
the simulated stock. The two sexes had identical growth and identical
vulnerability to the fishing and survey gear. The weight at age data were
generated from the following deterministic equation,

    
W aa = − −( )[ ]{ }0 0001 101 0 2

3

. exp .  ,

and the Synthesis program was given exact information on weight at age.
In our simulations and in the Synthesis configuration weight at age changed
abruptly with age at the start of each year.

Experimental Design
Random data sets were generated in accordance with a one-eighth frac-
tion of a 28 factorial design (Table 1). For each experimental treatment 200
random data sets were generated and then analyzed with Stock Synthesis.
The eight control variables (and their low versus high levels) were: (1) the
rate of natural mortality (0.2 versus 0.4/yr); (2) the annual increase in the
rate of fishing mortality (0.01 versus 0.02/yr); (3) the number of years in
the data series (8 versus 16 years); (4) annual recruitment (constant ver-
sus variable); (5) fishery selectivity (domed versus asymptotic); (6) the
size of the annual age composition samples (100 versus 400 fish per an-
nual sample); (7) the coefficient of variation of the annual fishing effort
data (20% versus 80%, arithmetic scale); and (8) the coefficient of variation
of the annual survey biomass estimates (20% versus 80%, arithmetic scale).

Several stock parameters were coupled with the level of the natural
mortality coefficient. When M was 0.2/yr, the initial and terminal age classes
were 4 and 20 years, the true ascending and descending inflection ages
(a1 and a2) for the fishery selection function were 6 and 16 years, and the
true ascending inflection age for the survey selection function was 5 years.
When M was 0.4/yr, the initial and terminal age classes were 2 and 10
years, the true ascending and descending inflection ages for the fishery
selection function were 4 and 8 years, and the true ascending inflection
age for the survey selection function was 3 years. The ascending slope
coefficients (b1) for the fishery selection function and for the survey
selection function were 1.0 and 1.5/yr for all simulated stocks. When the
fishery selection function was domed, the descending slope coefficient
(b2) was 1.0/yr.

For experimental treatments with constant recruitment, the annual
recruitment was 3,000 fish (in thousands) and the initial age composition
at the start of the first year was at equilibrium with this level of recruit-
ment, and Stock Synthesis was configured to estimate the initial equilibri-
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Table 1. Fractional factorial experimental design.

Treatment FishSel NatMort RecVar FishMort NumYrs SmplSize FishCV SurvCV

1 –1 –1 –1 –1 –1 –1 –1 1

2 1 –1 –1 –1 –1 1 1 1

3 –1 1 –1 –1 –1 1 1 –1

4 1 1 –1 –1 –1 –1 –1 –1

5 –1 –1 1 –1 –1 1 –1 –1

6 1 –1 1 –1 –1 –1 1 –1

7 –1 1 1 –1 –1 –1 1 1

8 1 1 1 –1 –1 1 –1 1

9 –1 –1 –1 1 –1 –1 1 –1

10 1 –1 –1 1 –1 1 –1 –1

11 –1 1 –1 1 –1 1 –1 1

12 1 1 –1 1 –1 –1 1 1

13 –1 –1 1 1 –1 1 1 1

14 1 –1 1 1 –1 –1 –1 1

15 –1 1 1 1 –1 –1 –1 –1

16 1 1 1 1 –1 1 1 –1

17 –1 –1 –1 –1 1 –1 –1 –1

18 1 –1 –1 –1 1 1 1 –1

19 –1 1 –1 –1 1 1 1 1

20 1 1 –1 –1 1 –1 –1 1

21 –1 –1 1 –1 1 1 –1 1

22 1 –1 1 –1 1 –1 1 1

23 –1 1 1 –1 1 –1 1 –1

24 1 1 1 –1 1 1 –1 –1

25 –1 –1 –1 1 1 –1 1 1

26 1 –1 –1 1 1 1 –1 1

27 –1 1 –1 1 1 1 –1 –1

28 1 1 –1 1 1 –1 1 –1

29 –1 –1 1 1 1 1 1 –1

30 1 –1 1 1 1 –1 –1 –1

31 –1 1 1 1 1 –1 –1 1

32 1 1 1 1 1 1 1 1

Factors:

FishSel = Fishery selectivity (domed vs. asymptotic).

NatMort = Natural mortality (0.2 vs. 0.4/yr).

RecVar = Recruitment variability (constant vs. variable).

FishMort = Fishing mortality trend (0.01 vs. 0.02/yr).

NumYrs = Number of years of data (8 vs. 16 yrs).

SmplSize = Sample size for age compositions (100 vs. 400 fish).

FishCV = Fishing effort variability (20% vs. 80% CV).

SurvCV = Survey biomass variability (20% vs. 80% CV).
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um age composition. For treatments with variable recruitment, the aver-
age annual recruitment was also 3,000 fish, but the annual recruitment
values followed the sequence 3,500, 4,000, 1,200, 4,200, 3,000, 3,200,
1,700, 3,200 during the simulation period (with repetition as necessary)
and for the years preceding the simulation, and Stock Synthesis was con-
figured to estimate the initial non-equilibrium age composition.

Because we used a fractional factorial design, not all effects and inter-
actions were separately estimable (Table 2). For example, the main effect
for fishery selection was “aliased” with two four-way interactions and with
two three-way interactions (natural mortality × recruitment variability ×
sample size) and (natural mortality × fishing mortality × effort variability),
meaning that the value estimated for the fishery selectivity effect includ-
ed these additional interactions (Box et al. 1978).

For any given data set the Stock Synthesis program produces a wide
variety of outputs including ones for the annual series of biomass, fishing
mortality, and recruitment. In our analyses we focused on the bias and
variability of the Synthesis estimates for the last year for total biomass
(∑NaWa), exploitable biomass (∑SaNaWa), rate of fishing mortality, and re-
cruitment, and on estimates for the first year for total biomass. To reduce
potential non-normality of these outputs and yet provide replicates for
subsequent analyses, for each experimental treatment and output type
we separated the 200 sets of estimates from Synthesis into four groups of
50 and then calculated the relative bias and relative variability for each
group. We measured relative bias within each group of 50 estimates using
the average of

    

(   )
 

 
estimated value true value

true value
−

,

and measured relative variability within each group using the coefficient
of variation. To summarize results for each experimental treatment and
output type we calculated the mean relative bias and mean coefficient of
variation by averaging the four replicate measures. For each of the ten
output types (the dependent variables) we conducted separate fractional
analyses of variance using the Minitab statistics program (release 11.12
for Windows).

Sensitivity to Initial Parameter Values
Likelihood functions can have multiple maxima, in which case the choice
of initial values for the parameters can influence whether or not the search
algorithm finds a local rather than the global maximum. Also, when the
search algorithm follows certain paths it may get stuck in regions where
the likelihood surface is very flat. With each of the 200 replicates for each
treatment in our main experiment we started the Stock Synthesis program
with the true parameter values. To examine the influence of initial param-
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eter values on the performance of Stock Synthesis we generated 50 addi-
tional random data sets for two experimental treatments: treatment 6,
which had large relative variability in the output estimates; and treatment
30, which had small relative variability. For each of these 100 data sets we
ran the Synthesis program 20 times, each time using a different set of
randomized initial parameter values, with each parameter varying uni-
formly within ±50% of its true value.

Results
The five types of Stock Synthesis estimates that we examined varied greatly
in relative bias and relative variability among the 32 experimental treat-
ments (Table 3), with the estimates of ending exploitable biomass on aver-
age showing the largest negative bias (–4.8%) and the estimates of the
ending fishing mortality coefficient showing the largest positive bias
(31.6%). The mean relative variability ranged from a low of 3.6% for the
estimates of starting biomass to a high of 92% for the estimates of the
ending fishing mortality coefficient. For all 32 treatments the estimates of
starting biomass were less variable than the other four types of estimates.

The Stock Synthesis estimates of ending biomass, ending exploitable
biomass, ending recruitment, and starting biomass were in general skewed
to the right, whereas the estimates of the ending fishing mortality coeffi-
cient were reasonably symmetric (e.g., Fig. 1). Because the analyses of
variance were applied to averages of 50 values, the residuals from the
analyses were reasonably well approximated by normal distributions. For
the variables that measured relative bias, diagnostic plots of the residual
versus fitted values indicated little evidence of heterogeneous variability,
but similar plots for the variables that measured relative variation showed
some tendency for residual variability to increase with the magnitude of
the fitted values.

In the analyses of variance the main effects and two-way interactions
were highly significant (P < 0.01) for all ten dependent variables (Table 4).
The three-way interactions were not significant (P < 0.05) for any of the
variables, however, except for the relative bias of the starting biomass
estimate, which was significant at the P = 0.05 level.

Effects on Relative Bias
On average across all levels of the eight factors the five types of estimates
that we examined had slight but statistically significant (P < 0.05) positive
bias, ranging from a low of 1.7% for the estimates of starting biomass to a
high of 6.1% for the estimates of the ending fishing mortality coefficient
(Table 5). The factor for age composition sample size was the most influ-
ential main effect for four of the five types of Synthesis estimates, and the
estimated coefficients for this factor were negative for all five types of
estimates, indicating that larger samples produced less biased estimates.
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Table 2. Alias structure of the fractional fac-
torial design.

Alias Structure (up to order 4)

Grand mean + ABCF + ABDG + CDFG

A + BCF + BDG + CEGH + DEFH

B + ACF + ADG + CDEH + EFGH

C + ABF + DFG + AEGH + BDEH

D + ABG + CFG + AEFH + BCEH

E + ACGH + ADFH + BCDH + BFGH

F + ABC + CDG + ADEH + BEGH

G + ABD + CDF + ACEH + BEFH

H + ACEG + ADEF + BCDE + BEFG

AB + CF + DG

AC + BF + EGH + ADFG + BCDG

AD + BG + EFH + ACFG + BCDF

AE + CGH + DFH + BCEF + BDEG

AF + BC + DEH + ACDG + BDFG

AG + BD + CEH + ACDF + BCFG

AH + CEG + DEF + BCFH + BDGH

BE + CDH + FGH + ACEF + ADEG

BH + CDE + EFG + ACFH + ADGH

CD + FG + BEH + ABCG + ABDF

CE + AGH + BDH + ABEF + DEFG

CG + DF + AEH + ABCD + ABFG

CH + AEG + BDE + ABFH + DFGH

DE + AFH + BCH + ABEG + CEFG

DH + AEF + BCE + ABGH + CFGH

EF + ADH + BGH + ABCE + CDEG

EG + ACH + BFH + ABDE + CDEF

EH + ACG + ADF + BCD + BFG

FH + ADE + BEG + ABCH + CDGH

GH + ACE + BEF + ABDH + CDFH

ABE + CEF + DEG + ACDH + AFGH + BCGH + BDFH

ABH + CFH + DGH + ACDE + AEFG + BCEG + BDEF

ACD + AFG + BCG + BDF + ABEH + CEFH + DEGH

Factor codes:

A = Fishery selectivity.

B = Natural mortality.

C = Recruitment variability.

D = Fishing mortality trend.

E = Number of years of data.

F = Sample size for age compositions.

G = Fishing effort variability.

H = Survey biomass variability.



Symposium on Fishery Stock Assessment Models 327

Table 3. Relative bias and relative variability for the 32 experimental treat-
ments.

Mean relative bias Mean relative variability

Treatment end Bio end exB end F end Rec start Bio end Bio end exB end F end Rec start Bio

1 0.1015 0.0853 0.0159 0.1258 0.0557 0.3611 0.4201 0.3220 0.5804 0.2548

2 –0.0426 –0.0436 0.2274 –0.0260 –0.0238 0.4029 0.3756 0.4961 0.4971 0.2019

3 0.0439 0.0468 0.0121 0.0411 0.0338 0.2124 0.2282 0.2986 0.2522 0.1670

4 0.0775 0.0796 0.0493 0.0990 0.0487 0.3731 0.4292 0.3495 0.5258 0.2743

5 –0.0001 –0.0027 0.0463 –0.0050 –0.0037 0.2135 0.2156 0.2592 0.2867 0.1330

6 0.1659 0.1571 0.0321 0.2094 0.0825 0.4972 0.5871 0.4280 0.7682 0.3283

7 –0.0242 –0.0222 0.3160 –0.0023 –0.0225 0.4011 0.4002 0.9220 0.4869 0.2914

8 –0.0401 –0.0483 0.1472 –0.0337 –0.0279 0.2827 0.2615 0.3504 0.3398 0.1447

9 0.0991 0.0959 0.0241 0.1080 0.0585 0.3212 0.3775 0.3486 0.5367 0.2068

10 0.0628 0.0602 0.0019 0.0872 0.0282 0.2699 0.2810 0.2575 0.4018 0.1285

11 0.0197 0.0204 0.0360 0.0257 0.0138 0.2106 0.2194 0.2658 0.2720 0.1294

12 0.0485 0.0380 0.2878 0.0915 0.0166 0.4852 0.4941 0.7910 0.6657 0.2405

13 0.0633 0.0589 0.0136 0.0796 0.0370 0.2773 0.2943 0.3112 0.3949 0.1599

14 0.1414 0.1261 0.0345 0.1725 0.0580 0.4643 0.5370 0.3863 0.6951 0.2556

15 –0.0061 –0.0069 0.1290 0.0274 –0.0011 0.3341 0.3311 0.4285 0.4226 0.2774

16 0.0421 0.0434 0.0292 0.0563 0.0227 0.2832 0.2920 0.2880 0.3514 0.1498

17 0.0141 0.0009 0.0135 0.0279 0.0044 0.1461 0.1490 0.1702 0.3349 0.0743

18 0.0094 0.0108 0.0183 –0.0048 0.0047 0.1744 0.1705 0.2129 0.2506 0.0426

19 0.0236 0.0236 0.0467 0.0271 0.0027 0.2706 0.2763 0.3148 0.3379 0.0948

20 0.0295 0.0255 0.0257 0.0768 0.0050 0.2349 0.2466 0.2371 0.3963 0.1155

21 0.0070 0.0024 0.0098 0.0284 0.0036 0.1557 0.1608 0.1720 0.2409 0.0597

22 0.1275 0.1139 0.1960 0.1720 0.0178 0.5265 0.5542 0.7680 0.8750 0.0936

23 0.0508 0.0623 0.0178 0.0607 0.0732 0.2557 0.2753 0.3092 0.3467 0.2243

24 0.0246 0.0228 0.0034 0.0318 0.0014 0.1381 0.1466 0.1667 0.1896 0.0647

25 –0.0046 –0.0111 0.0884 0.0060 –0.0037 0.2575 0.2635 0.3053 0.4238 0.0591

26 0.0165 0.0149 0.0043 0.0178 0.0044 0.1625 0.1575 0.1698 0.2286 0.0358

27 0.0184 0.0197 –0.0121 0.0275 0.0056 0.1443 0.1534 0.1623 0.1920 0.0754

28 0.0170 0.0269 0.0132 0.0041 0.0127 0.1773 0.2013 0.2502 0.2895 0.0825

29 0.0054 0.0014 0.0159 0.0093 0.0021 0.1314 0.1338 0.1873 0.2078 0.0423

30 0.0287 0.0237 0.0110 0.0690 0.0044 0.1259 0.1260 0.1605 0.3254 0.0463

31 0.0092 0.0218 0.0578 0.0103 0.0357 0.2463 0.2601 0.3038 0.3238 0.1811

32 0.0839 0.0831 0.0252 0.1040 0.0044 0.3068 0.3278 0.3553 0.4042 0.0526

Min –0.0426 –0.0483 –0.0121 –0.0337 –0.0279 0.1259 0.1260 0.1605 0.1896 0.0358

Max 0.1659 0.1571 0.3160 0.2094 0.0825 0.5265 0.5871 0.9220 0.8750 0.3283
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Figure 1. Example histograms from experimental treatment 1 of variables output
by the Stock Synthesis program and used as dependent experimental
variables. The dashed vertical lines indicate the true values. The units for
the biomass and recruitment axes are in thousands.
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The number of years in the data series was the only other factor that
produced a significant (P < 0.05) main effect for all five types of estimates,
and in all cases an increase in the number of years produced less biased
estimates. For the estimates of ending biomass, ending exploitable bio-
mass, and ending recruitment, however, the interactions between these
two factors were significantly (P < 0.05) positive, indicating that these two
effects were not additive. Recruitment variability was the only factor that
did not produce a significant (P < 0.05) main effect for any of the estimate
types, but there were significant interactions with this factor for several
estimate types. For all five estimate types there were significant (P < 0.05)
interactions between the natural mortality coefficient and the number of
years, between the recruitment variability and the fishing effort variabili-
ty, and between the number of years and the survey biomass variability.

Effects on Relative Variability
The overall average relative variability of the five types of Stock Synthesis
estimates ranged from a low of 14.6% for the estimates of starting bio-
mass to a high of 40.1% for the estimates of ending recruitment (Table 6).
The factors for the number of years in the data series and for the age
composition sample size produced the first or second most influential
main effects for all five types of estimates, and the estimated coefficients
for these factors were always negative, indicating that larger samples and
longer data series produced less variable estimates. The interactions be-
tween these two factors were significantly (P < 0.05) positive in all cases,
however, indicating that these two effects were not additive. The factors
for fishing effort variability and survey biomass variability were signifi-
cant (P < 0.05) and had great influence over the variability in the estimates
of ending biomass, ending exploitable biomass, ending fishing mortality,
and ending recruitment, but not over the estimate of starting biomass. All
eight factors produced significant (P < 0.05) main effects for at least three
of the five types of estimates.

Sensitivity to Initial Parameter Values
For treatment 30, which in the main experiment produced output values
with little variability, using randomized initial parameter values had es-
sentially no effect on the final Stock Synthesis output values. For exam-
ple, across the 50 random data sets the coefficients of variation for the
estimates of ending biomass (calculated from 20 replicates for each data
set) ranged from 0.06% to 0.26% and the coefficients of variation for the
log-likelihood values ranged from less than 0.0001% to 0.14%. For treat-
ment 6, however, which in the main experiment produced output values
with large variability, the Synthesis program did not always converge to
the same output values when started with randomized parameter values.
Although the final log-likelihood values were consistent across the 50 ran-
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Table 4. ANOVA tables from fractional factorial experiment.

Source DF SS MS F P

Relative bias in ending total biomass.

Main effects 8 0.0916 0.0114 7.08 0.000

2-way interactions 20 0.2066 0.0103 6.39 0.000

3-way interactions 3 0.0065 0.0022 1.33 0.269

Residual error 96 0.1552 0.0016

Total 127 0.4599

Relative bias in ending exploitable biomass.

Main effects 8 0.0757 0.0095 5.73 0.000

2-way interactions 20 0.1967 0.0098 5.96 0.000

3-way interactions 3 0.0051 0.0017 1.03 0.383

Residual error 96 0.1584 0.0017

Total 127 0.4359

Relative bias in ending F.

Main effects 8 0.4512 0.0564 19.18 0.000

2-way interactions 20 0.4188 0.0209 7.12 0.000

3-way interactions 3 0.0109 0.0036 1.23 0.303

Residual error 96 0.2822 0.0029

Total 127 1.1631

Relative bias in ending recruitment.

Main effects 8 0.1669 0.0209 8.23 0.000

2-way interactions 20 0.2526 0.0126 4.98 0.000

3-way interactions 3 0.0119 0.0040 1.56 0.203

Residual error 96 0.2434 0.0025

Total 127 0.6748

Relative bias in starting biomass.

Main effects 8 0.0269 0.0034 7.37 0.000

2-way interactions 20 0.0603 0.0030 6.62 0.000

3-way interactions 3 0.0045 0.0015 3.29 0.024

Residual error 96 0.0437 0.0005

Total 127 0.1354
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Table 4. (Continued.)

Source DF SS MS F P

Relative variability in ending total biomass.

Main effects 8 1.2957 0.1620 59.14 0.000

2-way interactions 20 0.3174 0.0159 5.80 0.000

3-way interactions 3 0.0091 0.0030 1.11 0.350

Residual error 96 0.2629 0.0027

Total 127 1.8851

Relative variability in ending exploitable biomass.

Main effects 8 1.5774 0.1972 47.57 0.000

2-way interactions 20 0.4643 0.0232 5.60 0.000

3-way interactions 3 0.0102 0.0034 0.82 0.485

Residual error 96 0.3979 0.0041

Total 127 2.4498

Relative variability in ending F.

Main effects 8 2.8859 0.3607 39.13 0.000

2-way interactions 20 1.2001 0.0600 6.51 0.000

3-way interactions 3 0.0485 0.0162 1.75 0.161

Residual error 96 0.8850 0.0092

Total 127 5.0195

Relative variability in ending R.

Main effects 8 2.8630 0.3579 52.36 0.000

2-way interactions 20 0.6966 0.0348 5.10 0.000

3-way interactions 3 0.0280 0.0093 1.36 0.259

Residual error 96 0.6561 0.0068

Total 127 4.2437

Relative variability in starting biomass.

Main effects 8 0.7888 0.0986 68.17 0.000

2-way interactions 20 0.1335 0.0067 4.62 0.000

3-way interactions 3 0.0010 0.0003 0.22 0.880

Residual error 96 0.1388 0.0014

Total 127 1.0621
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Table 5. Analysis of relative bias.

Factor End Bio End exBio End F End Rec Start Bio

Grand mean 0.03792a 0.00359a 0.06055a 0.05388a 0.01734a

FishSel 0.01163a 0.01055a 0.00862 0.01655a –0.00111

NatMort –0.01178a –0.00806a 0.01346a –0.01343a –0.00329

RecVar 0.00453 0.00447 0.00726 0.00797 0.00063

FishMort 0.00240 0.00319 –0.01305a 0.00212 0.00137

NumYrs –0.00911a –0.00766a –0.02711a –0.01214a –0.00619a

SmplSize –0.01682a –0.01572a –0.02146a –0.02475a –0.01053a

FishCV 0.00639 0.00750a 0.02470a 0.00461 0.00258

SurvCV –0.00292 –0.00478 0.03523a 0.00084 –0.00629a

FishSel×NatMort –0.00238 –0.00396 –0.01001a –0.00327 –0.00249

FishSel×RecVar 0.01768a 0.01487a –0.01659a 0.01927a 0.00355

FishSel×FishMort 0.00317 0.00297 –0.00521 0.00275 0.00132

FishSel×NumYrs 0.00171 0.00199 –0.00492 0.00055 –0.00319

FishSel×SmplSize –0.01316a –0.01225a 0.00942 –0.01662a –0.00394a

FishSel×FishCV 0.00054 0.00032 0.00980a 0.00077 –0.00162

FishSel×SurvCV –0.00104 –0.00239 0.01413a 0.00060 –0.00314

NatMort×NumYrs 0.01508a 0.01610a –0.02471a 0.01448a 0.00974a

NatMort×SurvCV –0.00446 –0.00477 0.00855 –0.00386 –0.00428a

RecVar×FishMort 0.00113 0.00095 –0.01522a 0.00207 0.00106

RecVar×NumYrs 0.00880a 0.00929a 0.00142 0.01096a 0.00603a

RecVar×FishCV 0.01549a 0.01494a –0.01177a 0.01967a 0.00659a

RecVar×SurvCV 0.00647 0.00695 –0.00301 0.00367 0.00157

FishMort×NumYrs –0.00941a –0.00831a 0.00508 –0.01287a –0.00431a

FishMort×SurvCV 0.00982a 0.01029a –0.01427a 0.00658 0.00836a

NumYrs×SmplSize 0.01159a 0.01040a 0.00197 0.01314a 0.00299

NumYrs×FishCV 0.00392 0.00371 –0.00544 0.00094 0.00051

NumYrs×SurvCV 0.01068a 0.01139a –0.01193a 0.01273a 0.00389a

SmplSize×SurvCV –0.00179 –0.00090 –0.01053a –0.00212 0.00126

FishCV×SurvCV –0.00697 –0.00796a 0.02967a –0.00284 –0.01007a

FishSel×NatMort×NumYrs –0.00432 –0.00472 0.00097 –0.00244 –0.00492a

FishSel×NatMort×SurvCV 0.00350 0.00264 –0.00906 0.00835 0.00278

FishSel×RecVar×FishMort –0.00442 –0.00325 –0.00136 –0.00415 –0.00179

Coefficient Std Deviation 0.00355 0.00359 0.00479 0.00445 0.00189

Factor coefficients (relative bias) from fractional factorial experiment.
a Coefficients with t-statistics significant at the P = 0.05 level.
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Table 6. Analysis of relative variability.

Factor End Bio End exBio End F End Rec Start Bio

Grand mean 0.27637a 0.29207a 0.33586a 0.40137a 0.14649a

FishSel 0.03020a 0.03216a 0.01834a 0.04887a –0.00543

NatMort –0.00410 –0.00813 0.02620a –0.03911a 0.01385a

RecVar 0.01362a 0.01437a 0.02638a 0.01480a 0.01004a

FishMort –0.01401a –0.01398a –0.02513a –0.01792a –0.01380a

NumYrs –0.06049a –0.06691a –0.07054a –0.06595a –0.06246a

SmplSize –0.04911a –0.06119a –0.06913a –0.09841a –0.04137a

FishCV 0.03492a 0.03615a 0.07578a 0.04165a 0.00585

SurvCV 0.03901a 0.03597a 0.06854a 0.04626a 0.00165

FishSel×NatMort –0.01730a –0.01622a –0.03185a –0.01585a –0.01434a

FishSel×RecVar 0.00791 0.01538a –0.01771a 0.02852a –0.00918a

FishSel×FishMort –0.00817 –0.00820 0.00329 –0.01212 –0.00333

FishSel×NumYrs –0.01526a –0.01601a 0.00637 –0.01442 –0.01192a

FishSel×SmplSize –0.00489 –0.01150a 0.00200 –0.01895a 0.00286

FishSel×FishCV 0.01522a 0.01494a 0.01871a 0.02079a 0.00205

FishSel×SurvCV 0.01266a 0.00905 0.02149a 0.01619a –0.00020

NatMort×NumYrs 0.00996a 0.01889a –0.02911a 0.01367 0.01349a

NatMort×SurvCV –0.00651 –0.00917 0.01191 –0.00521 –0.00575

RecVar×FishMort –0.00482 –0.00474 –0.03449a –0.00760 0.00289

RecVar×NumYrs 0.00631 0.00854 0.01112 0.01393 0.00150

RecVar×FishCV 0.00998a 0.01548a 0.00804 0.02154a 0.00539

RecVar×SurvCV 0.00359 0.00702 0.01527 0.00762 –0.00337

FishMort×NumYrs –0.00787 –0.00827 –0.00336 –0.01812a 0.00166

FishMort×SurvCV –0.00007 0.00511 –0.01817a –0.00370 0.00491

NumYrs×SmplSize 0.01870a 0.02685a 0.02144a 0.01943a 0.01582a

NumYrs×FishCV 0.01172a 0.01401a –0.00326 0.01483a –0.00341

NumYrs×SurvCV 0.01522a 0.01971a –0.00564 0.02210a 0.00084

SmplSize×SurvCV –0.00764 –0.00771 –0.03087a –0.00980 0.00306

FishCV×SurvCV 0.01569a 0.00904 0.05275a 0.02138a –0.00477

FishSel×NatMort×NumYrs –0.00509 –0.00528 –0.00296 –0.00871 –0.00086

FishSel×NatMort×SurvCV –0.00292 –0.00325 –0.01699a –0.00104 0.00204

FishSel×RecVar×FishMort –0.00605 –0.00644 –0.00901 –0.01190 –0.00164

Coefficient Std Deviation 0.00463 0.00569 0.00849 0.00731 0.00336

Factor coefficients (relative variability) from fractional factorial experiment.
a Coefficients with t-statistics significant at the P = 0.05 level.
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dom data sets, with coefficients of variation ranging from 0.0013% to 0.28%,
the estimates of ending biomass were sometimes quite variable, with co-
efficients of variation ranging from 0.71% to 27%. Scatterplots of the end-
ing biomass estimates versus the log-likelihood values (e.g., Fig. 2) indicated
that the likelihood functions for these data sets were flat and did not have
well-defined maxima; the Synthesis program sometimes stopped prema-
turely. However, we saw no evidence of likelihood functions having multi-
ple maxima.

Also, when the Synthesis program started with the true parameter
values for the 50 data sets from treatment 30, it produced final ending
biomass estimates that were within –0.49% to 0.52% of the estimates asso-
ciated with the observed maximum likelihood values; for 44 of the data
sets the final ending biomass estimates were within the observed ranges
of estimates produced by starting with random initial parameter values
(20 replicates per data set). When the Synthesis program started with the
true parameter values for the 50 data sets from treatment 6, it produced
final ending biomass estimates that were within –25% to 8.7% of the ob-
served maximum likelihood estimates; for 44 of the 50 data sets the final
ending biomass estimates were within the observed ranges produced by
starting with random initial parameter values. Hence, it appears that the
results in the main experiment would not have differed substantially had
we used a different strategy for choosing sets of initial parameter values.

Discussion
Results from our experiments were generally in accord with what we an-
ticipated, but there were some surprises. The magnitude of the trends in
the fishing mortality coefficient had no significant (P < 0.05) effect on the
bias of the Synthesis estimates and relatively small influence on their
variability. This seems to contradict the well known fact from Virtual Pop-
ulation Analysis that estimates of stock size converge more rapidly to
their true values when there are high rates of fishing mortality (Pope 1972).
Also, we found that bias and variability in the estimates of ending biom-
ass, ending exploitable biomass, ending fishing mortality, and ending re-
cruitment were larger when the fishery selectivity curve was asymptotic
rather than domed. In contrast, Bence et al. (1993) in a Monte Carlo inves-
tigation of the Stock Synthesis program found that biomass estimates were
more accurate if derived using data from a survey that had an asymptotic
rather than domed selectivity curve. In their simulated populations the
fishery selection curve was always domed. In our study the survey selec-
tion curve was always asymptotic.

The study reported here is only the first in a series of experiments. We
intend to conduct additional experiments that will examine the influence
of other forms of input data error including random variation in discards
and variability in estimates of average weight at age. Also, there usually is
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Figure 2. Stock Synthesis estimates can be sensitive to the choice of initial parame-
ter values. Twenty sets of randomized initial parameter values here pro-
duced highly variable (CV = 27%) estimates of ending biomass (shown as
small squares) when applied to one particular random data set generat-
ed using experimental treatment 6. Several other random data sets pro-
duced similar, but less extreme, patterns. In the main experiment the
Stock Synthesis program always started with the true parameter values.
The large diamond shows the biomass and likelihood values obtained by
starting with the true parameter values. The true ending biomass for this
experimental treament was 54,500.
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considerable sample to sample variation in age composition data (Crone
1995, Smith and Maguire 1983) and it is unrealistic to treat age composi-
tion data as simple multinomial random variables. We intend to explore
the influence on Stock Synthesis estimates of a compound multinomial
error structure for age composition data and evaluate the suggestion (Fourn-
ier and Archibald 1982) that age sample sizes in the likelihood specifica-
tion be limited to 400 fish per sample.

Besides data errors, there are other potentially important sources of
uncertainty in assessments based on the Stock Synthesis program. For
example, structural errors, such as an incorrect assumption that fishery
selectivity has been constant from year to year, can produce seriously
inaccurate estimates of stock size (Sampson 1993). Other important struc-
tural errors that we want to investigate include how measurement errors
are specified (e.g., normal versus lognormal) and whether or not mortality
effects and recruitment include process error in addition to measurement
error.

Stock Synthesis estimates of ending exploitable biomass form the ba-
sis for the annual catch quotas for many groundfish stocks on the U.S.
Pacific coast (PFMC 1996). With respect to variability in the input data, the
results of this study suggest that Synthesis estimates of exploitable biom-
ass are only slightly biased and are relatively less variable than the input
data. The ANOVA model for ending exploitable biomass predicts that the
most variable estimates of ending exploitable biomass will occur for a
treatment with asymptotic fishery selectivity, a low natural mortality co-
efficient (0.2/yr), variable recruitment, a low trend in the fishing mortality
coefficient (0.01/yr), a short data series (8 years), small fishery and sur-
vey age composition samples (100 fish per annual sample), and high vari-
ability (80%) in the fishing effort and survey biomass indices. For the
particular set of parameter values that we examined for this worst-case
scenario the ANOVA model predicts a 70.0% coefficient of variation in the
estimate of ending exploitable biomass, and it predicts that a four-fold
increase in the size of the annual age composition samples (to 400 fish
per sample) would reduce the relative variability to 48.5%. In contrast, a
four-fold decrease in the relative variability of the survey biomass index
would only reduce the relative variability to 58.7%. This implies that in-
creased port sampling to obtain more age composition data would pro-
duce greater improvements in assessment precision than increased
research surveys to obtain more precise biomass indices. Furthermore, it
would very likely be less expensive to collect the additional age composi-
tion data. For example, a four-fold improvement in the precision of a sur-
vey biomass estimate would require roughly a sixteen-fold increase in
sampling because, under simple random sampling, the standard error of a
biomass estimate is inversely proportional to the square root of the num-
ber of samples.
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Abstract
Methodology for fuzzy regression is described and then illustrated with
some applications to published data from the fisheries literature. Fuzzy
regression should be a useful alternative or complement to conventional
statistical regression whenever the relationship between variables is im-
precise, data are imprecise, or sample sizes are very small. Formulations
of fuzzy regression models are described, and goodness-of-fit criteria are
briefly investigated and compared. The fuzzy regression technique is first
illustrated by applications to data from the relationship between the pro-
portion of chinook salmon jacks entering a river and the proportion of
jacks in the ensuing cohort. A second example showing the relation be-
tween chinook salmon yearlings and water flow is also investigated. The
third example deals with the relationship between an abundance index
and virtual population analysis results for a short-time series of Atlantic
mackerel data. Fuzzy regression methodology seems relatively straight-
forward, but it usually involves a constrained minimization problem, which
may require mathematical programming methods. On the basis of this
review and applications, we believe that fuzzy regression has utility in
some fisheries-related applications, but further evaluation is suggested.

Introduction
Regression methods have been widely used and critiqued for some time
in fishery science related applications, as is evident from a review by Rick-
er (1973). Sparre and Venema (1992) describe 18 equations from methods
used in fishery science based on transformation and ordinary least square
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regression models of the form: y = a + bx. Prairie (1996) indicated that
nearly 45% of the articles in the 1990 volume of the Canadian Journal of
Fisheries and Aquatic Sciences contained at least one regression analysis.
Clearly, regression models are ubiquitous in fishery science today. Ryan
(1997) provides an excellent description of recent developments, as well
as background in regression methodologies.

In general, a necessary characteristic of problems suitable for statisti-
cal regression analysis is that sufficient data should be available for draw-
ing a valid statistical relation between the dependent and independent
variable. Another important characteristic of a linear regression model in
practical applications is the appropriateness of the statistical model, in-
cluding the linearity assumption about the underlying functional relation-
ship but also the assumptions of error-free x-values, homescedasticity,
and independence. Fuzzy linear regression was first described by Tanaka
et al. (1982), and it provides a means for addressing problems which fail
to satisfy one or both of these characteristics. Relationships based on
relatively few experimental data are common in the fisheries literature.
For example, sparse data and an imprecise relationship between variables
are illustrated by Fig. 1, redrawn from Cada et al. (1997, Fig. 2, page 136).
Unwin and Glova (1997) contained several similar Fig.s. In many instances,
scientists have used the relationship based on experience, judgment, or
theoretical grounds, in spite of the fact that the statistical regression anal-
ysis alone may not lead to a strong conclusion.

Statistical regression analysis provides, under certain assumptions, a
means to analyze the dependence among variables using statistical prop-
erties of the relationship. Consider a linear regression with one indepen-
dent variable x and one dependent variable y for which the assumed form
y = a + bx represents a straight line. Given a set of observed data (x1, y1),
(x2, y2), ... , (xn, yn) for the pair of variables (x, y), familiar ordinary least
squares (OLS) techniques are used to find values of a and b for which the
total error of the estimated points on the straight line with respect to the
observed points is minimized.

In the case of large data sets, statistical techniques can be effectively
used to assess measurement or modeling error. However, in many practi-
cal fisheries applications, it often occurs that there are so few data avail-
able that statistical regression analysis cannot or should not be used. In
such cases, the fishery scientist is faced with two alternatives. One is to
disregard the relationship even when it is believed that it really exists. For
example, most fishery scientists would agree that Pacific salmon smolt
survival and travel time to the sea are related in spite of sparse data and
ambiguous evidence about the relation between variables. The other al-
ternative is to construct a regression line and calculate indices, such as
the coefficient of determination (r2) which roughly evaluates the fit, or to
show confidence intervals. This latter approach was used in Fig. 1.

The techniques of fuzzy regression may provide another alternative
which has not been explored in a fisheries context to date and which may
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contribute to regression problems lacking an abundance of data or having
a vague relationship between the variables. Briefly, fuzzy regression is a
method of calibrating a fuzzy numerical relationship embodied in an equa-
tion involving fuzzy numbers (Kaufmann and Gupta 1985). The regres-
sion parameters may be fuzzy numbers and so describe the degree of
acceptance of values for a parameter. As shown by Bárdossy et al. (1990),
if the regression parameters are fuzzy numbers, the dependent variable is
also a fuzzy number. The objective of fuzzy regression is to minimize
some measure of “vagueness” of the dependent variable. Bárdossy et al.
(1990) provided a good introduction to fuzzy regression in the context of
hydrology using an example describing the relationship between soil elec-
trical resistance and hydraulic permeability. Our intention is to provide a
similar introduction to fishery scientists using fishery-related examples.

Johnson and Ayyub (1996) used fuzzy regression in a civil engineer-
ing application to model uncertainty in the prediction of bridge pier scour.
They illustrate the use of fuzzy factors describing the bias between ob-
served field data and estimates derived from laboratory or preliminary
field data. This bias exists because of the use of small-scale experiments
to model large-scale and real-world problems. The use of small-scale ex-
periments to describe large-scale phenomena is also a problem in fisher-
ies applications such as projecting the results of small-scale net behavior

Figure 1. Ordinary least squares regression of river flow at Ice Harbor Dam versus
yearling chinook salmon survival. Redrawn from Cada et al. (1997).
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from flume studies to real-world trawl behavior. The above-mentioned
study may be helpful in resolving similar problems in fishing gear tech-
nology research.

In summary, there seem to be at least two major motivations for ap-
plying fuzzy regression. The first one results from questions concerning
the validity of a linear model for the given variables. The second motiva-
tion results from the nature of the data, which in some applications are
inherently vague, very sparse, or both. These two motivations lead to two
types of fuzzy regression analyses. One involves conventional crisp data
and fuzzy parameters, and the other involves crisp parameters and fuzzy
data, where the term “crisp” denotes ordinary, single values from the real
number line. Fuzzy numbers possess a natural capability to express ob-
servation and measurement uncertainties that traditional crisp numbers
do not have. In the material below, we will employ the approach of Klir
and Yuan (1995). The next section describes an analysis under the first
motivation—namely, the validity of the regression form used.

Linear Regression with Fuzzy
Parameters (LRFP)
In this case, the dependence of an output variable Y on input variables is
expressed as:

Y = C1x1 + C2x2 + ... Cmxm, (1)

where C1, C2, ..., Cm are fuzzy numbers, and x1, x2, ..., xm are crisp (real-
valued) input variables. For each m-tuple of input variable values, the
output variable defined by Y in equation (1) is a fuzzy number. Other
definitions related to fuzzy regression are defined in Appendix A of Bár-
dossy et al. (1990). The objective of the regression analysis is to find fuzzy
parameters C1, C2, ..., Cm for which equation (1) provides the best agree-
ment with the data, according to a goodness-of-fit criterion, such as mini-
mizing the sum of the widths of the fuzzy regression coefficients.

Assume the parameters in equation (1) are symmetric triangular fuzzy
numbers defined by
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where cj is the point for which Cj(cj) = 1, and sj > 0 is the spread of Cj. Each
Cj can therefore be denoted by (cj, sj) for j = 1, 2, ..., m. It can then be
proved by the extension principle (Zadeh 1965) that Y in equation (1) is
also a symmetric fuzzy number, which is given by
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Finding the fuzzy parameters C1, C2, ..., Cm can be converted to the
problem of finding the vectors c and s such that the Y(y) functions given
by equation (3) fit the data as well as possible. Each data point (xi, yi)
consists of a vector of observed values of the independent variables xi,
and the corresponding observed value of the dependent variable yi. Let
Yi(y) denote the fuzzy number defined by equation (3) for the ith vector of
independent variables. The fuzzy parameters are fitted so that they are as
narrow as possible while permitting the values of Yi(y) to be large for the
values yi represented in the observed data. In particular, for each vector of
independent variables xi, the associated yi should belong to the corre-
sponding fuzzy number Yi with a grade that is greater than or equal to
some given value h ∈ [0, 1]. That is, Yi(yi) ≥ h for each i = 1,2, ..., n. The
linear regression with fuzzy parameters problem can be expressed in terms
of a classical linear programming problem illustrated by Klir and Yuan
(1995, page 456) as

Minimize 
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sj ≥ 0, j = 1,2,...,m.
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The minimization tightens the spread of the fuzzy parameters so that the
model is as specific as possible. Without this minimization, it would al-
ways be possible to get Y(y) to be larger than h for any value of the depen-
dent variable, simply by widening the spread of the fuzzy parameters.
The positivity constraint insures that the fitted parameters are feasible
fuzzy numbers.

An example of linear regression with fuzzy parameters is provided
using the data in Table 1, which we extracted from Unwin and Glova (1997,
Fig. 3). We assume the form Y = Cx, where C = (c,s) is a fuzzy parameter
expressed by a symmetric fuzzy number. This linear programming prob-
lem has the form

Minimize s,

Subject to

8(1−h)s − |24 − 8c | ≥ 0,

9(1−h)s − |8 − 9c | ≥ 0,
.
.
.

47(1−h)s − |23 − 47c | ≥ 0,

s ≥ 0, and

h ∈ [0,1] is a fixed number.

Some justification for the use of this form is provided by comparing of the
results from fitting an ordinary least squares regression with intercept
versus a regression through the origin. It was evident that an improve-
ment in the r2 value occurred for the latter case. Of course, as Ryan (1997)
notes, r2 values for these two forms of linear regression are not strictly
comparable, and, in any case, Prairie (1996) pointed out that r2 does not
necessarily provide an intuitive measure of the predictive power of re-
gressions. Nevertheless, the difference was large, and it also seemed intu-
itively evident that Y = 0 when x = 0, since no returns are expected if there
are no spawners.

We used the optimization modeling software LINGO™, which includes
simultaneous linear and nonlinear solver-optimizers, to make the compu-
tations for this example. The mathematical programming problem is lin-
ear in this case. For the data from the Table 1 and the grade of membership
set at 0.5, we found C = (0.872,1.32).

Fuzzy numbers Y = Cx can be calculated for various values of x. In this
case, C is a fuzzy parameter expressed by a symmetric triangular fuzzy
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number. Although mathematical operations for fuzzy arithmetic are rela-
tively straightforward, they can become tedious. Risk Calc (Ferson et al.
1998) is a convenient environment for evaluating fuzzy mathematical ex-
pressions. These can include scalars representing known or mathemati-
cally defined integers and real numbers, intervals representing uncertain
numbers about which bounds can be established, and fuzzy numbers rep-
resenting uncertain numbers for which, in addition to having a range of
possible values, one can say that some are more plausible than others. All
these kinds of numbers can be mixed and used together in mathematical
expressions. In our case, a real-valued independent variable is multiplied
by a symmetric triangular fuzzy number (the slope of the regression) to
obtain fuzzy predicted values of the dependent variable. The results are
summarized numerically in Table 1 and also illustrated in Fig. 2. The fig-
ure depicts the original data points, the regression line and, in their own
graph, the predicted values Yi = Cxi. Each of these predictions is a symmet-
ric triangular fuzzy number whose peak is located at the best estimate
and whose breadth indicates the reliability of the estimate.

Table 1. Raw data on chinook salmon spawners versus returns extracted
from Unwin and Glova (1997) with predictions based on ordi-
nary least squares regression (OLS), linear regression with fuzzy
parameters (LRFP), and linear regression with fuzzy data (LRFD).

Raw data OLS LRFP LRFD
Spawners Returns Predicted Predicted Predicted

Case X Y returns Residuals returns Residuals returns Residuals

1 8 24 7.03 16.97 6.98 17.02 6.91 17.09

2 9 8 7.90 0.10 7.85 0.15 7.78 0.22

3 11 15 9.66 5.34 9.59 5.41 9.50 5.50

4 11 16 9.66 6.34 9.59 6.41 9.50 6.50

5 15 18 13.17 4.83 13.02 4.92 12.96 5.04

6 22 19 19.32 –0.32 19.18 –0.18 19.01 –0.01

7 25 33 21.96 11.04 21.80 11.20 23.60 5.40

8 26 32 22.84 9.17 22.67 9.33 22.46 9.54

9 30 26 26.35 –0.35 26.16 –0.16 25.96 0.08

10 33 24 28.98 –4.98 26.78 –4.78 28.51 –4.51

11 29 52 25.47 26.53 25.29 26.71 25.51 26.94

12 39 28 34.25 –6.25 34.01 –6.01 33.70 –5.70

13 44 31 38.64 –7.64 38.37 –7.37 38.02 –7.02

14 47 23 41.28 –18.28 40.98 –17.98 40.60 –17.60

For the fuzzy methods, the tabled values for predicted returns are the values where the fuzzy num-
bers produced by the regression equations have their peaks. This is analogous to using the means of
the predictions from OLS (which are also distributions). Also shown are the residuals for each analysis.
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Linear Regression with Fuzzy Data (LRFD)
In this type of regression, the dependence of an output variable Y on input
variables Xi is expressed by the following:

Y = a1 X1 + a2 X2 + ... + am Xm (5)

where the values of the input and output variables are fuzzy numbers
which are assumed to be triangular and symmetric, and a1, a2, ..., am are
real-valued parameters. Let Xj = (xj,sj ) for j = 1,2, ..., m. Then
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Data are provided as pairs (Xi,Yi) for i = 1, 2, ..., n, where each Xi is an m-
tuple of symmetric triangular fuzzy numbers, and Yi is a symmetric trian-
gular fuzzy number. The pair of real numbers (xij, sij) will specify the fuzzy
number for the jth independent variable of the ith data point. The pair of
real numbers (yi,si) will specify the fuzzy number for the corresponding
dependent variable for the ith data point. Let Yi denote the observed fuzzy
number associated with Xi, and let     Ŷi  denote the predicted fuzzy number
obtained from fuzzy linear function (5) when Xi is used as its input. The
objective of the regression problem is to find parameters a1, a2, ..., am

such that the fit between the fuzzy prediction     Ŷi  and the fuzzy data Yi is
as good as possible. According to Klir and Yuan (1995), two simultaneous
criteria are usually used for goodness of fit. First, minimize the total dif-
ferences between the areas of the fuzzy numbers     Ŷi  and Yj for i = 1, ..., n.
Second, make the fuzzy numbers     Ŷi  and Yj compatible to some given de-
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gree h ∈ [0,1]. This can be formulated as the optimization problem (Klir
and Yuan 1995, page 456)

Minimize 
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where aj  ∈ ℜ for all j = 1,..., m.
To illustrate the application of linear regression with fuzzy data, we

reanalyzed a subset of the data used in the previous example. For this
example, however, the independent and dependent variables are now pre-
sumed to be fuzzy numbers which characterize the measurement error or

Figure 2. Linear regression with fuzzy parameters for the relationship between
chinook salmon spawners and returns. The regression line is depicted in
the graph on the right along with the original data from Unwin and
Glova (1997) depicted as crosses. The small graph on the left is a rotated
display of the fuzzy numbers predicted for returns by the regression for
each x-value observed in the original data.
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ambiguity of the values. Although the regression technique can accept
fuzzy numbers with arbitrary uncertainties, for the sake of simplicity, we
assumed the uncertainties to be proportional to the estimated magnitude.
The data, which are displayed in Fig. 3, are therefore bivariate symmetric
triangular fuzzy numbers, each with a breadth in each dimension of ±25%
the original value. The LINGO optimization modeling language yielded
the solution (according to the chosen criteria) Y = 0.864X.

Tables 1 and 2 summarize and compare the results from three kinds
of linear regression on the Unwin and Glova data set. Table 1 gives the
(central) predicted values and the residuals for ordinary least squares re-
gression (OLS), linear regression with fuzzy parameters (LRFP), and linear
regression with fuzzy data (LRFD). Predicted values are presented for each
x-value observed in the data set. Residuals are the differences between
the observed and predicted values for the Y variable. Values are displayed
to two decimal places for the benefit of those who attempt to repeat these
calculations, although this may not reflect the precision of the data set.

Table 2 compares the three regressions using quality coefficients de-
fined by Pop and Sarbu (1996). QC1 is a coefficient used in analytical
chemistry and elsewhere to judge the goodness of fit to a regression line.
QC5 relativizes residuals by the maximum of absolute residuals and has a

Figure 3. Data to be used in a linear regression with fuzzy data. Based on the
chinook salmon data of Unwin and Glover (1997). Each diamond repre-
sents a pair of fuzzy numbers.
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range [1, n1 ⁄2]. QC6 uses the mean of absolute residuals and has a range
[n1 ⁄2, n]. These coefficients were normalized by Pop and Sarbu (1996) as
NQC5 and NQC6 which take values between [0,1] as more practical ranges
for evaluative purposes. Table 2 shows that both fuzzy regressions com-
pare reasonably well with the traditional least squares regression.

Reexamination of Figure 1 Data
The seven data points of Fig. 1 were analyzed by fitting a fuzzy regression
(FR) with intercept to the data because it is the most commonly used form
of regression. The fuzzy regression procedure used for this example was
developed from an algorithm provided by Pop and Sarbu (1996) termed
the Modified Fuzzy 1-Lines. Results obtained by using this algorithm were
compared by the above authors with ordinary least squares and weighted
least squares, as well as several robust regression methods. This fuzzy
regression procedure was found to exceed the least squares method and
equal or exceed all other methods tested including two previously pro-

Table 2. Values of quality coefficients described by Pop and Sarbu (1996)
for the three regressions on the chinook salmon data of Table 1.

Model type

Coefficient type OLS LRFP LRFD

QC1 0.81 0.82 0.82

QC5 1.6 1.6 1.5

NQC5 0.21 0.21 0.18

QC6 5.0 5.0 5.1

NQC6 0.12 0.12 0.13
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In the formulas for the coefficients given at the bottom of the table, n is the number of data points, the
ri are the residuals     ( ˆ )y yi i− , where yi and     ŷi  are observed dependent values at each datum and those
predicted by the model respectively, and r is the mean of the ri.
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posed fuzzy methods. The criteria for comparison included the maximum
of absolute residuals and the mean of absolute residuals as well as other
preference measures. The Pop and Sarbu algorithm was converted into a
FORTRAN 77 program and compared with the results from examples pro-
vided by the above-mentioned authors. Our results were virtually identi-
cal to those reported. We also implemented the quality coefficients used
by Pop and Sarbu to evaluate the goodness of fit of the regression lines.
The software is available from the authors.

The fuzzy regression program (FR) developed from the Modified Fuzzy
1-Lines algorithm produces the fuzzy number associated with the classi-
cal set X to the membership threshold α (α = 0.05 in our applications)
together with its linear representation. Our program also estimates the
five quality coefficients used by Pop and Sarbu, as well as a membership
function describing the grade of membership for each observed point in
the data set which may be useful in detecting outliers in the data.

Table 3 shows the results of comparing the OLS regression with inter-
cept to the new fuzzy regression (FR) in terms of the five quality coeffi-
cients. Note that most of the quality coefficients using the fuzzy regression
method were smaller than those derived from the OLS regression. This
indicates that the performance of the fuzzy regression method was supe-
rior using these several quality coefficients.

Calibration Program
The problem addressed in this example is the so-called calibration prob-
lem which has received attention by statisticians as well as by scientists in
many disciplines, including fishery scientists (ICES 1993). This problem
can be loosely defined as a prediction from past data on the relationship
between a precise and an imprecise measurement of the same thing, us-
ing a future imprecise observation to predict the more precise value. An
example is the estimation of year class strength (recruitment) from a sur-
vey index, based on calibration against virtual population analysis (VPA)
estimates of past year class strengths. We believe that the recent results
from calibration studies in analytical chemistry using fuzzy regression
(Pop and Sarbu 1996) may be useful in contributing to a better under-
standing of the calibration problem in a fisheries context.

We consider the estimation of year class strength from a survey index
against VPA estimates of past year class strength for the northwest Atlan-
tic mackerel. The data set is from Clark (1979), and it has also been used
by the 1984 ICES Working Group on Methods of Fish Stock Assessments.
We compare the results obtained by the Modified Fuzzy 1-Lines regres-
sion with results obtained by OLS regression with intercept based on log-
transformed variables. The transformed data and the results obtained from
the two regressions are shown in Table 4. From an examination of the
residuals by year between the OLS and the FR methods, it is evident that
the FR method had smaller residual values in five of the eight years. How-
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Table 3. Comparison of OLS versus
FR regressions on the flow
versus survival data from
Cada et al. (1997) shown in
Fig. 1.

Quality Method
coefficients OLS FR

QC1 0.026 0.025

QC5 1.9 1.4

NQC5 0.55 0.25

QC6 3.5 2.7

NQC6 0.20 0.23

ever, the quality coefficients indicate slightly higher (i.e., worse) values
for the FR method. This is not altogether surprising. By design, the OLS
regression yields the line of best fit as measured by the sum of squared
residuals. The quality coefficients are closely related to this criterion. The
FR method may be useful as another form of robust regression that is
insensitive to large residuals and therefore appropriate for data sets which
may contain outliers.

Discussion and Conclusions
Fuzzy regression has been described and illustrated with some simple
examples from recent fisheries literature describing important relation-
ships based on relatively limited data. The results suggest that fuzzy re-
gression compares favorably with standard statistical regression
procedures in terms of performance as measured by certain quality coef-
ficients. We believe fuzzy regression can overcome some of the weakness-
es of OLS. Justification for these statements is provided by the following
observations.

In the case of applying linear regression with fuzzy parameters (LRFP)
and linear regression with fuzzy data (LRFD) to the chinook salmon re-
turns example (Table 1), the residuals from both types of fuzzy regression
are very similar to the least squares residuals. The comparison of quality
coefficients (Table 2) also indicates that the performances for all methods
are quite similar.

The quality coefficients (Table 3) also have very similar values for
traditional and fuzzy regressions of the flow versus survival relationship
depicted in Fig. 1. Four out of the five coefficients, however, suggest the
fuzzy regression is superior.
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For the Atlantic mackerel data, the results are again very similar
(Table 4), although the OLS results seem to be slightly but consistently
higher. The FR intercept value for the fuzzy regression was 6.85 versus
6.90 for the least-squares regression. The slope of the fuzzy regression
was 0.278 versus 0.288 for the OLS model. This suggests that the FR mod-
el weights large values of residuals less than the OLS model.

It should be recalled that OLS regression is based on the assumption
of an independent and normal error distribution with uniform variance
(homoscedasticity). In fisheries applications such as the calibration prob-
lem, the y-direction error is dependent on the survey index value and on
the presence of outliers which lead to heteroscedastic results. In practice,
we don’t usually know the shape of the error distribution function and its
variance. A consequence is that the least squares method does not lead to
the maximum likelihood estimate. If the tails of the experimental error
distribution contain a much larger percentage of the total area than the
normal distribution, the best linear unbiased estimator may not be very
good. The least squares method is well known to be sensitive to the effect

Table 4. Raw data on northwest Atlantic mackerel survey indices versus
VPA results based on Clark (1979) comparing fuzzy regression
(FR) and ordinary least squares (OLS) regression for log-trans-
formed data.

 Transformed data OLS FR
VPA VPA VPA

Case Index Recruits Predicted Residuals Predicted Residuals

1 0.000 6.68 6.85 –0.17 6.90 –0.05

2 0.406 7.31 6.97 0.35 7.02 0.30

3 1.610 7.35 7.31 0.04 7.35 –0.00

4 1.792 7.09 7.36 –0.27 7.40 –0.31

5 1.946 7.17 7.40 –0.23 7.44 –0.27

6 2.526 7.74 7.57 0.17 7.60 0.14

7 2.603 7.70 7.59 0.10 7.63 0.07

8 3.091 7.74 7.73 0.01 7.76 0.02

Quality coefficients

QC1 0.030 0.030

QC5 1.6 1.9

NQC5 0.34 0.47

QC6 3.4 3.5

NQC6 0.10 0.12
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of large residuals, so results are distorted if there are large differences
between the observed data and the model predictions. Fuzzy regression
appears to overcome some of these difficulties.

A basic issue relates to the interpretation of fuzzy regression results.
These cannot be interpreted in the same way as the results from classical
regression. The prediction from a fuzzy regression is a fuzzy number for
each value of the independent variable(s). From a practical point of view,
we believe that the results from fitting a fuzzy regression to uncertain or
imprecise data may provide a fishery manager with a more conservative
but realistic indication of the variability and uncertainty associated with a
predicted response. This is in keeping with the so-called precautionary
approach to fisheries management.

This work has only briefly introduced the use of fuzzy regression. It
can be extended to multiple independent variables (e.g., Heshmaty and
Kandel, 1985) and can also be applied to quadratic and other polynomial
relationships (Bárdossy 1990). The results of this work can be briefly sum-
marized as follows:

1. Fuzzy regression leads to a mathematical programming problem which
can be solved in a straightforward manner.

2. Rules of fuzzy mathematics are used to define the regression param-
eters on fuzzy numbers.

3. Results of fuzzy regression applications indicate that it compares fa-
vorably with ordinary least squares regression.

4. Our limited experience in applying fuzzy regression to some fisher-
ies-related data suggests that it may be useful in overcoming some
difficulties associated with heteroscedastic and uncertain data.
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Abstract
The sampling error associated with estimates of age composition for five
groundfish species commercially landed at Oregon ports is used to exam-
ine the ability of age-structured stock assessment models to adequately
describe the stochastic properties of actual catch-at-age data. Specifically,
estimated coefficients of variation associated with samples of catch-at-
age are presented graphically to evaluate a theoretical consideration in-
volved in stock assessment models widely used in marine fishery
management. Results presented here indicate that a multinomial proba-
bility error structure, included in models that are based on maximum
likelihood estimation, more closely follows the variability associated with
the sampled landing data than does a lognormal error structure used in
models based on least squares estimation. Weighted nonlinear regression
analysis is used to determine the specific multinomial distribution (sample
size n) that provides the most accurate description of the actual variability
associated with the sample estimates of age composition. Implications for
stock assessment modeling are discussed. Finally, a linear regression model
is derived that describes the relationship between multinomial sample
size and the number of boat trips sampled, in efforts to provide an adequate
error structure for the models without having to rely on the relatively
complex and tedious sampling estimators and subsequent analytical tech-
niques.
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Introduction
In recent years, stock assessment models have gained widespread appli-
cation in fisheries management. In particular, several age-structured as-
sessment methods have become the primary tools used to derive estimates
of fishery parameters, such as fish population abundance and exploita-
tion rates, in many fisheries throughout the world (Megrey 1989). The
motivation behind these assessment methods is that a time series of catch-
at-age data for a fishery (i.e., estimates of age composition of the landings
for a particular stock) can be utilized in models containing certain biolog-
ical processes of fish populations, such as growth, mortality, and repro-
duction. The extent to which these models can describe or predict the
inherent stochastic properties of an animal population is based largely on
the validity and reliability associated with their parameters and assump-
tions (Pielou 1977, Gulland 1983, Gottelli 1995).

It is generally agreed that estimates of catch-at-age alone are insuffi-
cient to reliably determine the status of exploited fish stocks (Doubleday
1976, Pope 1977, Megrey and Wespestad 1988, Quinn and Collie 1990).
The types and function of auxiliary data in fishery models need to be
examined rigorously to safeguard against inappropriate application in
management situations. In particular, it is critical that important model
assumptions be reviewed and tested to ensure that generated results are
interpreted appropriately (Gudmundsson 1986, Edwards and Megrey 1989,
Schnute 1989, Sampson 1993).

To date, one of the most important advances in model development
has been the inclusion of an error structure to address the variability asso-
ciated with the: (1) separate biological processes that influence fish popula-
tion abundance, such as reproduction and mortality; and (2) input data on
which the models are based, namely the sample estimates of catch-at-age
(see Megrey 1989) for an extensive review of age-structured stock assess-
ment models). The age-structured assessment models that accommodate
stochastic data can be broadly classified into two groups based on the sta-
tistical estimation technique that is used (Kimura 1989): (1) the method of
least squares (e.g., Doubleday 1976; Pope and Shepherd 1982; Deriso et al.
1985, 1989; Kimura 1989); or (2) the method of maximum likelihood based
on multinomial distribution probabilities (e.g., Fournier and Archibald 1982;
Dupont 1983; and Methot 1989, 1990). Note that the least squares and max-
imum likelihood methods generate equivalent solutions if the error terms
are assumed to be distributed as normal random variables (Bain and Engel-
hardt 1987). In addition, although the two groups of models above are most
often defined by distinct error structures, each estimation method (nonlin-
ear least squares and maximum likelihood) is capable of fitting lognormally
and multinomially distributed catch-at-age data (Kimura 1990). If least
squares residuals are weighted inversely by their expected variances, the
least squares method can be used in an iterative manner to generate maxi-
mum likelihood estimates (McCullagh and Nelder 1989).
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An important theoretical consideration when choosing an appropri-
ate stock assessment model involves defining the correct sampling distri-
bution for estimates of age composition (Kimura 1990). The focus of the
work described here is the assumed error structure for age composition
data relied upon in the different models, which is one criterion that can be
used to differentiate the two groups of models discussed above. That is,
the objective of this research does not directly involve a critical examina-
tion of the methods of estimation utilized by the different models. Also,
note that there exist other sources of error (uncertainty) associated with
age-structured stock assessment models that are not evaluated in this
paper, including measurement of: (1) aging error (i.e., error associated
with determining the age of a fish specimen); (2) effort error; (3) spawner-
recruit error; (4) stochastic mortality; and (5) total catch, including dis-
card and bycatch estimates (Megrey 1989).

The suite of models that is based on least squares estimation general-
ly assumes that observation errors in catch-at-age data are lognormally
distributed and the models use loge transformed estimates of catch-at-
age. The least squares estimators assume constant variance of the log
transformed estimates of catch-at-age, which dictates that the coefficients
of variation (CVs) associated with the untransformed catch-at-age esti-
mates be approximately equal (Kimura 1989, 1990; Methot 1990).

In the models that use maximum likelihood estimation, the error struc-
ture for catch-at-age data is based on multinomial probabilities, which
implies that the CVs associated with the estimates of proportion-at-age
are distributed in a multinomial fashion (Methot 1990). That is, the magni-
tude of the CV decreases steadily as the size of the proportion increases
(Fig. 1). The sampling variance of a proportion derived from a multinomi-
al distribution is treated as a binomially defined parameter and calculated
as V(P ) ≅ [P (1 – P )/n], where P is the population proportion and n is the
number of units in the sample. The CV of P is calculated as   ( V(P) /P). In
probability theory, n can be practically interpreted as an index that de-
fines a particular distribution from an infinite number of possible proba-
bility distributions. In stock assessment models, n represents the sample
size associated with an estimated age composition. It is a weighting fac-
tor, such as Jy below, that adjusts the theoretical CV versus P curve upward
or downward to reflect the estimated variability associated with the age-
composition sample. Henceforth, the term “multinomial index” is used to
identify a specific n from the family of possible distributions.

The general form of the objective function used in the two groups of
models to derive fishery-related parameters is as follows, summation be-
ing over y = 1,…,Y for years and a = 1,…,A for ages: (1) least squares
(Deriso et al. 1985), choose parameters that minimize
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Figure 1. Distributions of estimated coefficients of variation (%) associated with
estimates of age composition (percentage of total number of fish landed)
for two different error structure assumptions used in fish stock assess-
ment models. Lines depict the general form of the distributions and do
not reflect the inherent variability associated with samples of age com-
position.

(2) maximum likelihood (Methot 1990), choose parameters that maximize
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where cya is the observed catch-at-age (in number), 
    ̂cya

 is the predicted
catch-at-age (in number), Jy is a weighting factor that reflects the number
of fish in the sample if the fish were selected as a single simple random
sample (i.e., if the multinomial probability distribution was strictly correct),
pya is the observed proportion-at-age, and     ̂pya  is the predicted proportion-
at-age. The assumption regarding the pattern of variability exhibited by
the actual sample estimates of catch-at-age is generally different between
these two groups of models (Fig. 1).
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The primary objective of this research was to examine the statistical
properties associated with estimates of age composition for groundfish
landings in Oregon from 1989 to 1994. Specifically, we graphically present
the distributions of estimated CVs associated with estimates of age com-
position for five species of groundfish to evaluate the appropriateness of
the error structure assumed in fishery models to describe the uncertainty
associated with the catch-at-age sample data. In addition, we present a
nonlinear regression technique and generally discuss other methods that
can be used to determine a specific multinomial index (n) to apply to
particular age-composition data sets. Finally, a simple linear regression
model is developed that describes the relationship between the multi-
nomial indices and the number of boat trips sampled.

Methods
Estimates of age composition (in number and percent) and their errors
were calculated for five species of groundfish commercially landed at
Oregon ports from 1989 to 1994: widow rockfish (Sebastes entomelas),
yellowtail rockfish (Sebastes flavidus), canary rockfish (Sebastes pinniger),
English sole (Pleuronectes vetulus), and Dover sole (Microstomus pacifi-
cus). Age-composition data sets for 22 combinations of species and year
were analyzed in this study, i.e., age-composition samples for 8 species-
year combinations were not collected or had specimens that had not been
analyzed for age determination at the time of this study. The analyses of
age composition for this study were based on a stratified two-stage ran-
dom sampling design combined with poststratification (Fig. 2). The sam-
pling design used for 1989 and 1990 landings incorporated a single
sampling unit (basket of fish) at the second stage and utilized straight-
forward ratio estimation techniques to derive landing statistics (Sen 1986).
A “complete” multistage design was used for 1991-94 landings, which in-
corporated replicate sampling units at the second stage and used stan-
dard two-stage estimators to generate landing estimates (Crone 1995).

A coefficient of variation (CV), (standard error / estimate), was used to
describe the variability associated with the individual landing estimates
of age composition. This statistic is also referred to as a relative standard
error (Som 1973) and a coefficient of variation of the estimate (Cochran
1977). Weighted nonlinear least squares regression (Neter et al. 1990) was
applied to estimates of age composition and their estimated CVs to deter-
mine multinomial indices (n) for combinations of species and year, with
estimated proportions-at-age used as the weights. Simple linear regres-
sion methods (e.g., Draper and Smith 1981; Neter et al. 1990) were applied
to relate the multinomial indices with the number of boat trips sampled.
The number of boat trips represents the first-stage sample size in estimators
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Figure 2. Two-stage sampling design used to monitor age compositions of commer-
cially landed groundfish in Oregon (1989-1994). Port and quarter combi-
nations were treated as strata. Three examples of market categories
(presorted groups of fish) are presented. Top: primary sampling units;
middle: poststratification units; bottom: secondary sampling units.

associated with the multistage sampling design used to generate age-com-
position statistics (Fig. 2).

Results
Results from age-composition analyses were very consistent for the five
species evaluated in this study. Selected species-year combinations are
presented as examples that generally describe the statistical properties of
the age compositions.

The relationship between the individual estimates of age composi-
tion, presented as percentages of the total number of fish landed, and
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their associated CVs was negatively curvilinear for each species-year com-
bination (e.g., 1991 results are presented in Fig. 3). The actual ages associ-
ated with the data points are not included on the graphs; however, particular
data points (ages) are identified to highlight general patterns exhibited in
the age compositions. Also, for purposes of graphical clarity, we have
omitted age groups that constituted less than 0.07% of the total landings;
the CVs associated with these age groups were very consistent across
species and years, ranging from 70 to 110%. In general, estimates that
composed large percentages of the total landings were measured with
higher relative precision (i.e., had smaller CVs) than estimates of age com-
position that constituted small percentages of the total landings.

For example, 851,558 age-6 English sole were landed in 1991, which
was roughly 34% of the total number of English sole landed for the year,
and the CV associated with this estimate was 13%; whereas, 16,071 age-16
fish were landed, which was approximately 1% of the total number land-
ed, and this estimate had a CV of 87% (star-filled squares, middle right
panel of Fig. 3).

The CVs associated with the landing estimates clearly mimicked the
curves generated from the theoretical multinomial distributions, present-
ed in the figures for n = 100, 400, and 1,000. The role of n as weighting
factors in stock assessment models that incorporate an error structure
based on multinomial probabilities is discussed below. Although the pat-
terns of variation that characterized the estimated age compositions were
generally similar between the five species, the amount of statistical “noise”
associated with each set of estimates (species-year combinations) was not
identical. For example, ages 7, 14, and 15 made up roughly 5% (approxi-
mately 47,000 fish) of the total landings of canary rockfish in 1991; how-
ever, the CVs associated with these similar landing estimates ranged from
17 to 33% (star-filled squares, middle left panel of Fig. 3). For Dover sole,
ages 15 and 16 individually composed approximately 5% (roughly 1,000,000
fish) of the total landings and these estimates had CVs that were less than
12% (star-filled squares, lower left panel of Fig. 3).

The theoretical distributions more accurately reflected the variation
associated with the estimates of age composition that contributed signif-
icantly to the total landings than they did for estimates that constituted
small percentages of the total, particularly estimates that composed less
than 1% of the total. For example, the estimate of 759,068 (approximately
18%) age-7 widow rockfish landed in 1991 had a CV of 8% (star-filled square,
upper right panel of Fig. 3), with CVs of 21, 11, and 7% associated with the
analogous percentage defined by the multinomial indices for n = 100,
400, and 1,000, respectively. Whereas, the estimate of 3,634 (roughly 0.09%)
age-31 widow rockfish had a CV of 59% (star-filled square, upper right
panel of Fig. 3), compared with CVs of 333, 167, and 105%, for the three
theoretical distributions defined by n = 100, 400, and 1,000, respectively.

In general, at least three-fourths of the total landings of a species and
year combination was composed of a relatively small range of consecu-
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Figure 3. Distributions of coefficients of variation (%) associated with estimates of
age composition (percentage of total number of fish landed denoted by
squares) for five species of groundfish landed at Oregon ports in 1991.
See Results section for description of star-filled squares. Coefficients of
variation derived from percentage estimates for three multinomial indi-
ces are presented, n = 100, 400, and 1,000. Estimates for ages that com-
posed at least 0.07% of the total landings are included. The Y-axis has
been logarithmically scaled. For each species, the sample sizes (number
of boat trips) used to derive age-composition statistics are denoted as bt
and the total number of fish collected across all boat trips is denoted as f.
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tive ages that individually contributed at least 5% to the total and these
estimates were relatively precise, with CVs less than 25%. The remaining
approximately one-fourth of each age composition included comparative-
ly more ages that individually composed less than 5% of the total and
these estimates were more variable than for the ages that constituted the
three-fourths majority, with CVs generally greater than 30% and most of-
ten between 50 and 100%. Detailed landing statistics for yellowtail rock-
fish in 1990 illustrate the general properties of the age-composition sample
data collected in Oregon from 1989 to 1994 (Table 1).

Weighted nonlinear regression analysis was used to identify the mul-
tinomial index (n) that most accurately characterized the actual variation
associated with estimates of age composition for combinations of species
and year, with weights equal to the estimated proportions-at-age. In ef-
fect, ages that were landed more frequently and reflected relatively large
proportions of the total landings were given more importance in the fit-
ting procedures than those ages that were associated with small propor-
tions. For example, using this straightforward analytical technique, the
age composition of yellowtail rockfish landed in 1991 (upper left panel of
Fig. 3) was characterized by a multinomial index with an n of 688.

Following the determination of multinomial indices for age composi-
tions by species and year, a linear regression model was developed that
describes the relationship between the multinomial indices and the corre-
sponding number of boat trips sampled for the species-year data sets.
The amount of variation associated with a species-year age composition is
directly influenced by the number of boat trips sampled (Fig. 2; Crone
1995). A relatively simple model was developed that accounted for a sig-
nificant portion of the variability (r2 = 0.90) in the dependent variable (n),
where the number of boat trips sampled was statistically related (P < 0.001)
to the multinomial index (Fig. 4). The total number of fish that constituted
a species-year age-composition sample was another sampling descriptor
that was considered as a potential independent variable in the model.
Although this variable was found to be a statistically significant (P < 0.001)
term when included in the regression model along with the number of
boat trips sampled, we felt its presence in the model was not applicable,
given: (1) it did not substantially increase the amount of total variation in
multinomial index (n) accounted for by the regression equation (r2 = 0.94);
and more important, (2) the strong correlation (multicollinearity) that ex-
isted between the two independent variables (r = 0.80) confounds the
interpretation and use of a fitted regression model (Neter et al. 1990).

Discussion
Results presented here indicate that stock assessment models that utilize
maximum likelihood estimation techniques with a multinomial probabili-
ty error structure (e.g., Fournier and Archibald 1982; Methot 1989, 1990)
more adequately address the variability associated with observed catch-
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Table 1. Age-composition estimates for yellowtail rockfish
landings in Oregon (1990).

Landing Percent of
Age estimate total landings CV (%)

4 236 <1 102

5 23,759 2 45

6 140,419 11 33

7 132,329 10 18

8 81,400 6 18

9 135,648 10 15

10 142,835 11 10

11 96,412 7 15

12 101,234 8 14

13 89,401 7 18

14 102,838 25

15 74,107 6 13

16 62,956 5 22

17 37,099 3 26

18 21,001 2 32

19 13,310 1 28

20 6,461 <1 39

21 10,613 1 32

22 1,142 <1 55

23 8,852 1 42

24 1,000 <1 78

25 1,457 <1 86

26 1,464 <1 71

27 6,556 <1 44

28 6,479 <1 77

29 3,134 <1 52

30 2,911 <1 81

31 2,634 <1 77

32 90 <1 102

34 1,638 <1 78

36 701 <1 100

37 393 <1 101

38 392 <1 101

40 43 <1 103

41 2,786 <1 75

42 1,638 <1 78

46 1,245 <1 98

Total 1,316,613 100

Landing estimates are in number of fish and are based on a sample of 35 boat trips.
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Figure 4. Multinomial index (n) as a linear function of the number of boat trips
sampled. The multinomial index (dependent variable) represents a theo-
retical sample size (n) associated with multinomially distributed propor-
tion-at-age estimates. The number of boat trips sampled (independent
variable) represents the actual sample size associated with sampling
estimators used to derive the age-composition landing statistics. Data
points (★) represent multinomial indices associated with age-composi-
tion data sets for combinations of species and year; an example is shown
for the age composition of yellowtail rockfish landed in 1991 (see upper
left panel of Fig. 3 for estimates of age composition and their CVs for
yellowtail rockfish landings in 1991).

at-age data than models based on lognormal measurement errors. The
statistics generated from these analyses show clearly that the CVs associ-
ated with individual estimates of age composition are not constant, or
even approximately so, but rather follow the general properties of a mul-
tinomially distributed variable.

The choice of the most appropriate multinomial index (n) to use in a
model is inherently problematic. The sampling designs generally employed
to collect fishery-related data, along with the selection protocols utilized
in the field, generate age-composition estimates that necessarily depart,
to some degree, from a strict theoretical probability distribution, multino-
mial or otherwise. That is, the catch-at-age data used in stock assessment
models are most often based on a sample that consists of many boat trips,
which have been selected over a period of time using nominally random
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selection protocols (e.g., see Tomlinson 1971, Crone 1995), rather than a
sample that was obtained in a strictly random manner from a single trip.

For example, multinomial distribution theory could be applied to a
single random sample from a boat trip in a generally straightforward fash-
ion, say to calculate the variance associated with the estimated propor-
tion of age-6 yellowtail rockfish in the landings. However, the actual
estimated variances associated with the landing estimates (in number or
percent) were necessarily derived from appropriate sample estimation tech-
niques that required no assumptions regarding distribution properties of
the measurement variables. Kimura (1990) also argues that although rig-
orous multinomial sampling for catch-at-age data may be convenient from
an intuitive or modeling standpoint, it is most often an impractical sam-
ple selection approach, given the expanse and dynamics of commercial
fisheries.

Determination of the most appropriate multinomial index (n) becomes
problematic because the age compositions estimated from the individual
trips sampled are often considerably different from one another (Fig. 5),
which confounds the use of explicit theory (e.g., a multinomial distribu-
tion supposition) to summarize the actual variability associated with the
sample estimates. In the context of generalized linear modeling, this sam-
pling scenario often results in “overdispersion” in the data, i.e., the vari-

Figure 5. Estimated age compositions (in percent) for landings (in number) of Do-
ver sole for three boat trips (A, B, and C) sampled at Oregon ports in
1994. Sampling design used to generate estimates is described in Crone
(1995).
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ability associated with the landing estimates is greater than what is ex-
pected from a simple multinomial variable.

Models that account for overdispersion, sometimes called “mixed”
models, can be adapted for multistage sampling designs, which requires
estimating the scale of overdispersion from a residual deviance statistic
(Francis et al. 1993). For example, a comparative study showed that a com-
pound multinomial model was found to be more flexible than a simple
multinomial model for defining the variance structure of combined length
frequency samples from commercial cod landings; however, the authors
advised that this mixed model be applied with caution until further re-
search has fully established the estimation theory (Smith and Maguire
1983). The beta-binomial distribution has also proved useful for specify-
ing and fitting a model that accounts for overdispersion (Crowder 1978).
McCullagh and Nelder (1989) suggest an ad hoc approach for dealing with
overdispersion that utilizes residual deviance statistics and is directly
related to standard regression procedures.

We have shown that the specific form of the multinomial distribution
error structure can be estimated using some of the general properties of
commercial fishery sampling designs. The motivation behind the tech-
niques we have presented is generally addressed in Shepherd and Nichol-
son (1986, 1991). That is, Shepherd and Nicholson (1991) present an
intuitively attractive ad hoc method to determine an error structure for
multiplicative modeling of catch-at-age data, but this method attempts to
define a variance (error) structure for landing estimates of age composi-
tion in general and does not allow for an objective determination of an
appropriate weighting factor. Although general methods, such as the ap-
proach proposed by Shepherd and Nicholson, do provide results that are
broadly appropriate, the actual catch-at-age data may be much more or
less precise than the results indicate, due largely to the effectiveness of
the sampling design. We present methods that can be utilized to deter-
mine the most appropriate weighting factor (n) to describe the variation
associated with a specific age composition(s), thus these methods require
that the actual variance measures associated with the sample estimates
be available.

Research objectives that address the impact of various error struc-
tures on model results have received sparse attention in fishery science
(Megrey 1989). Intuitively, a model should be designed in a manner that
allows the correct stochastic properties of the catch-at-age data to be in-
corporated, otherwise additional sources of bias are inherently introduced
into the analytical processes. Methot (1990) suggested that the multino-
mial error structure is a preferred model feature because it emphasizes
the variation associated with landing estimates that reflect large propor-
tions of the total landings, which are documented here as being compara-
tively more precise than the estimates that constituted small proportions
of the total. An experiment conducted to examine the sensitivity of as-
sessment results to the assumption of constant selectivity showed that
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the assumed error structure could have a large impact on the final esti-
mates generated from two different modeling approaches, namely stock
synthesis analysis and Catch AGE ANalysis or CAGEAN (Sampson 1993).

In contrast, Deriso et al. (1985) demonstrated that a stock assessment
model that utilized a least squares estimator (CAGEAN) generated similar
results in a comparative study of three different theoretical distributions,
based on lognormal measurement error, multinomial measurement error,
and process error, applied individually to the model to address the sto-
chastic properties of hypothesized catch-at-age data. Kimura (1990) simu-
lated catch-at-age data using lognormal and multinomial error structures
and then analyzed the data using nonlinear least squares and multinomial
maximum likelihood estimation, and showed that the results from the
overall analyses were similar. The author did however recommend that
caution be used when interpreting his findings, given that the results from
the simulation experiments may depend strongly on the population and
constraints utilized in the model.

Further research is needed that focuses on the relationship between
departures from assumptions and model output to critically examine the
issue of statistical robustness of fishery models. Results presented here
indicate that more complex error structures may be needed to account for
the variability in catch-at-age sample data from commercial fisheries, and
subsequently, methods need to be developed for incorporating these com-
plicated error structures in the modeling process. The results and discus-
sion presented here are used to evaluate the appropriateness of an
assumption used in current age-structured assessment models to address
the stochastic properties of catch-at-age data and should not be interpret-
ed as broad recommendations of the overall performance of a model, giv-
en that these models incorporate a host of estimated parameters and other
assumptions that were not investigated in this study.
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Abstract
Stock assessment models that incorporate catch or survey age composi-
tions and indices of abundance are commonly used for managing fisher-
ies. Obtaining error estimates for estimated parameters in these models
can be difficult. Many models incorporate a bootstrap procedure for esti-
mating errors. In order to perform a bootstrap procedure, age composi-
tions can be modeled by some type of statistical distribution and are often
assumed to follow a multinomial process. However, the multinomial dis-
tribution is based on the assumption that a simple random sample of ages
is taken from the catch, which in practice is rarely true and can lead to
underestimation of error. In some applications, a smaller “effective sam-
ple size” is substituted for the actual sample size in a subjective manner.
We developed an a posteriori method to model observed age composi-
tions with the Dirichlet distribution, using the estimated age composi-
tions from the stock assessment model. A parametric bootstrap procedure
using the fitted Dirichlet distribution provided error estimates for esti-
mated stock assessment parameters. We illustrate this technique by appli-
cation to an age-structured model for Pacific herring (Clupea pallasi) from
Norton Sound, Alaska. The Dirichlet procedure properly accounted for the
variation in observed age compositions compared to those estimated by
the stock assessment model. The effective sample sizes from the Dirichlet
procedure were lower than the actual sample sizes, suggesting that a com-
parative multinomial bootstrap procedure underestimated the variance.

Introduction
Fisheries managers commonly utilize stock assessment models which in-
corporate catch or survey age compositions and indices or estimates of
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abundance (Hilborn and Walters 1992, Quinn and Deriso, in press). These
catch-age or age-structured assessment models are among the best tech-
niques for analysis available to fisheries managers. To fully interpret the
parameter estimates from catch-age analysis, estimates of parameter vari-
ability are required. Obtaining error estimates of estimated parameters in
these models can be awkward and sometimes subjective. Many catch-age
models incorporate a bootstrap procedure for estimating errors (Efron
1982, Efron and Tibshirani 1993, Quinn and Deriso, in press).

A nonparametric bootstrap procedure, as applied to catch-age analy-
sis, involves randomly sampling age composition residuals with replace-
ment and adding them to the original estimated values, giving a new set
of observed values (Deriso et al. 1985). The new observed values are then
used to estimate the parameters of the model resulting in a bootstrap
replicate. The standard deviation of the bootstrap replicates is an esti-
mate of the standard error of the estimate (Efron 1982, Efron and Tibshi-
rani 1993). In the case of age composition data, large negative residuals
relative to the smallest estimated value results in unrealistic negative “ob-
served” values during the bootstrap procedure.

An alternative method of performing a bootstrap of age composition
residuals in catch-age analysis which may be more accurate is to fit a
parametric model, usually in the form of some type of statistical distribu-
tion, to the observed age compositions. The most commonly employed
model for age composition data is the multinomial distribution (Fournier
and Archibald 1982, Kimura 1990). However, incorporating a multinomial
process into a bootstrap procedure may require manipulation of the sam-
ple size and assumes simple random sampling with known sample sizes.
Fournier and Archibald (1982) and Methot (1986) suggested that there is
variability other than that due to multinomial sampling alone. For this
reason, they suggested the sample size for estimating age composition be
limited to n = 400, even though the actual sample size is often much
larger. In order to accurately apply the multinomial sampling distribution
to catch-age analysis, the sample size may be adjusted in an ad hoc fash-
ion so that the resulting error matches the expected level of variance.

Alternatively, an objective method is to determine the error structure
empirically by examination of the observed and estimated age composi-
tions. We propose to fit a posteriori the Dirichlet distribution to the set of
observed age compositions for implementation in a parametric bootstrap
procedure for estimation of standard errors of parameter estimates. We
apply this technique and compare it to the multinomial bootstrap proce-
dure using an age-structured model for Pacific herring (Clupea pallasi)
from Norton Sound, Alaska (Williams and Quinn 1998).

Methods
The Dirichlet distribution is a multivariate statistical distribution for a set
of random variables that take on values between 0 and 1, and sum to 1
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(Evans et al. 1993). The beta distribution, a special case of the Dirichlet
distribution, for a single variable (or more precisely, two variables sum-
ming to 1), is a flexible statistical distribution with two parameters v and
w. It is appropriate for modeling proportions, because it takes on values
between 0 and 1 and its density function can assume many shapes: U-
shaped (v = w, v < 1, w < 1), J-shaped (v > or < w), or unimodal (v = w, v > 1,
w > 1). The probability density function of the Dirichlet distribution for a
set of k proportions {θa, a = 1,…, k} utilizes the gamma function,
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Let θa,t = true proportional age composition at age a in year t, θ ′a,t =
observed proportional age composition from a sample and     

ˆ
,θa t = estimat-

ed proportional age composition from the stock assessment model. Be-
cause age composition data are available over several years, the Dirichlet
distribution is initially parameterized for each year t. The observed pro-
portions, θ ′a,t, are assumed to follow the Dirichlet distribution with param-
eters γt and

γa,t = γtθa,t, a = 1,…, k – 1, where 
    

θa t
a

k

,
=
∑ =

1
1 (2)

(For the last age group,
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−
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.)

The parameters {γa,t} are assumed proportional to {θa,t} in order to connect
the data to common parameters across years. The variance of θ ′a,t is given
by

var(θ ′a,t) = γa,t(γt – γa,t) / [γt
2(γt + 1)] = γtγa,t [γt(1 – θa,t)] / [γt

2(γt + 1)]

= θa,t(1 – θa,t) / (γt + 1).

Thus, the Dirichlet distribution variance is related to the variance of pro-
portions, given by p(1–p)/n, with γt = n – 1 and θa,t = p, where n is the
sample size (Zar 1984). Therefore, the parameter γt of the Dirichlet distri-
bution represents an “effective sample size.” Intuitively, the γt parameter
is inversely related to the amount of variance in the age composition data.
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In this application, the sets of observed and estimated age composi-
tions, {θ ′a,t } and {    

ˆ
,θat }, are the only information sources available for esti-

mating the variance. The fit of the Dirichlet distribution to the age
composition data is based on the probability density function (1). The
observed age compositions, {θ ′a,t}, from the age-structured model are used
in a log likelihood function, for k age groups and j years, given by

    
ln ({ } | { }) ln ln ln, , , ,L t a t t a t

a

k

a t a t
a

k

t

j
γ θ γ γ γ θ′ = ( ) − ( )∑ + −( ) ′( )∑
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= ==

Γ Γ
1 11

1 (3)

with     γ γ θat t a t, ,
ˆ=  from equation (2). By maximizing (3), estimates of the

Dirichlet parameters     ̂γ t  and {    ̂ ,γ at , a = 1, ..., k-1} are obtained. (For the last

age group, 
    
ˆ ˆ ˆ, ,γ γ γk t t a t

a

k
= − ∑

=

−

1

1

.) The larger the discrepancies between the ob-

served and estimated age compositions, the smaller     ̂γ t  should be. A possi-
bly more parsimonious model may be warranted in which a single effective
sample size γt = γ is used.

The parametric bootstrap analysis is performed by using the maxi-
mum likelihood estimates, {    ̂ ,γ at }, to generate Dirichlet distributed random
age compositions. Some methods of generating Dirichlet random age com-
positions are to use the     ̂ ,γ at  Dirichlet parameters to calculate (1) random
gamma variates (using a common scale parameter and {    ̂ ,γ at } for the shape
parameters), (2) beta variates (with parameters {    ̂ ,γ at } and {    ̂ ˆ ,γ γt a t− }) or (3)
chi-squared variates (with {2ˆ ,γ at } degrees of freedom) (Evans et al. 1993). In
order to follow the Dirichlet distribution, the random age compositions
must be adjusted to sum to one by dividing by the sum of the variates
across ages for that year.

The Dirichlet random age compositions are then used in place of the
observed age compositions in the model and the parameters re-estimated
to produce one bootstrap sample. Efron and Tibshirani (1993) suggest a
bootstrap sample size of no less than 1,000 for accurate standard errors
and confidence intervals. Figure 1 illustrates the algorithm for fitting the
Dirichlet distribution to age composition data and the procedure for boot-
strapping the model for error estimates.

The nature of this log-likelihood function does not allow for observed
age compositions of 0 or 1 to be used, as seen in the log-likelihood equa-
tion (3). If not too many observed proportions of zero occur, then essen-
tially they can be ignored in the likelihood estimation of the γts. Note that
if γa,t = 1, then its likelihood contribution is zero; this is one of the few
cases of the Dirichlet distribution with a nonzero probability for θa = 0. In
the bootstrap replications, there is no problem with zeros, because the

    
ˆ

,γ a t s are based on estimated proportions {    
ˆ

,θa t } that are usually nonzero. If
there are quite a few zeros, then it might be best to pool ages to eliminate
the zeros.
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Figure 1. Flow chart of the methodology for applying the Dirichlet distribution boot-
strap procedure to an age-structured model with age composition data.
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Application to Pacific Herring
We used an age-structured model for Pacific herring from Norton Sound,
Alaska developed by Williams and Quinn (1998). This model incorporates
catch and total-run age composition data and aerial survey estimates of
abundance for years 1981 to 1996 and ages 3 to 10+, similar to other age-
structured models for Pacific herring (Funk et al. 1992, Brannian et al.
1993, Yuen et al. 1994). Sample sizes for the gillnet and total run age
compositions were usually large, ranging from about 400 to over 6,000
(Table 1). A method for determining the variability associated with age-
structured model estimates for Pacific herring could prove useful for her-
ring management, because no variance estimates are currently calculated
by the Alaska Department of Fish and Game (F. Funk, Alaska Department
of Fish and Game, personal communication).

We fitted two Dirichlet distributions to the observed catch and total-
run age-composition data: one with constant γ   for each age composition
data set, the other with annual γt. Estimates were obtained by maximizing
the log likelihood function (3) in an Excel spreadsheet (available from the
authors), which utilizes a quasi-Newton optimizer. Estimates of γ and γt for
the gillnet and total run age compositions are given in Table 2, along with

Table 1. Annual sample sizes for age
composition of Norton Sound,
Alaska herring.

Year Gillnet fishery Total run

1981 1,084 4,244

1982 637 2,163

1983 994 3,570

1984 671 2,056

1985 1,265 3,550

1986 927 2,981

1987 408 1,595

1988 388 1,100

1989 622 1,593

1990 555 2,586

1991 914 3,704

1992 0a 1,197

1993 1,410 3,968

1994 789 2,626

1995 1,645 6,159

1996 1,372 4,231
a No fishery occurred in 1992.
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log likelihood statistics. The fit using annual γt parameters for the gillnet
data set was significantly better than using a constant γ (likelihood ratio
test: χ2 = 38.97, P < 0.001), while the annual γt parameterization for the
total run data set was not significantly different (χ2 = 9.16, P = 0.87). Note
that the estimates of γ in Table 2 are smaller than the sample sizes in Table
1, showing that effective sample size is smaller than actual sample size.

In order to evaluate the annual γt parameterization fits of the Dirichlet
distribution, we calculated the empirical standard deviation for each year
in each data set. These values are compared to the analytical standard
deviation based on the Dirichlet variance formulae given above. Fig. 2
indicates the Dirichlet standard deviation based on the computed effec-
tive sample sizes is comparable to the empirical standard deviation from
the age-structured model.

Table 2. Maximum likelihood estimates γ and
γt for gillnet and total run age compo-
sitions, along with maximum log-like-
lihood values.

Gillnet Total run

  ̂γ 21.57 26.33

    ̂γ t

1981 7.39 17.11

1982 41.38 17.23

1983 21.52 24.95

1984 22.42 45.24

1985 29.78 25.17

1986 11.66 42.92

1987 22.13 19.93

1988 19.61 18.87

1989 22.12 91.77

1990 34.07 80.41

1991 86.22 20.27

1992 18.71

1993 279.01 54.35

1994 129.28 11.57

1995 150.37 23.74

1996 11.51 20.23

Log likelihood

  ̂γ 118.11 177.42

    ̂γ t 137.59 182.00
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Figure 2. Standard deviations from the residuals and annual γt case of the Di-
richlet distribution fit of the Norton Sound herring age-structured
model.
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As mentioned earlier, zero-valued observed age compositions cannot
be estimated by the Dirichlet distribution. For this application there were
some unrepresented (zero) ages, due to a closed fishery in 1992 and selec-
tive fishing pressure on older fish. In the bootstrap procedure these val-
ues were left at zero. A standard non-parametric bootstrap procedure was
used for the aerial survey biomass data. A bootstrap sample of 1,000 was
chosen for this exercise.

For comparison to the Dirichlet distribution bootstrap procedure, a
multinomial bootstrap procedure was performed with the Norton Sound
herring age-structured model using the sample sizes in Table 1. The ob-
jective function of the Norton Sound herring model is a simple combina-
tion of sums of squares, which does not follow a multinomial process.
The multinomial bootstrap procedure was only intended as a comparison
to the Dirichlet distribution bootstrap procedure and therefore changing
the objective function is not warranted.

Bootstrapping Results
One of the 1,000 bootstrap samples for the annual γt case of the Dirichlet
distribution failed to converge by settling on unrealistic, negative valued
estimates. This failure suggests some evidence of model instability but is
inconsequential to the final results, so we ignored this replication. All the
bootstrap samples for the constant γ case of the Dirichlet distribution and
for the multinomial distribution appeared to be realistic (no zero or nega-
tive valued estimates).

From the bootstrap samples the coefficient of variation (cv, bootstrap
standard deviation divided by original estimate), a relative measure of
uncertainty, was calculated for estimated total biomass (Fig. 3), pre-fish-
ery abundance estimates for recruitment age herring (age 3) (Fig. 4), and
selectivity and catchability parameters in the model (Fig. 5). In general,
the multinomial distribution resulted in lower cv estimates as compared
to the two Dirichlet distribution estimates, suggesting that use of the
multinomial understates actual variability. The error estimates for the to-
tal biomass and aerial survey parameters are similar for all three boot-
strap procedures, probably because these quantities are determined more
from aerial survey information than from age composition information.
The cvs for the fishery and sampling gear selectivities indicate larger cvs
for the two Dirichlet bootstrap procedures, particularly for the sampling
gear selectivity parameters for the last six years. The recruitment cvs in-
dicate the difference among the three bootstrap procedures increases in
more recent years. The annual γt case for the Dirichlet bootstrap proce-
dure seems to result in the highest cvs in the most recent years.

Discussion
The residuals from an age-structured model include both measurement
and process error. The true sample size in a multinomial distribution boot-
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Figure 3. Annual percent error estimates for total biomass from 1,000 bootstrap
samples of three different procedures for the Norton Sound herring age-
structured model.

strap procedure is limited to representing the measurement error in the
model under simple random sampling and has been suggested to be an
inappropriate representation of the true estimation error (Fournier and
Archibald 1982, Methot 1986). The multinomial bootstrap error estimates
in this application are useful for comparison to the Dirichlet distribution
bootstrap error estimates. Since the Dirichlet distribution fit is based on
the observed and estimated age compositions from the model, the result-
ing cvs for most cases were higher than those for the multinomial. This
result indicates that the Dirichlet distribution is capturing variation in the
estimates that is unaccounted for by the multinomial distribution. Other-
wise the estimates of effective sample size would have been much closer
to the actual ones. The multivariate logistic model is an alternative ap-
proach for incorporating greater variability into stock assessment models
(Schnute and Richards 1995).

The annual γt case produced higher cvs than the constant γ case, un-
expectedly, since the maximum likelihood result in Table 2 indicated a
better fit for the γt case. The reason for this is probably due to the lower
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Figure 4. Annual percent error estimates for pre-fishery abundance at age 3, the
age of recruitment, from 1,000 bootstrap samples of three different pro-
cedures for the Norton Sound herring age-structured model.

effective sample sizes in the last three years for the total run data and the
last year for the gillnet data for the annual γt case relative to the constant
γ case. Since the nature of age-structured analysis is to track cohorts through
time, poor fits in the last few years will affect estimates in earlier years.
So, even though the constant γ case involves less parameterization, it re-
sulted in lower cvs in later years, because it smoothed over the high vari-
ability in the last years of the age-structured model.

Coefficients of variation for total biomass and the aerial survey catch-
ability parameters from the Dirichlet method were much closer to the
multinomial estimates as compared to the abundance and selectivity pa-
rameter estimates. Since the total biomass estimates and catchability pa-
rameters depend primarily on the aerial survey abundance data, the
similarity of cvs for all three bootstrap methods suggests these portions
of the model are relatively unaffected by changes in sample size for the
age composition data. The similarity of cvs is consistent with the aerial
survey abundance component in the all three bootstrap procedures being
computed by the same non-parametric procedure. This result suggests
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Figure 5. Percent error estimates for gillnet fishery, sampling gear, and aerial sur-
veyability parameters from 1,000 bootstrap samples of three different
procedures for the Norton Sound herring age-structured model.

that the recommendation to limit age composition samples to 400 obser-
vations (Fournier and Archibald 1982, Methot 1986) in order to prevent
age composition from dominating the likelihood does not have a strong
rationale. Indeed, since effective sample size can be much smaller than
actual sample size, a re-evaluation of sample size requirements in age-
structured models is needed.

Overall, the Dirichlet distribution appears to be a statistical distribu-
tion which allows for fairly easy and objective bootstrap estimates of er-
ror for stock assessment models which utilize age composition data. It
provides a means to utilize the observed variation in the model without
having to resort to making unrealistic assumptions about the error distri-
bution. An implicit assumption in this approach is that the underlying
stock assessment model is correct. If not, the estimated proportions {    

ˆ
,θa t }

may be biased, which would lead to bias in the Dirichlet parameter esti-
mates.

We also note that this approach is an approximation to a true boot-
strap, in which the original objective function for age composition would
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be based on the Dirichlet distribution. Equations (1) and (3) for the Dirichlet
distribution would then be incorporated directly into the objective func-
tion of the stock assessment model. Dirichlet parameters would be esti-
mated jointly with the other model parameters, which would avoid the
necessity of fitting the Dirichlet distribution a posteriori as we did. Fur-
ther study is necessary to determine if the additional model complexity
presents difficulties in estimation, but such an approach would lend greater
consistency to the stock assessment. We did not do so here because we
were looking for a quick and simple procedure to generate standard er-
rors after being satisfied with the basic stock assessment results.

Indeed, the major strength of bootstrap procedures in general is their
ability to provide measures of uncertainty for all key variables of interest
in a straightforward manner and with a minimum of assumptions. Our
procedure should be generally applicable to stock assessment models with
observed and estimated proportions.

Finally, the concept of effective sample size need not invoke the
Dirichlet distribution. An empirical estimate of effective sample size can
be made from the observed and estimated age compositions for a given
year and gear type (McAllister and Ianelli 1997). If 

  
′θa  and     θ̂a  are the ob-

served and estimated age compositions for a given year (omitting the time
subscript for clarity), then an estimate of the mean squared error is

    a
k

a a k∑ ′ −( ˆ ) /θ θ 2 . The average estimated variance of observed proportions
from the multinomial distribution is     a

k
a a kn′ − ′∑ θ θ( ) / ( )1 , where n is sample

size. (Alternatively, the estimated θ̂a s could be used.) By equating these
two quantities and solving for n, the estimated effective sample size is

    n a a a a a a= ′ − ′ ′ −∑∑ θ θ θ θ( ) / ( ˆ )1 2 . A bootstrap procedure could be performed
utilizing these effective n values across years with the multinomial distri-
bution. However, the approach utilizing the Dirichlet distribution is more
rigorous, and is based on simultaneous analysis of all the information.
The Dirichlet approach tends to give lower effective sample sizes, be-
cause it explicitly accounts for the extra variance due to the use of ob-
served or estimated proportions.
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Abstract
Most modern stock assessment algorithms incorporate multiple catch and
abundance estimates, with differing levels of precision. Often these esti-
mates are weighted by their corresponding variances, but estimates of
variance are even less precise than estimates of expectation. For this rea-
son, transformations and weighting schemes based on a presumed vari-
ance to expectation relationship have often been suggested. Since the true
variance to expectation relationship is seldom known, it is usually inferred
from regressions of sample variance on sample mean. Unfortunately, the
sample variances of non-negative variates like catch per unit effort lie
within bounds that are functions of the sample size, sample mean, and
maximum possible catch (density). Furthermore, the sample mean and
sample variance are self-correlated because the sample mean appears in
the expression for sample variance. This paper demonstrates that these,
and other mathematical artifices, can force a strong spurious correlation
between the sample variance and sample mean regardless of the statisti-
cal distribution of the data. Therefore, plots of sample variance against
sample mean are unlikely to reveal the true variance to mean relationship
for any given population. Moreover, stock assessments that use sample
variance to weight the input observations will tend to be biased. Under-
estimates will tend to receive too much weight and overestimates too lit-
tle, particularly if the resource in question is uncommon and the sample
sizes are small.
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Introduction
Most fishery stock assessments depend on estimates of historical abun-
dance derived from resource surveys and samples of the fishery catch.
Such data are often expensive to collect, but because of their highly vari-
able nature, tend to yield rather imprecise estimates unless the number of
sample observations (n) is large. For this reason, it is important to develop
efficient sampling programs that maximize precision under the limited
resources available. Of course historical data cannot be remedied by
changes in future sampling. One common solution has been to incorpo-
rate multiple data sources into the stock assessment, thereby increasing
the effective n. In that case the different estimates should be weighted
according to their precision, either implicitly by a suitable transformation
or explicitly by modeling the variances.

Whether one wishes to develop an efficient sampling scheme or prop-
erly weight the estimates in a stock assessment model, a central issue is
estimating variance. It is well known that if n observations {x1,x2,…,xn} are
sampled at random from an infinite population, then the sample mean
(  x ) and sample variance,

    
s

x x

n

i
i

n

2 1

1
=

−∑

−
=

( ) ,

are unbiased estimators of the population mean µ and population vari-
ance σ 2. The variance of   x  is σ 2/n; however, σ 2 is seldom known so s2 is
often used in its place. Unfortunately, s2 is very inefficient (Table 1). More
efficient estimators of σ 2 can be derived if the statistical distribution of
the population is known, but their performance may be questionable where
the data depart from the assumed distribution (see Smith 1990, Myers
and Pepin 1991, Pennington 1996). Theoretical arguments supporting one
distribution or another abound in the fisheries literature (Taylor 1953,
Houser and Dunn 1967, Pella and Psaropulos 1975, Mangel and Beder 1985,
Deriso and Parma 1987, Porch and Fox 1990, Pennington 1996), but none
apply universally. In any case, neither s2 nor its distribution-specific coun-
terparts will in general be a useful proxy for σ 2 unless n >100.

An alternative method of specifying σ 2 has its roots in the work of
Curtis (1943) and Bartlett (1947), who showed that transformations to
homogenize variance can be determined from the relationship between
σ 2 and µ. Inasmuch as the σ 2 to µ relationship is seldom known, it is
frequently inferred from regressions of s2 on   x  (Green 1979, Taylor 1980,
Taylor et al. 1983). This practice is quite common in fisheries work be-
cause s2 and   x  are often found to be highly correlated (Taylor 1953, Small
and Downham 1985, Porch and Fox 1990, Lester et al. 1991, Cyr et al.
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1992, Warwick and Clarke 1993, Welch and Ishida 1993, Dong and Restre-
po 1996). However, the relationship between s2 and   x  is largely spurious.

Downing (1989) pointed out that the s2 of non-negative variates must
be less than or equal to     nx 2. Tokeshi (1995) argued that “ecological com-
mon sense” also dictates s2 ≥   x  and that the restricted sampling space
imposed by these two constraints greatly facilitates fits of regression curves
to any set of (s2,   x ) pairs. Tokeshi’s presumption of s2 ≥   x  is misleading
inasmuch as values less than   x  are quite feasible even if on average s2 >
  x , but his basic premise is correct. Moreover, s2 and   x  are self-correlated
because   x  appears in the computational expression for s2. Therefore, one
might expect strong correlations between s2 and   x  even when there is
little or no relationship between σ 2 and µ.

The Mathematical Artifices
Constraints on Sample Variance
Consider n non-negative numbers {x1,x2,…,xn} with mean   x . The maxi-
mum possible s2 for a given   x  is achieved when one number equals   nx
and the rest are zero, i.e.,

    
s

nx x n x
n

nxMAX
2

2 2
21 0

1
= − + − −

−
=( ) ( )( ) (1)

Table 1. Coefficients of variation for   x  and s2 with
selected probability densities and sample
sizes (each computed from 2,000 replicate
samples drawn at random with replacement).

Density Sample size (n )
(µ, σ 2) Statistic 5 10 20 100

Uniform   x 3 2 2 1
(100, 57) s2 51 32 21 9

Normal   x 16 11 8 4
(20, 50) s2 72 46 33 14

Lognormal   x 24 18 12 5
(10, 30) s2 132 101 68 29

Poisson   x 14 10 7 3
(10, 10) s2 71 47 33 14

Neg. binomial   x 46 31 22 10
(5, 25) s2 125 82 61 26
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The minimum s2 is zero when all the numbers have the same value, but
for discrete variates this is only possible when   x  is an integer. Otherwise
the minimum s2 is

    
s x i i x

n
nMIN

2 1
1

= − − −
−

( )( ) (2)

where i is the integer part of   x  (see the Appendix). Notice that neither
equation (1) nor (2) depend at all on the population parameters σ 2 and µ.
Thus, if σ 2 >     sMAX

2 , then the value of s2 from that particular sample must
underestimate σ 2. Likewise, if σ 2 <     sMIN

2 , then s2 must overestimate σ 2.
The expected relationship of s2 to   x  depends on the underlying pat-

tern of the population, but lies somewhere between     sMIN
2  and     sMAX

2  (Fig. 1).
Suppose n trips combined to catch T (=  nx ) fish and that each trip had the
same (constant) ability to catch fish. Then the number caught per trip
ought to be binomial distributed with probability p = 1/n that a given fish
will be assigned to a given trip. The expected variance of the binomial
distribution given T is Tp (1 – p). Substituting 1/n for p we obtain the
expected variance given   x :

Figure 1. The feasible region of variance-mean regressions for sample sizes
of 5, 20, and 100 in log-space. The bottom line is the average value
of     sMAX

2  ( 1⁄ 6) and the line labeled “Expected” is the expected value of
s2 given   x  for sampling units (trips) with the same odds of catching
fish (equation 3).
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E s x n

n
n

x[ | , ] .2 1= − (3)

Of course different fishing units can have different abilities to catch fish,
in which case E [s2|  x ,n] can exceed equation (3). In general however, if σ 2

> E [s2|  x ,n], then the value of s2 for that particular sample will probably
(but not necessarily) underestimate σ 2.

In practice, the s2 of continuous variates may take on any value be-
tween     sMIN

2  and     sMAX
2 , some values being more likely than others depend-

ing on the underlying pattern of the data. The s2 of discrete variates,
however, can have only a finite number of values for a given   x  and n.
Consider again the case where n fishing trips were sampled from a popu-
lation of fishing trips that are equally able to catch fish. The probability of
obtaining a particular distribution of catch per trip {x1,x2,…,xn} in any or-
der is

      
P x x x

T
x x x

n
n n n

Nn
n T

T( , , , )
!

! ! !
!

! ! !1 2
1 2 0 1

K
K K

= − (4)

where nx is the number of variates with value x and T = ∑ xi (see pages 38-
40 in Feller 1968). The probability distribution (pdf) of s2 is obtained from
equation (4) by stepping through all possible distributions and adding the
probabilities for those with the same variances. As Fig. 2 demonstrates,
the pdf described by equation (4) is dominated by fine structure when n is
small. Some of the possible values of s2 will rarely be observed despite the
fact that both smaller and larger values may be common because there
happen to be very few combinations that lead to them (a statistical artifact
common to ratios of discrete quantities, see Johnston et al. 1995). The
pdf becomes smoother and more values of s2 become possible as n in-
creases, but the odds of s2 being very much greater than its expected
value,   x (n – 1)/n, remain small. Thus, if σ 2 >>   x (n – 1)/n, then s2 is likely
to underestimate σ 2 even when n is large. As   x  increases, however, the
pdf of s2 becomes less skewed, making it more likely that s2 will attain a
value near σ 2 and therefore less likely that s2 will underestimate σ 2. Of
course the pdf in Fig. 2 reflects the fact that the catching power of each
trip was the same. Had the catching power differed, the expectation of s2

would increase and the spread of the pdf would be different.

Self-Correlation between Sample Variance and
Sample Mean
As mentioned earlier, s2 and   x  are self-correlated because   x  appears in the
formula for s2. Kenney (1982) develops a general expression for the expect-
ed self-correlation between two variables, which for s2 and   x  reduces to
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where s2 = p – q, p = ∑x2/(n – 1) and q =   nx 2/(n – 1). The correlation
between q and   x  is always close to 1 for non-negative variates. If it were
possible for p and   x  to be uncorrelated (  rpx  = 0), then also rpq = 0 and
equation (5) would reduce to
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Figure 2. The pdf of the variances of discrete variates when the sampling units
(trips) have the same odds of catching fish.
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This implies that including x  on both sides of the equation imparts a
strong negative correlation unless σp >> σq (which depends on the skew-
ness of the distribution of x).

Some Numerical Illustrations
This section uses simulated data to illustrate how the mathematical arti-
fices discussed above can influence one’s perception of the variance to
mean relationship.

Example 1: Unchanging Population (µ and σ 2 Constant)
Six data sets of 2,000 (s2,   x ) pairs each were simulated by randomly draw-
ing n observations with replacement from three types of statistical distri-
butions (Poisson, negative binomial and lognormal) and two parameter
sets (µ = 5, σ 2 = 25 and µ = 100, σ 2 = 500). The linear correlation between
p = ∑x2/(n – 1) and   x  was 0.8 or larger in all six cases, but the correlation
between s2 and   x  depended on the distribution (Table 2, Fig. 3). Sample
size (n) was relatively unimportant; however, the magnitudes of µ and σ 2

were very important. Samples drawn from the distributions with µ = 5 had
much higher (s2,   x ) correlations than those drawn from the distributions
with µ = 100. Likewise, the samples drawn from distributions with high σ 2

Table 2. Linear correlations of s2 and p = ∑x2/(n – 1)
with   x  for selected probability densities and
sample sizes (computed from 2,000 replicate
samples drawn at random with replacement).

Density Sample size (n )
(µ, σ 2) Statistic 2 5 20 100

Lognormal p 0.87 0.82 0.80 0.79
(5, 25) s2 0.74 0.72 0.67 0.65

Lognormal p 0.99 0.99 0.99 0.99
(100, 500) s2 0.35 0.39 0.38 0.43

Neg. bin. p 0.90 0.89 0.89 0.90
(5, 25) s2 0.62 0.68 0.66 0.70

Neg. bin. p 0.99 0.99 0.99 0.99
(100, 500) s2 0.17 0.25 0.24 0.27

Poisson p 0.97 0.96 0.96 0.96
(5, 5) s2 0.21 0.25 0.30 0.29

Poisson p 1.00 1.00 1.00 1.00
(100, 100) s2 0.01 0.02 0.04 0.04



392 Porch — Limitations of Sample Variances in Stock Models

Figure 3. Scatter plots of (s2,   x ) pairs from samples of 5 or 100 drawn from the
lognormal and negative binomial densities with mean 5 and variance 25
and the Poisson density with mean 5 and variance 5. The adjacent curves
represent     sMAX

2 .
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(lognormal and negative binomial) had much higher (s2,   x ) correlations
than those drawn from the Poisson distribution (with σ 2 = µ). Not surpris-
ingly, the power function (loges

2 = logea  x b) fit the data generated from the
lognormal and negative binomial distributions with µ = 5 and σ 2 = 25
quite well, yielding coefficients of determination (r2) in excess of 0.5, but
provided a very poor fit to the data generated from the remaining distri-
butions.

Example 2: Changing µ, but Constant σ 2

Now consider a situation where samples are drawn from a stock that has
changed substantially over time, but for which the variance remains con-
stant. Data sets consisting of 20 (s2,   x ) pairs were constructed by random-
ly choosing 20 values (Yj) between 0 and 10 and then sampling n times
with replacement from lognormal distributions with σ 2 = 25 and µ = Yj.
The 20 sample (s2,   x ) pairs in each simulated data set were then fitted
with the power function. The average r2 from 1,000 such data sets were
surprisingly high (0.59, 0.78, 0.75 and 0.69 for n = 2, 5, 10, and 20). The
values of s2 generally fluctuated around σ 2 (25) when   x  was large, but
severely underestimated σ 2 when   x  was small (Fig. 4).

Example 3: All Possible Sample Variances
Equally Likely
In this example s2 was allowed to assume any value between the minimum
and maximum feasible values (equations 1 and 2) with equal probability.
This is equivalent to a situation where the underlying pattern of a contin-
uous variate is completely inconsistent. Artificial data sets were generated
by randomly selecting 20   x  values and assigning to each   x  a correspond-
ing s2 drawn at random from the feasible region. The power function was
then fitted to each data set by least squares after taking the logarithms of
s2 and   x . The median r2 was about 0.8 and values under 0.5 were ob-
served for only 10% of the simulated data sets. Sample size had little im-
pact on the r2 because the possible variances were uniformly distributed
across the sampling space and the sampling space for n = 5 is similar to
that for n = 100 on a logarithmic scale (Fig. 1). Thus, it is clear that the
restricted feasible region for (s2,   x ) by itself can account for a large frac-
tion of the strong correlations between the two statistics.

Discussion
Although s2 is an unbiased estimator of σ 2, the value of s2 conditional on
  x  is not. The statistics s2 and   x  are spuriously correlated because   x
appears in the computation of s2 and because the probability space of s2 is
restricted, especially when n or   x  are small. As the examples show, it is
possible to find a strong correlation between s2 and   x  even when σ 2 and
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Figure 4. Typical fits of the power function to the simulated data (dots) in
example 2. The dashed line indicates the true variance (25).
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µ are unrelated. Similarly, where a relationship between σ 2 and µ does
exist, regressions of s2 and   x  may not accurately reflect it.

Other factors may further confound the s2 to   x  relationship. Downing
(1986) showed empirically that estimates of the exponent parameter of
the power function vary systematically with the number of (s2,   x ) pairs
used as well as n. Additional bias may occur if n varies among the (s2,   x )
pairs since the pdf of s2 varies with n. The method used to fit the data can
also bias the results. Ross (1990) pointed out that the logarithm of s2 tends
to be biased low, particularly for highly skewed data with high   x  and low
n (<30). This tends to cause the curvature parameters of the regression
equation to be underestimated (Clark and Perry 1994). On the other hand,
failing to use logarithms typically reduces the precision of the estimates
because the variance of s2 tends to increase with   x  and because anoma-
lous points are allowed excessive leverage (Taylor et al. 1978).

Still another problem arises when the maximum value the variate can
attain is finite. The number of fish kept per trip, for example, might be
limited to L owing to regulations or gear saturation. In such cases the
maximum possible s2 for a given   x  is
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i L x n i x R x
nMAX

2
2 2 21

1
= − + − − + −

−
( ) ( ) ( )

, (7)

where i is the integer part of   nx /L and R is the remainder. Clearly     sMAX
2

decreases to zero as   x  approaches L, therefore the s2 to   x  relationship
will exhibit a dome-shaped trend regardless of the statistical distribution
of the population or the relationship between σ 2 and µ. For example, if
all of the observations happen to be either 0 or 1, then s2 always equals
n(  x   –   x 2)/(n – 1) and there is absolutely no possibility of deducing the
relationship between σ 2 and µ. One could attempt to derive a suitable
transformation from the fit of a quadratic equation to the (s2,   x ) pairs, but
this would be subject to the same caveats discussed above.

In summary, it is clear that the s2 and   x  of non-negative variates are
spuriously correlated. The examples suggest that, when µ is small and σ 2

is large, s2 tends to underestimate σ 2 in some proportion to the degree
that   x  underestimates µ. Inasmuch as uncommon resources with high
variance are frequently encountered in fisheries work, this statistical arti-
fice is likely to pose a significant challenge. In general, weighting estimates
from scarce resources by s2/n may bias the assessment by overemphasiz-
ing estimates that happen to be too low. This is especially likely to be a
problem when n is small because   x  is more likely to be poorly estimated
and improperly weighted; therefore it may be prudent to simply ignore
statistics from small samples. It must be emphasized, however, that the
strong spurious correlation between s2 and   x  persists even with large n
and that regressions of s2 and   x  may be highly significant even when
there is no relationship between σ 2 and µ as long as some of the   x  values
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used in the regression are small. Accordingly, weighting schemes or trans-
formations that are based on the empirical relationship between s2 and   x
are apt to be meaningless unless µ is large (>> 5) or σ 2 is small (on the
order of µ). Perhaps a better alternative might be to employ transforma-
tions or objective functions that are known to be robust to the type of
deviations one is likely to observe in fisheries data (e.g., Otter Research
Ltd. 1994, Schnute and Richards 1995), but more work is needed.
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Appendix: Derivation of the Minimum
Possible Variance
Taylor and Woiwood (1982) show that, if the total number of objects T is
less than n, then     sMIN

2  = n(  x  –   x 2)/(n – 1). This expression can be general-
ized to any value of T by noting that the minimum variance is obtained
when the number of objects is distributed as evenly as possible among
the two integer categories i and i + 1, where i is the integer part of   x .
Designating the number of sampling units containing i objects as ni, we
have
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Solving for ni+1 and ni and then substituting them into the expression for
sample variance yields
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Abstract
Age structured assessment methods integrate information from the com-
mercial fishery catch and from indices of abundance. Systematic errors in
the catch at age, often caused by mis-reporting of landings or discarding
of small fish, could introduce appreciable bias to the results of stock as-
sessments. Important inconsistencies were revealed when results from a
base assessment employing catch at age were compared to results from a
model that employs proportion caught at age but estimates total numbers
caught each year in addition to the other model parameters, terminal year
abundance and index catchability. For eastern Georges Bank haddock, the
diagnostic model suggested that the base model had underestimated the
year-class abundance for years prior to 1977. It also indicated that the
mid-1980s year classes might have been overestimated by the base mod-
el. Though not recommended for estimation, the diagnostic model sub-
jects data to different assumptions, making it useful as an investigative
tool for evaluating the robustness of results.

Introduction
Fish stock assessment methods for age-structured analyses integrate auxil-
iary information from population abundance trend indices with data from
catch removals by the fisheries to estimate stock status (e.g., Fournier and
Archibald 1982, Deriso et al. 1985, Gavaris 1988). Deviations between ob-
served and predicted quantities for these models are assumed to be ran-
dom. Abundance indices are often derived from controlled research survey
data or from a selected subset of fishery catch and effort records. There-
fore, appropriate measures, such as random selection of survey locations,
maintaining consistent fishing practices on surveys from year to year or
factoring out gear, seasonal, and spatial effects from catch rates, can be
taken to prevent the introduction of systematic deviations. Commercial
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fishery catch data, however, may be suspect of containing errors which
display a non-random pattern. Fishery catch removals by age can be ob-
tained by applying the age composition derived from samples for length
composition and aging material to the total number caught (Gavaris and
Gavaris 1983). The total amount caught is typically based on a complete
census of fishery landings and ancillary information on discards, if avail-
able. Systematic errors in the catch data are commonly due to mis-report-
ing of total amount caught, although the samples for length composition
may also be biased if size-selective culling has occurred prior to observation.

Systematic errors in the catch-at-age could introduce appreciable bias
to the results of stock assessments. A constant mis-reporting rate may not
pose problems but trends in the total amount or the age composition of
mis-reported catch result in complex patterns of bias (Sinclair et al. 1991).
Employing assessment models that accommodate random error in the
catch-at-age would not be an appropriate treatment for this problem. Con-
cern regarding the reliability of catch data has stimulated development of
methods that employ only survey data. One approach proposed by Cook
assumes separable age and year effects on fishing mortality rate (ICES
1997) while Sinclair and Chouinard (1992) employed a multiplicative model
and assumed a constant fishing mortality rate over some period. Patter-
son retained the assumption of separable fishing mortality rate and ex-
tended the method to include sampling data from the commercial fishery
(ICES 1997).

Many assessments are conducted without invoking the separable fish-
ing mortality rate assumption because year-to-year variation in the ex-
ploitation pattern by age has been observed and is considered meaningful.
We compare results from a non-separable assessment employing catch-at-
age and abundance indices to those from a non-separable model that did
not use total number caught but employed proportion caught-at-age and
abundance indices. The total number caught each year was estimated in
addition to the other model parameters. We will refer to the latter as the
diagnostic model and the former as the base model. These models were
applied to data for eastern Georges Bank haddock. We do not promote the
diagnostic model for estimation purposes. The purpose of this study was
to explore the utility of the diagnostic model, which places less reliance
on suspect fishery catch data, as a tool for investigating inconsistencies
which might be caused by systematic errors.

Methods
The commercial fishery catch-at-age is used to reconstruct the past using
virtual population analysis (VPA). Due to the error propagation properties
of VPA (Pope 1972, Sampson 1988), random errors in the catch-at-age typ-
ically have negligible impact on assessment calibration methods compared
to random errors in the abundance indices (Sinclair et al. 1991). Capitaliz-
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ing on this characteristic can greatly reduce the number of unknown pa-
rameters. It is not uncommon, therefore, to encounter assessments which
ignore the random error in catch-at-age. Both the base and diagnostic
models adopt this tact. In its general form, the VPA calculations require an
estimate of population abundance for each year class. With suitable as-
sumptions about fishing mortality rate patterns on older ages, the calcu-
lations can be done if we have estimates of population abundance for the
terminal year of the analysis. The abundance indices are the auxiliary data
used to obtain those estimates by a process referred to as calibration of
the VPA. The calibration process involves fitting abundance index data
and population abundance results from VPA to a catchability model to
estimate the parameters of that relationship, referred to as the calibration
constants. A search is conducted to find the terminal year-class abun-
dance estimates for the VPA that result in the best fit to the catchability
model.

For eastern Georges Bank haddock, the sampling data from the com-
mercial fishery were used to derive estimates of annual proportion caught
at age, Pa,t, for ages a = 0, 1, 2,…, 8 and periods t = 1969, 1970, 1971,…,
1996. The time period label signifies the beginning of the period during
which the catch occurred. The commercial fishery catch information may
be used with the samples to derive estimates of annual numbers caught at
age, Ca,t, for the same ages and periods. The procedures described in Ga-
varis and Gavaris (1983) were used to combine samples and to apply the
catch information. The available abundance indices, Is,a,t, were from bot-
tom trawl research surveys conducted by the Canadian Department of
Fisheries and Oceans (DFO) and the U.S. National Marine Fisheries Service
(NMFS):

for s = DFO spring survey, ages a = 1,2,…,8 , times t = 1986.16,
1987.16,…, 1997.16

s = NMFS spring survey, ages a = 1,2,…,8 , times t = 1969.29, 1970.29,…,
1996.29

s = NMFS fall survey, ages a = 0,1,…,5, times t = 1969.69, 1970.69,…,
1996.69.

The fall survey captures young of the year and that information is
included as 0 group, but older haddock appear less available during this
season. Survey indices were not included for older ages where catches
were sparse and there were frequent occurrences of zero catches. Accord-
ingly, a plus group was not included in the VPA as it would have no impact
on the calibration. If desired, the abundance of the plus group in the pop-
ulation could be computed by making a suitable assumption about its
fishing mortality rate and applying the catch equation (equation 3 below).
Zero observations for abundance indices were treated as missing data.
Further specific details of the data used for the assessment are provided
in Gavaris and Van Eeckhaute (1997).
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The model formulation employed for the base model assumed that the
random error in the catch at age was negligible and the annual total num-
ber caught, Lt, were reported accurately. The catch at age then can be ex-
pressed as Ca,t = LtPa,t. The errors in the abundance indices were assumed
independent and identically distributed after taking natural logarithms of
the values. The annual natural mortality rate, M, was assumed constant and
equal to 0.2. A model formulation, using as parameters the natural loga-
rithm of population abundance at the beginning of the year, was consid-
ered because of close to linear behavior for such a parameterization (Gavaris
1993). The following model parameters were defined: θa,t ′ = ln population
abundance for ages a = 1, 2,…, 8 at time t ′ = 1997.25; κs,a = ln calibration
constants for each abundance index source s and relevant ages a. We solved
for the parameters by minimizing the sum of squared differences between
the natural logarithm observed abundance indices and the natural loga-
rithm population abundance adjusted for catchability by the calibration
constants. The objective function for minimization was defined as
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For convenience, the population abundance     Na t, ( )̂θ  is abbreviated by
Na,t. At time t ′, the population abundance was obtained directly from the
parameter estimates,     N ea t
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dance was computed using the virtual population analysis algorithm, which
incorporates the common exponential decay model (Beverton and Holt
1957)
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Year was used as the unit of time; therefore ages were expressed as years
and the fishing and natural mortality rates were annual instantaneous
rates. The fishing mortality rate Fa,t exerted during the time interval t to t
+ ∆ t, was obtained by solving the catch equation
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using a Newton-Raphson algorithm. The fishing mortality rate for the old-
est age in the last time interval of each year was assumed equal to the
weighted average for ages fully recruited to the fishery during that time
interval
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The diagnostic model was similar in every respect to the base model
except that we rejected the assumption that the total number caught each
year by the fishery was reported accurately. Therefore, in addition to the
model parameters θa,t′ and κs,a, the total number caught each year were
estimated, λt = total number caught for time period t = 1969, 1970,...,
1996. The catch-at-age was obtained from Ca,t =  λtpa,t and the computa-
tions thereafter were the same as for the base model. To maintain compa-
rability, all other assumptions were the same as those for the base model.
Both the base model and the diagnostic model were implemented within
ADAPT (Gavaris 1988), which employs a Marquardt nonlinear least squares
algorithm.

With both models, the covariance matrix of the parameters was esti-
mated using the common linear approximation (Kennedy and Gentle 1980,
p. 476)
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where   ̂σ 2 is the mean square residual and     J( ,̂ )̂θ κ  is the Jacobian matrix.
The bias of the parameters was estimated using Box’s (1971) approxima-
tion, which assumes that the errors are normally distributed
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where     Js a t, , ( ,̂ )̂θ κ  are vectors of the first derivatives for each     ψ θ κs a t, , ( ,̂ )̂  and

    Hs a t, , ( ,̂ )̂θ κ  are the Hessian matrices for each     ψ θ κs a t, , ( ,̂ )̂ .
Population quantities of interest for management advice are functions

of the estimated parameters. Denote an arbitrary quantity by     ̂ ( ,̂ )̂α θ κ= g
where g is the transformation function. The variance and bias were esti-
mated using the methods described in Ratkowsky (1983)

    
Var ˆ cov ,̂ˆα θ κ( ) = ( )[ ]tr GGT  (7)
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α θ κ

θ κ
( ) = ( ) +

( )[ ]
G

tr W
T

2
 (8)

where G is the vector of first derivatives of g with respect to parameters
and W is the matrix of second derivatives of g with respect to parameters.

Results
Proportion caught at age and abundance indices do not contain any infor-
mation on the absolute magnitude of the population. Therefore, to make
the diagnostic model determinate, it is necessary to set one of the param-
eters to a fixed value. We arbitrarily assigned the abundance of the 1992
year class at time t ′ = 1997.25. In retrospect, we suggest that it might be
better to select one of the estimated catches to be assigned a fixed value
instead of one of the year-class estimates as we did. This implementation
modification would not alter the basic results but it would avoid unduly
restricting a single year-class estimate, as we observed in the sensitivity
trials.

The first attempt to estimate all the remaining parameters in the diag-
nostic model failed. The abundance indices for this resource, which were
derived from bottom trawl surveys, were variable and occasionally indi-
cated an increase in the abundance of a year class (Fig. 1) when mortality
processes dictate a decline. In these instances, the model estimates of
total numbers caught tend to zero, an unrealistic result. Seven of the 29
years displayed this behavior, so we assigned fixed values to these param-
eters equal to the reported total number caught in those years. We inves-
tigated the sensitivity of the results to these assumed values and report
on that later.

Parameter estimates from nonlinear models are typically biased, al-
though the bias may be negligible if the parameter behavior is close to
linear. The estimates of population abundance needed to compute the
VPA for eastern Georges Bank haddock have substantial bias and the VPA
computed with bias adjusted estimates is used as the basis for resource
evaluation (Gavaris and Van Eeckhaute 1997). Further, the nature of the
bias for the base model and for the diagnostic model displayed different
characteristics. Consequently, all comparisons were based on bias adjust-
ed results.

Since the absolute magnitude of the population abundance was arbi-
trarily set by the fixed parameters, we compared patterns of relative year-
class abundance. The base and diagnostic models both identified the two
largest year classes, 1975 and 1978, and the 1983, 1985, 1987 and 1992
year classes which were of intermediate magnitude (Fig. 2). The diagnos-
tic model indicated that the 1971 and 1972 year classes were relatively
stronger than the estimates obtained from the base model. In general, the
rankings of year classes from the two models were comparable (rank cor-
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Figure 1. As year classes increase in age, mortality processes dictate a decline in
abundance with each successive year. However, year-class abundance
estimates from bottom trawl surveys for Georges Bank haddock at ages
for which they are fully recruited to the survey sometimes show an in-
crease in abundance due to sampling variability.

relation = 0.98). Better resolution for comparison of the trends is obtained
by comparing the ratio of diagnostic model estimates to the base model
estimates. The ratio was typically about two but there was a tendency for
somewhat higher values in the earlier years. The largest deviations oc-
curred for the 1971 and 1972 year classes. The deviation for the large
1975 year class was among the larger ones at 50% greater than the modal
value. There also appears to be a short period during the mid-1980s when
the ratios were smaller. The relative errors for year-class abundance from
the two models show markedly different patterns. The base model re-
sults, on the merit of assumed known catch-at-age, show a pattern of rap-
idly diminishing error for earlier year classes while the diagnostic model
results remain constant at about 50% over the entire period (Fig. 2).

Comparison of the fishing mortality rates for ages 4 to 8, which were
considered to be fully recruited to the fishery, indicated that the results
from the diagnostic model were much more erratic (Fig. 3). In the diagnos-
tic model, the exploitation pattern is derived principally from the abun-
dance indices, which, as has been noted, are quite variable. This type of
erratic behavior is not uncharacteristic of mortality rates derived from
abundance indices alone. Further, the fishing mortality pattern from the
diagnostic model does not correspond well with that from the base model
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Figure 2. Absolute (middle) and relative (bottom) year-class abundance at age 1
from base and diagnostic assessment models for Georges Bank haddock
data, and relative error (standard error/mean) (top) associated with abun-
dance estimates. The 1971 and 1972 relative estimates from the diagnostic
model are proportionally much larger than the average ratio. Relative
errors for the diagnostic model are about 50% for all estimates while the
error in the base model diminishes rapidly for earlier year classes.
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Figure 3. Georges Bank haddock fishing mortality rates for ages which are fully
recruited to the fishery, ages 4 to 8, are much more variable for the
diagnostic than for the base model. The relative error (standard error/
mean) on the base model estimates are small and diminish rapidly for
earlier year classes while the error on the diagnostic model estimates
remain high throughout the time series.

(rank correlation = 0.40), though the general magnitude over the series
was comparable for the two. As for the population abundance, the stan-
dard errors for the fishing mortality rate from the base model diminish in
earlier years but those from the diagnostic model are much larger through-
out the time series.

To investigate the sensitivity of the results to the assumed values for
the number caught in the seven years where the parameters were assigned
fixed values, we conducted two sets of trials. In one set of trials, we halved
all the assumed values simultaneously and then we doubled all the as-
sumed values simultaneously. In the former case, all the year-class abun-
dance estimates decreased proportionately while in the latter, they all
increased proportionately. Therefore, the relative year-class strengths did
not change. In the second set of trials, we selected random multipliers
between one half and two and applied them to the fixed values for num-
ber caught. The results from 10 such replicates indicated that the year-
class abundance patterns were similar (Fig. 4). Examining the ratio of these
10 trials to the original estimates from the diagnostic model revealed bet-
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Figure 4. To test the sensitivity of the diagnostic model to fixing the values for
numbers caught for several years, the values were varied randomly over
a range of half to double the original values. Georges Bank haddock
year-class abundance patterns were similar for the 10 trials shown.

ter resolution of the deviations. The ratio lines are essentially horizontal
with no persistent slopes (Fig. 5) suggesting that the relative year-class
strengths were practically unchanged. Recall that the abundance of the
1992 year class was arbitrarily set to a constant at the beginning of 1997.
Therefore, there is limited scope for the abundance of this year class to
adjust, and this is evident in the comparison. We concluded from these
results that the relative year-class pattern was fairly robust to the assumed
fixed values for number caught in those seven years, rendering the com-
parisons valid.

Discussion
Statistical models that accommodate random variation do not adequately
handle systematic errors in data. Consequently, model results may be in-
accurate and unreliable. For fishery stock assessment models, mis-report-
ing of catches is generally considered to be the most serious source of
systematic errors. However, fishery catches play a very important role in
the estimation of stock status. In the absence of catch information, abso-
lute estimates of abundance generally cannot be obtained and the relative
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estimates may display large estimation error unless the abundance indi-
ces are very precise.

We employed a diagnostic model to identify inconsistencies between
results when fishery catches were accepted as accurate and reliable com-
pared to results when those data were not used. We do not advocate use of
the diagnostic model for estimation of the status of resources. As antici-
pated, application of this model to the Georges Bank data demonstrated
that the solution might be indeterminate or unstable unless additional
assumptions are made. However, the comparison of results suggested that
the base model had smaller estimates of the year-class abundance for
earlier years. It also indicated that the mid-1980s year classes might have
been overestimated by the base model. These observations are useful for
focusing attention on specific periods where further investigation of data
reliability or robustness to violation of assumptions may be pursued.

For the Georges Bank haddock fishery, 1977 was the last year this
resource was fished under an international quota management system.

Figure 5. Relative size of Georges Bank haddock year-class abundance estimates
from the diagnostic model when the fixed catch values were varied ran-
domly through one half to double the values used in the base model. The
ratio of year-class size, diagnostic to base, show that the relative year-
class pattern was fairly robust to the fixed number caught in those select
years. The thicker top and bottom lines are the results from doubling
(top) and halving (bottom) the base values.



410 Gavaris & Van Eeckhaute — Dignosing Errors in Reported Fishery Catch

Subsequently, the fishery was restricted to coastal states. Differences in
pre-1977 and post-1977 monitoring and reporting practices by fleets or
possibly intentional mis-reporting by fleets to circumvent restrictive quo-
tas are likely possibilities. The strong 1975 year class would have been
susceptible to heavy exploitation at age 2 in 1977 under the international
regime. Though estimates of discards for the U.S. fishery have been in-
cluded, no such adjustments have been attempted for any of the other
fleets. The reported catch for this year class at younger ages is probably
deficient. Similarly, discard estimates for the U.S. fishery only are includ-
ed for the 1972 year class, suggesting that the discrepancy for the 1971
and 1972 year classes may have been due to unreported culling and dis-
carding of small fish. Immediately following the establishment of the Can-
ada-U.S. boundary on Georges Bank in 1985, the Canadian fishery in that
area was relatively unrestricted. Quotas in the adjacent management unit
however, were often restrictive at that time. Fish caught in the adjacent
management unit may have been reported as originating on Georges Bank.
To prevent this from occurring, fishing vessels now have to choose which
grounds they will fish during a trip and they may not fish in both manage-
ment units on the same trip.

A further avenue that may be pursued is to apply the base and diag-
nostic models to data for older fish only. For example, in the haddock
case, we could apply the models and compare results for ages 3 and older.
This may allow us to distinguish between overall misreporting of catches
and adequate reporting of landed catch but non-reporting of culled and
discarded fish catches.

When the accumulated evidence indicates that fishery catch data may
include systematic errors and the assessment results are significantly af-
fected by inclusion of those data, corrective measures should be pursued.
In extreme cases where persistent trends are apparent over the time se-
ries, it may be prudent to truncate the range of years considered in the
analysis to avoid possible non-stationary processes, e.g., decreasing dis-
card rates. For the haddock example, we might investigate the results
from an analysis using only the data subsequent to the late 1970s. Anoth-
er option would be to exclude suspect data points from the objective func-
tion. For example, with haddock, we might exclude all data for the 1971,
1972, and 1975 year classes in the minimization. A less severe variant of
this would be to include the data but arbitrarily assign a lower weight to
those observations. A further option might be to use a hybrid model where
the number caught are estimated in only a few years which were suspect
while the reported catches were used in all other years. We might use such
a model for haddock and estimate the number caught for the years 1985-
1988 only.

We have focused here on biases in the fishery catch data because we
have assumed that appropriate measures were taken to avoid systematic
deviations in the abundance indices. Differences between the diagnostic
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model and the base model could be caused by systematic patterns in the
indices, such as time trends in catchability. Such possibilities should be
considered and investigated before the results can be interpreted.

The inability of models, which do not use fishery catch data, to esti-
mate absolute abundance and the high imprecision for estimates obtained
from these models limits their use for practical fisheries management
advice. It is good practice however, to subject data to models with differ-
ing assumptions to evaluate the robustness of results. In this regard, we
recommend the diagnostic model as a useful investigative tool, which can
uncover important inconsistencies.
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Abstract
Pacific herring stock assessments have been conducted with two analyti-
cal models since the early 1980s. Correspondence between the estimates
of abundance provided by these independent assessments of stock size
has been good for four of the five major stock groups. In the remaining
area, the Prince Rupert assessment region, estimates of abundance from
these models have diverged widely, particularly in recent years. An inves-
tigation of the biological sampling data for this area revealed limited in-
formation on age structure from the fall food and bait fisheries of the late
1970s and early 1980s. In addition, there were shifts in the pattern of
sample collection throughout the region with time which could be respon-
sible for a bias in the estimates from the age-structured or catch-age mod-
el. Deletion of the fall samples from the input data resulted in an
improvement in model fit. An investigation of possible bias in the spawn
index, used to tune the age-structured model, due to changes in survey
methodology yielded minor improvements in model fit and may be arti-
factual rather than real. Analyses based on the reduced data series de-
scribed here appear to provide a more realistic reconstruction of stock
size and trajectory than in the past and should be used in future assess-
ments of the herring population. This paper provides an example of the
benefits of exploring the value and consistency of data inputs or sources.

Introduction
The assessment of Pacific herring stocks in British Columbia has relied on
two models to estimate and forecast stock size since the early 1980s. The
first model is a modification of the escapement model described by
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Schweigert and Stocker (1988) and reconstructs abundance from an as-
sessment of egg deposition, age composition, and weight-at-age data. The
second is a catch-at-age or age-structured model (Fournier and Archibald
1982). These two models have provided similar estimates of absolute abun-
dance and stock trajectories for four of the five major herring assessment
regions in British Columbia. In the remaining assessment region, Prince
Rupert, the age-structured model estimate of abundance has deviated sub-
stantially from the escapement model estimate of stock size in recent
years. The age-structured model estimate greatly exceeds the stock size
determined from egg deposition data, as well as from the qualitative in-
season sonar and sounder estimates of abundance, to the extent that this
estimate is not considered in the decision making process for determin-
ing annual harvestable surplus. The objective of this study is to revisit the
biological data available for this assessment region to determine whether
the observed discrepancy in stock trends is a function of model misspeci-
fication or bias in the underlying catch-at-age data, with the aim of provid-
ing a more realistic assessment of abundance for this area.

Methods
Stock Considerations
The geographic scope of the Prince Rupert herring assessment region is
shown in Fig. 1 detailing the herring sections which are used to summa-
rize biological characteristics of the stock at finer spatial scales within the
region (Haist and Rosenfeld 1988). The major spawning sites for herring
in this region occur near Port Simpson in section 42 and in Kitkatla in
section 52. In recent years there has been an increase in spawning at Port
Simpson and a decrease at Kitkatla. This has led to speculation that the
two sites represent distinct herring stocks. However, two separate tagging
studies have demonstrated considerable movement of fish between these
and other areas (Stevenson 1954, Haegele 1991). Also, suggestions have
been made that some of this stock may move north across the British
Columbia-Alaska border to mix with the Kah Shakes herring stock. The
available biological data do not indicate any large scale unidirectional
movement of herring north or south, although tagging has indicated some
small scale movement between these areas. For the purposes of this study,
the Prince Rupert assessment region is assumed to represent a distinct
biological entity.

Assessment Models
The two assessment models, an “escapement” model and an “age-struc-
tured” model, used to assess British Columbia herring stocks, have been
described in detail by Schweigert et al. (1997). The escapement model,
used since 1984, relies on an assessment of the escapement from the
fishery plus total catch to estimate the pre-fishery spawning stock biomass
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Figure 1. Herring sections in the Prince Rupert District which define the assess-
ment region and delineate the geographic subunits for data aggrega-
tion.
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for each assessment region. The estimated escapement to each region is
derived from information on spawn deposition. Total egg deposition for
each spawning bed or location is calculated as the product of: total length
of the bed, an estimate of the observed or adjusted width of the bed, and
an estimate of the egg density determined from a visual assessment of the
number of layers of eggs on the available vegetation substrates (Schweigert
and Stocker 1988, Schweigert 1993). Prior to 1988 all estimates of these
parameters of the egg beds were determined from the surface of the water
either from a skiff using a grapple or on foot at low tide. Subsequently,
scuba surveys of spawning locations have been used to quantify the egg
deposition and historical surface observations have been adjusted to em-
ulate more recent diving data. Egg deposition estimates for all spawn beds
are summed within each assessment region and the total egg deposition
is converted to tons of spawning fish based on an estimate of 100 eggs per
gram of herring (Hay 1985).

The age-structured model has been used to assess B.C. herring stocks
since 1982. Ongoing revisions to the model have made it more consistent
with the life history of herring and the fisheries. The current version uses
auxiliary information on spawning escapement, separates catch and age
composition data by gear type, and includes availability parameters to
estimate partial recruitments to the spawning stock. Model parameters
are estimated simultaneously using a maximum likelihood method. The
model is implemented in the C++ programming language using AUTODIF
for derivative calculations (Otter Research Ltd. 1992).

Two types of fishing gear are used commonly in B.C. herring fisheries.
Seine nets are assumed to be nonselective while gillnets are selective for
larger, older fish. Herring fisheries have concentrated primarily on fish
which are on, or migrating to, the spawning grounds. Therefore, the rela-
tive availability of age classes to nonselective gear should be equivalent
to the partial recruitment of age classes to the spawning stock. The age-
structured model explicitly separates availability (partial recruitment) and
gear selectivity. Seine and gillnet fisheries are temporally separate so catch
and age composition are partitioned into fishing periods, separating data
for the different gears. Three fishing periods are modeled. The first period
encompasses all catch prior to the spring roe herring fisheries. This in-
cludes reduction fishery catches prior to 1968 and the winter food and
bait fisheries since 1970. Most of this catch was taken by seine gear al-
though small amounts were caught with trawl nets (which are also as-
sumed to be non-size selective). The second fishing period includes all
seine roe herring catch and the third period includes all gillnet roe herring
catch.

Briefly, assume Tij is the total number of fish in age class j at the begin-
ning of season i, where season is equivalent to year, and λij is the propor-
tion of age j fish which are available to the fishery. Then, Nij1 the total
number of age class j fish which are available at the start of period 1 in
season i is given by
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Nij1 = λ ijTij (1)

To model the fishing process a form of the catch equations, which models
fishing and natural mortality as continuous processes over time period r,
is used:
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F M
F M Nijr

ijr

ijr r
ijr r ijr=

+
− − −[ ]1 exp( ) , (2)

and, for r < p

    N N F Mijr ijr ijr r+ = − −1 exp( ), (3)

where

Cijr is the catch of age class j in season i for period r,

Fijr is the fishing mortality of age class j in season i for period r,

Mr is the natural mortality for period r,

Nijr is the number of fish in age class j in season i for period r,

p is the number of fishing periods (p = 3),

n is the number of seasons (n = 47),

k is the number of age classes (k = 9).

Ni+1,j+1,1 is defined by equation (4) where for j + 1 < k
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r
+ + = − − + − −∑1 1 1, exp( ) ( )expλ , (4)

In the model the last age class, k, accumulates all fish aged k and
older. To reduce the number of parameters to be estimated assumptions
are made about the form of the availabilities and mortalities. The avail-
abilities are formulated to increase with age and are set to 1 for age 6+ and
older. For age 3+ to 5+ the availabilities are assumed to be constant be-
tween years. Because the proportion of age 2+ fish that are mature ap-
pears to vary among years (Haist and Stocker 1985) and some reduction
fisheries targeted on immature 1+ fish, the availabilities for these two age
classes are estimated for each year for which there is age-composition
data with the exception of the final year.

For the selective gillnet fishery (i.e., fishing period 3), fishing mortal-
ity is separated into age selectivity and fishing intensity components. For
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nonselective fisheries (i.e., fishing periods 1 and 2) only fishing intensity
parameters are estimated. A natural mortality parameter, M•, is also esti-
mated. Natural mortality for the three fishing periods is modeled as,
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=
= =
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. (5)

Additional structure is built into the model through the inclusion of
annual spawn data (spawn index, Ii). Spawning occurs at the end of the
season so the number of spawners at age j in season i (Gij ) is estimated by

    G N F Mij ijp ijp r= − −exp( ) (6)

and the spawning stock biomass, which is assumed to be equivalent to
egg production, in season i (Ri) is

    
R w Gi ij ij

j
= ∑ , (7)

where wij is the average weight-at-age j in season i. The errors in the spawn
index observations (Ii) are assumed to be multiplicative so that

    I qRi i i= exp( ),ξ (8)

where q is a spawn conversion factor and ξi is a normally distributed ran-

dom variable with mean 0 and variance  σ1
2.

Data Considerations
Biological data on total catches, weight at age, age structure, and egg dep-
osition are available from 1951 to present. From these data, catch at age
and total egg deposition data were determined and total stock abundance
calculated from age-structured and escapement model analyses as de-
scribed above. The results of applying the age-structured model to three
alternative sets of input data are presented below. First, consider all the
available data assuming no data biases which is the current model. Sec-
ond, accept that the catches and associated biological samples collected
from fall fisheries since the beginning of the roe fishery in 1972 are limit-
ed and may not be representative of the selectivity pattern that occurred
during the earlier reduction fishery or of the current roe fishery, and there-
fore remove these data from the analysis. Third, delete potentially biased
samples as above but also adjust the spawn index or egg deposition data
since 1988 for a possible 25% overestimate of spawn deposition from div-
ing surveys relative to previous surface based spawn assessments due to
increased survey effort and efficiency.
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Results
Trends in abundance for the age-structured model estimate of stock size
and for the escapement model or the egg deposition index are presented
in Fig. 2. The results indicate good agreement between the escapement
and the age-structured estimates for all areas except the Queen Charlotte
Islands and Prince Rupert. It is generally agreed that because of its re-
moteness, some spawnings in the Queen Charlotte Islands were not com-
pletely surveyed in the 1970s and early 1980s. However, with the beginning
of diving surveys in 1988, spawn surveys are felt to be representative of
the total spawn deposition in the area and these results agree with the
age-structured assessment since that time. The same is not true of the
Prince Rupert assessment where there is poor agreement with the escape-
ment estimate from the early 1970s through the mid-1980s and again in
recent years. Because of its proximity to the city of Prince Rupert it is
assured that no significant spawning events would have been missed dur-
ing the annual spawn assessments throughout this period (Pers. comm.,
L. Gordon, Dept. Fisheries and Oceans, Pt. Alberni, B.C.). Hence, the dis-
crepancy between the two abundance indicators has been difficult to rec-
oncile.

The results of conducting a retrospective analysis for these data from
the age-structured model further supports these findings (Fig. 3). The as-
sessment of stock size for all areas except Prince Rupert has been consis-
tent over time in a retrospective sense although there has been a tendency
to underestimate abundance in the two southern assessments. For Prince
Rupert the agreement between the models has become worse for the period
from 1970 to 1985 as new data have been added to the analysis, and
somewhat better thereafter as the estimate of stock size by the age-struc-
tured model has declined.

In an effort to reconcile the two estimates of abundance the biological
sampling data were reviewed. It was noted that the spatial and temporal
distribution of the sampling effort had changed substantially over time.
During the reduction fishery prior to 1972, sampling effort was fairly evenly
distributed throughout the assessment region with most samples coming
from sections 41 or 42 and 51 (Fig. 1). With the advent of the roe fishery in
the 1970s, which focused on the spawning grounds, sampling effort be-
came more concentrated spatially in sections 33 or 42 and 52 with the
majority coming from the latter area. In the current analysis it is assumed
that all available biological samples are representative of the mature pop-
ulation and so contribute equally to the estimate of catch at age. There-
fore, to identify possibly unrepresentative or biased samples, a variety of
ordination methods were investigated as a means to detect outliers in the
data series for each year that might be contributing to the poor fit of the
age-structured model to the catch-at-age data. However, because there
was no objective basis for rejecting any particular sample in the data se-
ries this approach was not very useful for identifying biased biological
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Figure 2a. Estimates of pre-fishery spawning stock biomass (1,000 t) from age-
structured (solid line) and escapement model (dashed dotted line) anal-
yses for northern B.C. herring stock assessment regions, 1951-1997.
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Figure 2b. Estimates of pre-fishery spawning stock biomass (1,000 t) from age-
structured (solid line) and escapement (dashed dotted line) model anal-
yses for southern B.C. herring stock assessment regions, 1951-1997.
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Figure 3a. Retrospective analysis of estimated spawning biomass (1,000 t) from
age-structured analysis for northern B.C. herring stocks, 1951-1997.
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Figure 3b. Retrospective analysis of estimated spawning biomass (1,000 t) from
age-structured analysis for southern B.C. herring stocks, 1951-1997.
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samples. Instead, the estimated age compositions from all the available
samples for each of the three fishing periods (reduction seine, roe seine,
and roe gillnet) were examined. These data highlighted significant differ-
ences between the estimates of age structure of the catch depending on
when and where the samples were collected (Fig. 4). It is evident that, for
a number of the years for which samples are available from both a fall
food or bait fishery and a subsequent spring seine roe fishery, the same
population is not being sampled (1973, 1976-1979, 1982, 1985, 1986). In
fact, the graphs indicate that the fall food and bait samples do not reveal
the dominant cohorts of fish that are found in the spawning run the fol-
lowing spring and as a result are apparently biasing the age-structured
assessment of stock abundance and trend.

To examine the impact of the fall samples, these data were dropped
from the data set and the catches taken in these fisheries were combined
with the roe catches the following spring. The roe fishery sampling data
then became the only source of catch-at-age information for the age-struc-
tured analysis. The result of this analysis is shown in Fig. 5 where the
abundance time series is compared to the current analysis and the es-
capement model estimate. The resulting fit to the catch-age data from
1970 to 1980 remains similar although abundance is markedly lower from
1972 to 1974. However, from 1981 to 1990 the estimate of abundance
increases significantly and subsequently more closely approximates the
magnitude and trend in the escapement model estimate of stock size.

In addition to this analysis, the impact of a possible systematic bias in
the spawn index due to a change in data collection techniques was inves-
tigated. Beginning in 1988, the assessment of egg deposition has increas-
ingly relied on diving surveys since much of the spawn occurs subtidally
and was likely underestimated by earlier surface based surveys. While
historical data have been adjusted to account for this effect (Schweigert et
al. 1997), it is conceivable that the use of scuba based surveys has discov-
ered more egg beds than was the case previously, and as a consequence
the spawn index is biased upward due to increased survey effort and effi-
ciency. To evaluate this possibility the spawn index data used in the age-
structured analysis were arbitrarily deflated by 25% to render them more
similar to what might have been observed using historical survey proce-
dures, and the analysis was repeated on the reduced sampling data set (no
food and bait samples after 1972). The biomass trajectory for this analy-
sis is also presented in Fig. 5 and closely follows that for the reduced
sampling data set until about 1985 when the fit more closely approxi-
mates the escapement model abundance series.

The residuals from the current age-structured analysis for the fit to
the age composition data are shown in Fig. 6a. For comparison, the resid-
uals from the fit to the reduced sampling data set are presented in Fig. 6b.
A similar plot for the adjusted spawn analysis does not result in any de-
tectable difference from Fig. 6b and so is not presented here. It is clear
from Fig. 6b that removal of the food and bait samples from the analysis
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Figure 4. Estimated age composition by year for period 1 (fall fisheries = solid line)
and period 2 (spring fisheries = dashed line) in the Prince Rupert region,
1951-1997. Ordinate ranges from zero to one and abscissa from ages 1
through 10.
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Figure 5. Estimates of mature biomass for age-structured model analysis, for an
adjusted data set removing fall food fishery samples since 1972, and for
an adjusted spawn index without fall food samples, relative to the es-
capement model estimate for 1951-1997.



Symposium on Fishery Stock Assessment Models 427

Figure 6. Standardized residuals from the age-structured analysis using (A) the
current model and (B) the reduced data set without fall food fishery sam-
ples after 1972. Positive residuals are elliptical and negative values ap-
pear as rectangles. Multiple residuals for year and age combinations reflect
the presence of both fall and spring samples in A, from which fall sam-
ples are removed in B.
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has markedly improved the fit to the age structure data for this assess-
ment region.

The lognormal residuals from the fit of the age-structured model esti-
mate of egg production (equation 8) and the observed spawn index data
are plotted in Fig. 7. Results indicate a generally improved fit to the spawn
index over much of the time series, except the period 1981-1984, for the
reduced sampling data set relative to the base analysis. There is also a
marked deviation of the model estimates from the spawn index for the
1950s which may have other explanations such as incomplete spawn sur-
veys, poor catch reporting, or fisheries targeting on mixtures of fish des-
tined for other areas. The adjustment of the spawn index to assess the
impact of changes in survey methodology is equivocal since there is no
marked improvement in the fit to the spawn index; in fact, the fit is actu-
ally poorer in many of the recent years.

The estimated minimum function value determined for each analysis
is presented in Table 1 for all assessment regions and for the two alternate
analyses described here. It is apparent that the current assessment for
Prince Rupert has provided a significantly poorer fit to the available data
than has the same model in any of the other areas. The fit of the Prince
Rupert assessment region without the food and bait sampling data is sig-
nificantly better than the base assessment and in the range of that ob-
served for other stocks. The fit of the model to the reduced data set and
the adjusted spawn is marginally better than to the reduced data set alone.
For comparison, the fit to the current data series without the roe seine
sampling data from section 52 also shows a very marginal improvement
in the fit for this stock relative to the base assessment. The modified
analysis was presented in a recent assessment to adjust for apparent over-
weighting of sampling from section 52 relative to other sections in the
region in recent years (Schweigert et al., unpubl. manuscript).

Discussion
An assessment of the status of any resource relies on the development of
a quantitative model of the processes that describes changes in the dy-
namics of the system with time. The model may then be tested against the
available data to estimate the parameters of interest. An important ques-
tion that frequently arises in the evaluation of the adequacy of the model
is whether the mathematical structure or relationships hypothesized in
constructing the model are supported by the available data or if perhaps
there are errors or biases in these data or there are insufficiencies in the
model structure. Generally, it is not possible to decide between these al-
ternatives although there are subjective approaches for evaluating alter-
native competing models, such as comparing the function values of a class
of models at their respective maxima or comparing the parameter esti-
mates from competing models against independent information that was
not used in constructing the model. Often, however, there are systematic
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Figure 7. Estimated lognormal residuals from the relationship between the observed
spawn index and the total egg production derived by the current age-
structured model, for a reduced model without fall food fishery samples
since 1972, and for an adjusted spawn index without fall food samples.
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biases in the available biological data used to assess the resource that
have effects on model performance but are difficult to interpret or to ad-
just for in model restructuring. The present study attempts to discern
some of these effects for one of the British Columbia herring stocks using
a combination of methods.

The age-structured model used in the assessment of British Columbia
herring stocks evolved over a period of years through a trial and error
process which attempted to encapsulate the important population dynam-
ics processes of herring populations and the associated fisheries (Haist et
al. 1988). The available data on catch at age and relative stock size in the
form of spawn index information are fitted to the model to estimate pop-
ulation parameters of interest and deviations or residuals from the fitted
model examined to attempt to understand the process and measurement
errors of the model. In the application of this model to the five major
herring populations in British Columbia it was evident that an acceptable
fit to the spawn index occurred in the three southern populations. A rea-
sonable fit also occurred for the Queen Charlotte Islands for all but the
early roe fishery period when there was apparently limited effort devoted
to assessing spawn deposition. The fit is improved in recent years where
extensive diving surveys have provided good spawn survey coverage. Taken
together this result suggests that the current model structure adequately
represents the population dynamics of British Columbia Pacific herring
and that the lack of fit to the Prince Rupert area data is indicative of data
anomalies which are inconsistent with the underlying model assumptions
about herring population dynamics.

Richards et al. (1997) recently commented on the applicability of graph-
ical approaches for interpreting catch-at-age analyses and some of these
suggestions are adopted here. For example, a simple time series plot of
the estimated age structure of the population each year as determined by

Table 1. Estimated minimum function values from age-structured
model analysis for British Columbia herring stocks from
1951 to 1997.

Function value No. of parameters

Queen Charlotte Islands 582 199

Prince Rupert base model 2,652 233

Reweight sect. 52 samples 2,222 233

No fall food samples (NFFS) 1,152 221

Adjusted spawn (NFFS) 1,148 221

Central coast 520 222

Georgia Strait 1129 249

W.C. Vancouver Is. 935 207
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samples from the various fisheries revealed anomalies between the popu-
lation structure as evidenced in the fall and that observed the following
spring (Fig. 4). While it might theoretically be possible to alter the struc-
ture of the age-structured model to describe the change in age composi-
tion from fall to spring as a function of changes in distribution or migration,
the underlying biology is not well understood. It is also possible that the
measurement error in the samples which were collected in the fall is so
large that these samples do not accurately reflect the true underlying pop-
ulation age structure which is caught in the spring roe fishery, or in fact
yields a biased estimate of these parameters. The retrospective analysis
conducted for all five herring stocks lends some support to this interpre-
tation because it demonstrates that for all but the Prince Rupert popula-
tion the stock reconstructions have remained relatively stable, as new
data are included in the data set and stock trajectories are re-estimated
(Fig. 3). For Prince Rupert the stock reconstruction varies widely suggest-
ing that there are serious inconsistencies in the underlying age composi-
tion and consequently catch at age which make it impossible to consistently
determine relative cohort strengths over time. As a consequence the stock
reconstruction varies widely depending on which new set of data are add-
ed to the model and how they alter the estimated fishing intensity param-
eters. The approach adopted here to deal with this problem was an
expedient one since it was determined that the number of samples avail-
able for estimating age composition for the years of greatest discrepancy
were minimal. Hence, it was simplest to ignore these samples and rely on
the estimates of age composition determined from the more extensive
sampling program during the spring roe fisheries, to estimate the catch at
age for the entire food and roe catch throughout the roe fishery period
beginning in 1972.

It is also recognized that this simple adjustment to the data series,
although significantly improving model fit, has not accounted for all of
the residual variation in the fit to the data series. For example, it is evident
that as the fisheries have focused on roe, sampling has become more con-
centrated geographically which has had the effect of differentially weight-
ing the age structure and consequently the catch-at-age data to those areas
or components of the stock that are most readily available to the sampling
gear. Such a practice could also be introducing a bias into the sampling
data and the effects of differentially weighting some of the sampling data
should be further investigated. It has also been demonstrated that the
older fish spawn first so the age structure of the herring run changes
during the season (Hay 1985) which may bias the sampling data depend-
ing on the synchronicity of the herring spawning times and the sampling
program. An attempt to adjust for this effect was presented in a previous
assessment for this stock and involved removing all seine fishery samples
collected from section 52 since 1970 from the data set (Schweigert et al.,
unpubl. manuscript). The effect of such a simple reweighting of the catch-
at-age data was not particularly effective, providing only a marginally better
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fit to the data than the base assessment (Table 1). This also raises the
question of how important an effect this might be in other assessment
regions. The only other area in which a significant fall food and bait fish-
ery occurs is the Strait of Georgia, and it will be necessary to examine
these data in a similar manner to determine whether adjustments to the
basic data might also improve the model fit for that stock.

An interesting question that remains is why the age-structured and
escapement model biomass estimates differ so significantly in the early
roe fishery period if survey effort and coverage were thorough and con-
sistent throughout this period. Prior to 1970 harvest rates were generally
very large and removed upward of 50% of the available stocks in most
areas of the coast (Hourston 1980). As a result most of the biomass esti-
mated during this period was determined by the catch since there was
relatively less spawning escapement, and so the stock abundance esti-
mate should be fairly well determined. Throughout the roe fishery period,
harvest rates have been maintained close to the 20% target (Schweigert et
al. 1997) and as a result the biomass estimate is heavily dependant on the
estimate of egg deposition. A possible explanation remains that signifi-
cant herring spawning occurred in unusual areas or at unusual times and
as a consequence went unreported and unsurveyed. Another possibility is
that the procedures used to convert these data to estimates of spawning
biomass are inappropriate for this area, although they seem to work quite
well in the other assessment regions. The only other possibility seems to
be that there are outstanding biases in the age structure information dur-
ing the earliest years of the roe fishery that need to be resolved or the
model structure altered to account for them if a reliable catch age analysis
for this stock is to be obtained.

In summary, based on the compare and contrast strategy adopted
here to evaluate model process error, there is no evidence of any serious
failure to meet the structural assumptions of the existing catch-age model
used in British Columbia herring stock assessments. Removal of a few
apparently biased samples of population age structure resulted in a mark-
edly improved fit of the model to catch-age data and spawn index infor-
mation without the need to alter model formulation for the Prince Rupert
assessment region. The base assessment model applied to a reduced data
series provides a comparable fit to that for the other B.C. herring stocks
and should be used in the future assessment of this resource.

References
Fournier, D., and C.P. Archibald. 1982. A general theory for analyzing catch at age

data. Can. J. Fish. Aquat. Sci. 39:1195-1207.

Haegele, C.W. 1991. Returns from anchor taggings of herring in British Columbia,
1979 to 1985. Can. Data Rep. Fish. Aquat. Sci. 582. 129 pp.



Symposium on Fishery Stock Assessment Models 433

Haist, V., and L. Rosenfeld. 1988. Definitions and codings of localities, sections,
and assessment regions for British Columbia herring data. Can. Manuscr. Rep.
Fish. Aquat. Sci. 1994. 123 pp.

Haist, V., and M. Stocker. 1985. Growth and maturation of Pacific herring (Clupea
harengus pallasi) in the Strait of Georgia. Can. J. Fish. Aquat. Sci. 42(Suppl.
1):138-146.

Haist, V., J.F. Schweigert, and D. Fournier. 1988. Stock assessments for British Co-
lumbia herring in 1987 and forecasts of the potential catch in 1988. Can. Tech.
Rep. Fish. Aquat. Sci. 1990. 63 pp.

Hay, D.E. 1985. Reproductive biology of Pacific herring (Clupea harengus pallasi).
Can. J. Fish. Aquat. Sci. 42(Suppl. 1):111-126.

Hourston, A.S. 1980. The decline and recovery of Canada’s Pacific herring stocks.
Rapp. P.-V. Reun. Cons. Int. Explor. Mer 177:143-153.

Otter Research Ltd. 1992. AUTODIF: A C++ array extension with automatic differen-
tiation for use in nonlinear modeling and statistics. Otter Research Ltd., Nan-
aimo, B.C.

Richards, L.J., J.T. Schnute, and N. Olsen. 1997. Visualizing catch-age analysis: A
case study. Can. J. Fish. Aquat. Sci. 54:1646-1658.

Schweigert, J.F. 1993. Review and evaluation of methodology for estimating Pacific
herring egg deposition. Bull. Mar. Sci. 53(2):818-841.

Schweigert, J.F., and M. Stocker. 1988. A new method for estimating Pacific herring
stock size from spawn survey data and its management implications. N. Am. J.
Fish. Manage. 8:63-74.

Schweigert, J.F., C. Fort, and L. Hamer. 1997. Stock assessments for British Colum-
bia herring in 1996 and forecasts of the potential catch in 1997. Can. Tech.
Rep. Fish. Aquat. Sci. 2173. 73 pp.

Stevenson, C.J. 1954. The movement of herring in British Columbia waters as de-
termined by tagging, with a description of tag and tag recovery methods. In:
Herring tagging and results. Cons. Int. Explor. Mer Spec. Sci. Meeting 55. 36 pp.





Fishery Stock Assessment Models 435
Alaska Sea Grant College Program • AK-SG-98-01, 1998

A Stochastic Implementation of an
Age-Structured Production Model
Victor R. Restrepo and Christopher M. Legault
University of Miami, Rosenstiel School of Marine and Atmospheric Science,
Miami, Florida

Abstract
An age-structured production model (ASPM) has been used by the Interna-
tional Commission for the Conservation of Atlantic Tunas for the assess-
ments of some stocks. That model is sometimes preferable to traditional
biomass-based surplus production models because it can accommodate
age-structured indices of relative abundance. The traditional ASPM esti-
mates a deterministic stock-recruitment relationship, a property that may
result in inconsistencies between the estimated level of recruitment and
the observed level of catches. In this work we relax the deterministic as-
sumption by incorporating stochasticity in recruitment around the deter-
ministic predictions as a first-order, autoregressive time-series process.
We use data for western Atlantic bluefin tuna to contrast the deterministic
and stochastic model fits.

Introduction
Age-structured production models (ASPM) have been used in assessments
carried out by the International Commission for the Conservation of At-
lantic Tunas (ICCAT) in the past, particularly for albacore tuna (Thunnus
alalunga) in the South Atlantic and for bluefin tuna (Thunnus thynnus)
tuna in the Western Atlantic. Conceptually, ASPMs fall somewhere between
simple biomass-based production models (e.g., Schaefer 1957, Prager 1994)
and the more data-demanding sequential age-structured population anal-
yses (Megrey 1989). Simple production models estimate parameters relat-
ed to carrying capacity, rate of productivity, biomass at the start of the
time series, and coefficients that scale indices of abundance to the abso-
lute magnitude of biomass. ASPMs estimate similar parameters but make
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explicit use of age-structured computations, rather than lumped-biomass
ones, and directly estimate parameters of a stock-recruitment relation-
ship. Their main advantage over simpler production models is that they
can make use of age-specific indices of relative abundance.

During the 1996 assessments of Atlantic bluefin tuna (ICCAT 1997),
an implementation of an ASPM (Restrepo 1997) was criticized because its
estimates of recruitment in recent years could not be reconciled against
available catch estimates for extant cohorts. This could be in part attribut-
ed to the fact that the ASPM implementation estimated a deterministic
stock-recruitment relationship and, therefore, estimated levels of recruit-
ment would vary smoothly over time at the deterministic predictions. The
main objective of this paper is to extend the ASPM formulation in order to
account for stochastic recruitment. The same approach to modeling re-
cruitment can easily be incorporated into the more general “integrated
approaches” (e.g., Fournier and Archibald 1982, Deriso et al. 1985, Methot
1990) or into tuned sequential population analyses as was done by Porch
(in press).

Model Formulations and Estimation
Throughout this paper, a Beverton and Holt (1957) type of stock recruit-
ment relationship (SRR) is assumed.

Deterministic Formulation
The deterministic model is similar to that of Punt (1994), which was based
on ideas presented by Hilborn (1990), with modifications to account for
multiple fisheries. Details of the fitting procedure can be found in Punt
(1994) and only a brief summary is presented here, along with some con-
cepts needed for the presentation.

The resource dynamics are modeled by a forward population projec-
tion using standard fishery equations. The projection includes a “plus”
group (ages p and older) and each year’s recruitment is obtained from a
deterministic stock-recruitment relationship. The fishing mortality val-
ues needed to project the population forward are computed based on
total yields and selectivities that are input and assumed exact. The Restre-
po (1997) formulation allows for gear-specific yields and selectivities be-
cause, in multi-gear cases, it is easier to obtain annual input selectivities
by gear, rather than for all gears combined. The estimation consists of
finding the values of the stock-recruitment relationship parameters that
result in stock size trajectories which best explain observed indices of
relative abundance by minimizing the negative log-likelihood
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where t denotes year, i denotes each available series of relative abundance
comprised of ni observations, the last term is for the squared differences
between observed (I ) and predicted     (̂ )I  indices of abundance (these could
be in logarithmic units if a lognormal error is assumed), and     σ i t,

2  are abun-
dance index variances that are either input or estimated. Additional pa-
rameters include catchability coefficients that scale the indices to absolute
abundance (or biomass), and possibly a parameter related the initial con-
ditions. In many ASPM applications, the initial conditions are not reliably
estimated and the initial age structure is fixed, e.g. by assuming that the
stock was in a virgin state at the start of the time series if the series ex-
tends back to the onset of fishing.

The Beverton and Holt SRR is usually described by the equation
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where R is the number of recruits and S is the product of numbers, matu-
rity and fecundity, summed over all ages. For simplicity, we refer to S as
“spawning biomass,” which is often used as a proxy for reproductive out-
put. During estimation, the ASPM uses a different parameterization, fol-
lowing Francis (1992). It consists of defining a “steepness” parameter, τ,
which represents the fraction of the virgin recruitment (R0) that is expect-
ed when S has been reduced to 20% of its virgin level: R = τR0 when S = γ/5,
where γ is the virgin spawning biomass. The SRR is thus defined in terms
of steepness and virgin biomass, two parameters for which initial values
are somewhat easier to guess than α and β. (For a Beverton-Holt relation-
ship, virgin biomass should generally be of similar magnitude to the larg-
est observed yields, while steepness should fall somewhere between 0.2
and 1.0). R0 is computed as the ratio of virgin spawning biomass to spawn-
ing biomass per recruit in the absence of fishing, (S/R)F=0,
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and α and β are given by
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The computation of statistics such as maximum sustainable yield (MSY)
and related benchmarks (e.g., SMSY, FMSY) follows the procedure summarized
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by Shepherd (1982). Conditional on a given F (including an overall selec-
tivity pattern), equilibrium spawning biomass, recruitment and yield are
computed as (for the Beverton and Holt SRR),

    S S RF F= −α β( / ) , (6a)
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, and (6b)
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where (S/R)F and (Y/R)F are the spawning biomass per recruit and yield per
recruit values resulting from exploitation at F. FMSY would be computed by
searching for the F that maximizes equation (6c). Note that, if the selectivity
pattern changes over time, then the computed MSY-related values will also
change as a result of changes in the per-recruit computations.

A set of useful benchmarks for management is based on the so-called
“spawning potential ratio,” SPR, defined as the spawning biomass per re-
cruit obtained under a given F, divided by that under F = 0 (Goodyear
1993). An important benchmark is the SPR corresponding to the slope of
the SRR at the origin, i.e., at the point when the stock is expected to “crash.”
From equations (3) to (5) it follows that this SPRcrash is a function of steep-
ness:
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Deterministically, any fishing mortality that results in an SPR lower than
SPRcrash is not sustainable.

Stochastic Formulation
A stochastic ASPM requires that a recruitment value be estimated for ev-
ery year. In this work, we have chosen to constrain the (log) recruitment
deviations from the equilibrium SRR to follow a first-order autoregressive
(AR[1]) process. The population projection equations are as in the deter-
ministic model, except that recruitment is estimated as

    N R et
t

1 0, ,= υ (8)

where the notation Na,t denotes population numbers for age a in year t.
Thus, recruitment is estimated as deviations from a virgin level. Instead
of estimating γ and τ directly as parameters, the model estimates γ and all
the υt. R0 is computed from equation (3). Besides the initial population
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size, these are all the parameters that are needed to project the popula-
tion forward. The AR[1] process is incorporated by assuming that the re-
cruitment estimates thus obtained vary around the expected SRR as
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with εt+1 = ρεt + ηt+1, where |ρ | < 1, and the η have zero expectation and
variance equal to   ση

2. In equation (9) we distinguish between recruitment
values estimated as parameters in the search (N1,t) and those predicted
from the estimated stock-recruitment relationship (Rt).

The negative log-likelihood for these recruitment “residuals” is (Seber
and Wild 1989):
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where nt is the number of years in the analysis. It follows from equation
(9) that the residuals are computed as
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Computation of the first residual would depend on the initial con-
ditions. For example, in a virgin state, it would be ε1 = ln(N1,1) – ln(R0). Note
that α and β in equations (9) and (11) could be computed from knowledge
of virgin biomass and steepness (see equations 4 and 5). However, only
the former is being estimated directly as a parameter. To include steepness
as an additional parameter to be directly estimated by the search would
confound the information contained in R0 and γ. Our approach is to replace
α and β in the SRR of equation (11) by a function of those parameters being
estimated in the search, and steepness. From equations (4) and (5) it follows
that deterministic recruitment can also be predicted by
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We use these relationships in order to solve for τ, noting that, for a
given ρ and  σ η

2, equation (10) will be at a minimum when
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is also at a minimum. Thus, in every iteration in the search, a subprocedure
is invoked to find the τ that minimizes (14). Having thus calculated the
steepness (and, consequently, α and β), the log-likelihood of equation (10)
is added to the overall objective function.

It remains to be mentioned what to do about the parameters ρ and  σ η
2.

In theory, there is a potential for these to also be estimated. In practice,
however, it is unlikely that the data will contain so much information as to
determine the relative contribution from recruitment variability with
respect to the variability in the index values. In our limited experience
with this model, it appears that these values should be controlled by the
analyst in much the same way as contributions to the likelihood from
different data sources are weighted externally in other assessment methods
(e.g., Deriso et al. 1985). Lower  σ η

2  values will result in lower stochasticity
in recruitment, while higher  σ η

2 values will allow recruitment to fluctuate
more widely. A value of ρ = 0 would assume no autocorrelation between
successive recruitment deviations. Empirical studies such as those of
Beddington and Cooke (1983) and Myers et al. (1990) may yield information
about likely ranges of values for ρ and  σ η

2 for species groups.
 Estimating the initial conditions for the stochastic model can be

problematic, as with the deterministic model. Estimating the age structure
in year t = 1 would not generally be an option unless there were age-
specific relative abundance data for the start of the series. Thus, using a
long time series of data extending to the onset of fishing, and assuming
an initial equilibrium state at S = γ, remains a useful option. In this paper
we calculate a stable age structure resulting from a pre-series recruitment
that is fixed. We fix υ0 and set the starting population sizes as

    N R e e M
21 0

0 1
, ,= −υ (15a)
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 for the plus group, p. (15c)

This alternative allows the initial age structure to be either higher or
lower than that corresponding to an equilibrium virgin state. The parameter
υ0 could be estimated in the search procedure as well. If it is, it may be
desirable to place a penalty on how much it can alter the initial biomass
away from γ. This could be accomplished with the term
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(16)

where  σ υ
2 is fixed by the analyst.

Estimation of the stochastic model parameters for any given data set
then requires several choices associated with how much recruitment can
fluctuate around its deterministic predictions and about the initial
conditions. In addition to choices about variances ( σ η

2,  σ υ
2 and possibly

  σ i t,
2 ), the log-likelihood components could be given different emphases (λ)

to obtain model estimates by minimizing:

    − = − − −ln( ) ln( ) ln( ) ln( ).L L L LT 1 2 2 3 3λ λ (17)

Projections using the stochastic model results incorporate the auto-
regressive process in recruitment by first generating normally distributed
random deviates, ηt, with mean zero and variance  σ η

2, and then setting the
autocorrelated residuals as

εt+1 = ρεt + ηt+1 (18)

for use in equation (9). The value of the first residual to “seed” the projec-
tions is available from the model fit, i.e. from equation (11).

An Example: Western Atlantic Bluefin Tuna
We used the stochastic ASPM model with the same data set that was used
for western Atlantic bluefin tuna during the 1996 ICCAT assessment (ICCAT
1997). The input data consists of yields for four fisheries starting in 1950
(Fig. 1), and of nine indices of abundance assumed to be lognormally
distributed, with associated coefficients of variation (available in ICCAT
1997). Fishery selectivities were fixed by the assessment working group
for different time periods when regulations substantially affected fishing
operations and were based on average patterns in the results from an age-
structured VPA (Gavaris 1988, Powers and Restrepo 1992). The biological
parameters used in the ASPM runs are given in Table 1.

We carried out a series of estimations making different assumptions
about some of the inputs that are fixed (Table 2), or estimating different
numbers of parameters, in order to examine the sensitivity of the results
to these choices. Run 1 is a deterministic one, conducted for comparison
to the stochastic model. Runs 2 to 5 examine the effect of estimating
different numbers of recruitment deviations from R0 (equation 8). In these,
the υt were fixed at values obtained from Run 1 for years when they were
not being estimated, thus forcing the initial pattern of recruitment to be
smooth, like in the deterministic fits. Runs 6 and 7 allowed the initial
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Figure 1. Reported landings for western Atlantic bluefin tuna, by fishery.

biomass to be arbitrarily smaller or larger than the virgin one. Run 8 was
performed to examine the effect of assuming no autocorrelation in
recruitment residuals (ρ = 0), and Runs 9 and 10 used different choices for
the assumed variance in recruitment residuals. In all runs, we set  σ υ

2 equal
to 0.1, and set λ2 and λ3 equal to 1.

For Runs 1 and 2, we approximated the variance of outputs of interest
by bootstrapping (Efron 1982) the indices of abundance from their residual
distributions. The algorithm used for estimation was that of Nelder and
Mead (1965), with multiple restarts.

Results and Discussion
A summary of outputs for Runs 1-10 is given in Table 3, where we focus
on some quantities that are of interest to management. Some general
conclusions can be derived from these results:

1. Maximum sustainable yield (MSY ) resulting from recent (1990-1995)
fishery selectivity patterns is estimated at 6,000-7,000 t, or about 2.5 times
recent yield levels. The potential MSY has changed considerably over time
as a result of changes in the overall selectivity effected by the various
gears (Fig. 2). (Note that long-term changes in MSY for a stock could be due
to a number of other factors, including changes in survival or productivity.
In this case, due to the model’s assumptions and use of a constant natural
mortality rate, the estimated shifts in MSY levels can only be attributed to
changes in selectivity). Recent MSY levels are higher than those attainable
with the 1960s-1970s selectivities, probably as a result of ICCAT minimum
size recommendations and subsequent demise of purse seine harvest of
small bluefin tuna (Fig. 1).
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Table 1. Biological parameters assumed for bluefin
tuna, held constant for all years.

Midyear Spawning Natural
Age weight (kg) biomass (kg) mortality (yr–1)

1 4.4 0.0 0.14

2 10.6 0.0 0.14

3 20.5 0.0 0.14

4 37.5 0.0 0.14

5 56.6 0.0 0.14

6 80.6 0.0 0.14

7 111.3 0.0 0.14

8 143.0 131.3 0.14

9 176.1 164.8 0.14

10+ 292.8 267.2 0.14

Table 2. Age-structured production model runs performed.

Run Type υt estimated υt=0 ρ ση
2

1 Deterministic n/a n/a n/a n/a

2 Stochastic 1950-1995 0 0.5 0.2

3 Stochastic 1960-1995 0 0.5 0.2

4 Stochastic 1970-1995 0 0.5 0.2

5 Stochastic 1980-1995 0 0.5 0.2

6 Stochastic 1950-1995 –0.1 0.5 0.2

7 Stochastic 1950-1995 0.1 0.5 0.2

8 Stochastic 1950-1995 0 0 0.2

9 Stochastic 1950-1995 0 0.5 0.05

10 Stochastic 1950-1995 0 0.5 0.4

See text for description of symbols.
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Table 3. Results from the age-structured production model runs (defined
in Table 2). R2 is the coefficient of determination for the nine
fitted indices of abundance.

SPR92-95

Run R2 MSY (t) S96/γ S96/SMSY R92-95/R0 F8+,92-95 SPRcrash

1 0.23 6,079 (3.2) 0.028 (14.7) 0.083 (13.9) 0.21 (7.6) 0.35 (12.1) 0.75

2 0.28 6,502 (8.2) 0.035 (23.5) 0.107 (21.3) 0.16 (22.7) 0.37 (19.3) 1.30

3 0.27 7,290 0.029 0.091 0.170 0.46 1.04

4 0.26 6,665 0.033 0.101 0.181 0.44 1.03

5 0.25 6,369 0.036 0.105 0.150 0.35 0.88

6 0.28 6,776 0.033 0.099 0.156 0.38 0.91

7 0.28 6,490 0.036 0.105 0.152 0.35 0.88

8 0.27 7,357 0.028 0.087 0.198 0.46 1.07

9 0.26 7,224 0.030 0.092 0.212 0.41 1.05

10 0.30 5,943 0.040 0.113 0.131 0.31 0.82

The results present estimates of maximum sustainable yield (MSY ); 1996 biomass (S96) relative to
virgin (γ ) and MSY levels; recent recruitment (R ) relative to virgin levels (R0); recent average fishing
mortality rate for ages 8+; and equilibrium spawning potential ratio (SPR ) expected under current ex-
ploitation relative to the limit at which the stock is expected to collapse (SPRcrash). Numbers in paren-
theses are coefficients of variation (percent).

2. The resource is perceived to be severely depleted, as has been
suggested by ICCAT assessments for well over one decade. Current
spawning biomass is estimated to be at 3-4% of virgin levels, or 8-11% of
the level that can sustain MSY. Recent recruitment is also low, estimated to
be 13-21% of virgin levels for the most recent years.

3. The estimated annual fishing mortality rate for the spawners (ages
8 and older) in recent years ranges from 0.31 to 0.46 for the various runs.
The ratio of current equilibrium spawning potential ratio (SPR) to SPRcrash

(equation 7) suggests that this level of fishing mortality is very high or
even unsustainable (ratio values smaller than 1.0 are not sustainable).

Figure 3 contrasts various trajectories between Runs 1 and 2. The
recruitment tendencies are generally similar although, as expected, the
stochastic fit shows more variability. Tendencies in spawning biomass
and fishing mortality relative to MSY levels are very similar, with the
stochastic model estimating a larger decline in biomass between the early
1960s and early 1980s. The stock-recruitment trajectories are in general
agreement between the two models (Fig. 3).

Figure 4 compares trends in estimated recruitment and spawning
biomass since 1970 for the deterministic (Run 1) and stochastic (Run 2)
ASPM fits, and for the VPA used in the ICCAT assessment of 1996. The
1970s biomass estimated by the VPA is substantially higher than that from
either ASPM fit. However, the VPA estimates were obtained with an algorithm
that is sensitive to the choices made to model fishing mortality in the plus
group (Hiramatsu 1992). Thus, the estimates of biomass from the VPA
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Figure 2. Estimates of potential maximum sustainable yield (MSY) conditional on
year-specific selectivity patterns for the deterministic (Run 1) and sto-
chastic (Run 2) ASPM fits.

Figure 3. Estimated trajectories of recruitment (upper left), stock-recruitment
pairs (lower left), the ratio of spawning biomass to that at MSY (S/SMSY,
upper right), and the ratio of fishing mortality to that resulting in MSY
(F/FMSY, lower right). Results are shown for the deterministic (Run 1)
and stochastic (Run 2) ASPM fits.
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could change substantially if the plus group were handled differently.
Similarly, biomass estimates from the ASPM could be affected by changes
in inputs that are assumed to be known exactly (e.g., weights at age,
selectivities).

Recruitment levels for the two most recent years estimated with the
ASPM are about 3 times larger than those from the VPA (Fig. 4), a difference
that is potentially important in making projections into the future. We
conducted deterministic projections with the results from Run 1, and
stochastic projections with the results from 100 bootstraps of Run 2. In
the latter case, for each bootstrap set of starting conditions, the population
was projected forward at different catch levels using 100 realizations of
future stochastic recruitments (equation 18). The results of these
projections are shown in Fig. 5 as the median, 10th and 90th percentiles
of spawning biomass and recruitment (also shown are the deterministic

Figure 4. Comparison of recruitment and spawning biomass
estimates since 1970 for the VPA assessment, and
the deterministic (Run 1) and stochastic (Run 2) ASPM
fits.
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Figure 5. Projected recruitment (in thousands) and spawning biomass (in thou-
sand t) under four different constant catch levels (TAC). The thick
solid and dashed lines give the median and approximate 80% confi-
dence intervals from the stochastic (Run 2) projections. The circles
correspond to the deterministic (Run 1) projections. The horizontal
solid line is the spawning biomass at MSY level (SMSY), used as a recov-
ery target.
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projections from Run 1). We note that these projections are not directly
comparable to those of ICCAT because some of the choices we made differ
from those made by the assessment working group (see ICCAT 1997 for
details).

Results of the stochastic ASPM projections suggest that constant catch
levels above 3,000 t are not sustainable and that catch levels below 1,000 t
are (Fig. 5). Projections made with intermediate levels of catch indicate
that yields of 2,500 t are probably not sustainable, but 2,000 t may be (as
indicated by the median, Fig. 5). However, there is great uncertainty in
these projections as suggested by the approximate 80% confidence
intervals. This uncertainty is due to the variance of estimated 1996 stock
sizes as well as future recruitment. The deterministic projection is clearly
more pessimistic than the stochastic one. The difference can be attributed
in part to the deterministic model’s failure to estimate relatively large
1988-1989 year classes (Fig. 4), which is reflected into lower adult stock
sizes at the start of the projection period.

The results presented above indicate that the general perception about
the depleted status of bluefin tuna obtained from application of the ASPM
is quite similar to that reached by ICCAT using other methods. The main
methodological focus of our work, to extend the basic ASPM in order to
better model interannual changes in recruitment, also makes the stock
projections more compatible with those of ICCAT (1997) (although there
are differences in the median estimates of projected stock trajectories,
some of the choices we made for making the projections differ from
ICCAT’s). We do not propose that the stochastic ASPM presented here be
used as the primary assessment method for the bluefin stock because the
ASPM requires several stringent assumptions, such as known selectivities
for the fishing gears. However, we recommend that the ASPM be used as
an auxiliary tool to examine the stock’s trajectory in relation to MSY levels.
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Abstract
Bocaccio (Sebastes paucispinis) has historically been the most important
rockfish harvested in the California groundfish fishery. A stock assess-
ment of bocaccio in the Eureka-Monterey-Conception area indicated that
in 1996 spawning biomass was 5-10% of that present in 1970. This finding
was based on the application of the Stock Synthesis model to a split-sex
population, assuming length-dependent gear selectivities for four distinct
fisheries. A variety of fishery-dependent and fishery-independent data
sources were used to model population biomass, including (1) landings
from the trawl, setnet, hook-and-line, and recreational fisheries, (2) trawl
catch-at-age data for the period 1980-1985 using surface otolith ages, (3)
trawl catch-at-age data for 1988, 1991, and 1994 using break-and-burn
otolith ages, (4) a probability transition matrix for conversion of age types,
(5) length composition data from each fishery over the period 1980-1994,
(6) an effort index in the recreational fishery, (7) triennial shelf trawl sur-
vey CPUE and length-frequency data, (8) a spawning biomass index de-
rived from larval abundance in CalCOFI surveys, and (9) an index of
year-class strength from a midwater trawl survey of young-of-the-year
pelagic juvenile abundance.

An evaluation of these diverse sets of information indicated that the
age composition data were in fundamental disagreement with all other
data sources. This discrepancy was apparently due to bias and imprecision
in bocaccio ages, which resulted in uninformative age composition data
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that were incapable of resolving a highly variable pattern of recruitment
to the fishery. For this purpose, length composition data were much more
useful, especially including those from the trawl and recreational fisheries.

Introduction
The need to incorporate diverse sets of information into the statistical
analysis of fish population dynamics has led to the development and evo-
lution of flexible stock-assessment models (e.g., Fournier and Archibald
1982; Deriso et al. 1985; Methot 1989, 1990). Along the West Coast of the
United States, Methot’s Stock Synthesis model has become the standard
analytical tool for estimating the population status of groundfish stocks.
Within the framework offered by the synthesis model, the inclusion of
catch-at-age data has been the cornerstone of most groundfish assess-
ments. Like Fournier and Archibald’s (1982) model, Stock Synthesis plau-
sibly treats age composition data as measured with a multinomial error
structure, but it is unique in that errors attributable to reader mis-aging
can also be included in the model.

In a broader context, the use of catch-at-age data in fish stock assess-
ments has been reviewed by Megrey (1989). It is widely presumed that
estimates of the age composition of the catch are the most informative
and useful data one can obtain when modeling the effects of fishing on a
stock. This is particularly true of species that show a variable pattern of
recruitment, as is typical of the rockfishes (Sebastes). Even so, a number of
studies have highlighted the benefits of including “auxiliary” data in age-
structured stock assessments, especially in terms of constraining the fits
of population models to catch-at-age data (e.g., Bence et al. 1993; High-
tower 1996).

Here we report on certain findings from a recently completed stock
assessment of bocaccio (Sebastes paucispinis) which employed the Stock
Synthesis model (detailed results available in Ralston et al. 1996). The
assessment was notable in that a large number of fishery-dependent and
fishery-independent data sources were involved in the analysis. Two of
the fishery-independent data sources were new and had not been used
previously in groundfish stock assessments conducted on the West Coast.
We also included new break-and-burn age-frequency distributions in the
assessment, as recommended by Bence and Rogers (1992), and evaluated
the relationship between those data and the surface age composition in-
formation that had been used in the last stock assessment.

Bocaccio is an important species of rockfish that has a long history of
exploitation in California (Fig. 1; Lenarz 1987, Ralston et al. 1996). It is
most abundant off southern and central California and is uncommon be-
tween Cape Mendocino and Cape Blanco. A second population center ex-
ists near the Oregon-Washington border, and extends north to Cape Flattery
(Gunderson and Sample 1980, Ralston et al. 1996). Bocaccio frequents an
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exceptional diversity of habitats, including kelp forests, rocky reefs, mid-
water, and open, low relief bottoms (Eschmeyer 1983). Even though sub-
adult growth can be very rapid in absolute terms (24 cm at age 1), adults
grow slowly (K = 0.11-0.13 yr–1 [Wilkins 1980]). Moreover, growth is sexu-
ally dimorphic, with females reaching much larger sizes than males (i.e.,
90 versus 70 cm).

Sources of Data
Fishery-Dependent Data
The assessment was restricted to California because Oregon landings of
bocaccio are virtually nil and few biological samples were collected for
the small catches taken from the Washington subpopulation. California
commercial landings statistics for the period 1980-1995 were summarized
using procedures outlined in Erwin et al. (1997) and Pearson and Erwin
(1997). Estimates of recreational landings, which have been significant,
were extracted from the national Marine Recreational Fishery Survey Sta-
tistics (MRFSS) database. The catch time series was lengthened to encom-
pass the 1950-1995 period using information and methods detailed in
Ralston et al. (1996). During the last half century, bocaccio have been har-
vested in four distinct sectors, i.e., the trawl, hook-and-line, setnet, and
recreational fisheries (Fig. 1). Each fishery has been characterized by a
distinct exploitation pattern, and in the assessment each was modeled
independently of the others.

Bocaccio age composition data from the trawl fishery were available
for use in the assessment, although all data for the 1980-1985 period were
based on surface ages (Table 1), which were thought to be biased low for
older fish (Beamish 1979). To estimate the age bias of these fish, 612 bocac-
cio that had been surface-aged in 1983-1984 were re-aged using the break-
and-burn method. That study showed that at a break-and-burn age of 10-yr
the mean surface age of bocaccio was 8-yr, while at a break-and-burn age
of 20-yr, surface age averaged 14-yr. These results were further analyzed
and a probability transition matrix was developed to transform model age
composition vectors to predicted surface age composition vectors. The
matrix was included in the Stock Synthesis model as a means of generat-
ing predicted surface age data from the underlying dynamics of the model.
The 1980-1985 surface age data were also supplemented with break-and-
burn age data from the trawl fishery for the years 1988, 1991, and 1994
(Table 1). Last, the precision of break-and-burn ages was evaluated by re-
examining 25% of all the aged fish. Based on these 275 otoliths, percent
agreement between readings declined from ~90% for age-1 fish to ~10%
agreement for age-20 fish. The pattern of decline reflected an exponential
decay in the precision of age estimates with increasing age (Fig. 2).

Sex-specific length compositions were also available for each year and
each of the three commercial fisheries for the period 1980-1994 (Pearson
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Figure 1. Estimated landings of bocaccio in the Eureka-Monterey-Conception
INPFC areas during the last half century.

Figure 2. Precision of bocaccio break-and-burn age data, as measured by per-
cent agreement to the year among re-examined otoliths. Lines repre-
sent linear and exponential fits.
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and Erwin 1997). In contrast, length composition data for the combined-
sex recreational fishery were available from the MRFSS database for 1981-
1989 and 1993-1995, as was a recreational fishing effort series (Table 1).

Fishery-Independent Data
Three sources of auxiliary survey information were used in the bocaccio
assessment. These included the Alaska Fisheries Science Center’s triennial
shelf survey, the Southwest Fisheries Science Center’s (SWFSC) pelagic ju-
venile rockfish midwater trawl survey, and the California Cooperative
Oceanic Fisheries Investigation’s (CalCOFI) ichthyoplankton surveys. A brief
description of each follows.

The triennial bottom trawl survey has been completed once every
three years since 1977 (Table 1). The survey, which has found very wide-
spread use in Pacific coast groundfish stock assessments, samples conti-
nental shelf habitats in the 55-366 m depth range using a high-opening
Nor’eastern bottom trawl equipped with bobbin roller gear (Wilkins 1996).
In this study, only standard trawls conducted in the southern area (Eure-
ka, Monterey, and Conception International North Pacific Fisheries Com-
mission areas) were used. Although the survey is often used to provide
swept-area estimates of absolute biomass, we treated the survey as a rel-
ative index of bocaccio abundance (Fig. 3). The triennial survey indicates
that a substantial reduction in bocaccio biomass has occurred over the
last two decades. Catch-weighted estimates of year-specific and sex-spe-
cific length compositions from the survey were also used as input data to
the model.

The pelagic juvenile rockfish midwater trawl survey is designed to
estimate the relative year-class strength of a group of 10 rockfish species,
including bocaccio. The survey has been conducted every year since 1983
and uses a modified Cobb midwater trawl. A series of 36 standard stations
are sampled during three repetitive occupations of a 110-mile study area
along the central California coast. Stratified means are calculated that rep-
resent the average number of 100-day-old fish taken during a standard
trawl, with the maximum value among the three occupation means pro-
viding an estimate of year-class strength (see Ralston and Howard 1995).
In this instance the time series was shifted forward by one year, repre-
senting the relative abundance of age-1 bocaccio recruits (Table 1, Fig. 4).
Note that the relatively low abundance of age-1 fish in 1984 and 1993 was
due to the adverse effects of the 1983 and 1992 El Niños on rockfish
reproductive success.

Within the California Current ecosystem, CalCOFI data have been col-
lected over a grid of north-south lines and onshore-offshore stations since
1951. Within that time period cruises are typically identified by the year
and the principal month of sampling. At occupied stations, plankton sam-
ples have been collected using both bongo and ring nets; samples are
later sorted in the laboratory. The ichthyoplankton are identified and
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Figure 3. Alaska Fisheries Science Center’s triennial shelf trawl survey catch-
per-unit-effort (CPUE) of bocaccio in the Eureka-Monterey-
Conception INPFC areas. Error bars represent ±1.0 standard error.

Figure 4. Relative year-class strength of age-1 bocaccio in year t based
on the abundance in year t-1 (data from the pelagic juvenile
rockfish midwater trawl survey). Note that low survey catch-
es in 1983 and 1992 were associated with El Niño events.
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enumerated when possible and the information entered into the CalCOFI
database (Moser et al. 1993). Bocaccio larvae are relatively easy to identi-
fy, but have not been sorted from the entire time series of CalCOFI collec-
tions (see Table 1 for available years). Jacobson et al. (1996) describe the
use of the log-transformed data to index the abundance of bocaccio larvae
using a General Linear Model (GLM), which included terms for year, month,
line, station, and all non-year interaction terms. Because the survey pri-
marily samples very young larvae, year effects from the GLM can be used
to provide an index of spawner abundance (Fig. 5).

Model Structure
The Stock Synthesis model is a forward-projecting, separable, age-struc-
tured population model. The separability assumption requires that the
fishing mortality rate experienced by fish of age a in year t (Fa,t) is defined
by the product of a year-specific full-selection instantaneous fishing mor-
tality rate (Ft) and an age-specific value of selectivity (sa), i.e., Fa,t = Ftsa. Key
features of the model are that it incorporates a multinomial error struc-
ture for both age and length composition data, it explicitly models aging
errors when constructing predicted age composition data, and it conve-
niently allows a variety of data elements to be combined and evaluated
under one umbrella formulation. In particular, all data types are combined
in a total loge-likelihood equation of the form:

    
Total

i = 1

m

i i =   l l∑ λ

where lTotal is the total loge-likelihood of the model and the li are the indi-
vidual loge-likelihoods for each of the m data components used by the
model. These are weighted by “emphasis” factors (λi), such that in combi-
nation the various data sources used by the model can be controlled. To
reduce the influence of one data type the particular λi can be reduced to a
nil emphasis (e.g., 0.001).

The model is typically configured to treat observations of age compo-
sition data to be measured with a multinomial sampling error structure.
In particular, a loge-likelihood component for the i th type of age data takes
the form:

      
li i t i a t e i a t

at
p p n p p( | ˆ) log (ˆ ), , , , ,= ∑∑

where pi,a,t is the observed proportion of fish that are age a in samples
collected in year t,     

ˆ
, ,pi a t  is the model’s prediction of that proportion, and

ni,t is the year-specific sample size upon which the observed proportions
are based. The model then performs an iterative search for values of     

ˆ
, ,pi a t
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that will maximize li. Length composition data are fitted in a similar man-
ner. Survey data, however, are usually modeled with a lognormal error
term, i.e.,

      

li e i t
e i t i t

i tt

I I
= − +
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,
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,

σ
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where li is the loge-likelihood component for the i th survey, Ii,t is the ob-
served value of the survey index in year t, Îi,t is the model’s prediction of
the index value, and σi,t is the standard error of the statistic on loge-scale.

During the development of a baseline model for bocaccio, we explored
a number of different configurations. Since the level of data and model
complexity was very high (four fisheries, split sexes, unbiased and biased
ages, three surveys, etc.), we decided some simplification was needed.
First, because there were only estimates of total catch for the period 1950-
1968, we elected to exclude that period and we modeled the population
from 1969 to the present. Even so, data from the omitted period were
used to establish historic catch levels. Although some CalCOFI data were

Figure 5. Long-term patterns in the abundance of larval bocaccio, as
estimated by a General Linear Model (GLM) applied to the
CalCOFI data base. Error bars indicate 95% confidence in-
tervals.



460 Ralston & Ianelli — Length Better Than Age in Bocaccio

available from the mid-1950s (Fig. 5), preliminary analyses indicated they
had little or no effect on the model’s final estimate of current stock size.

In the prior assessment, Bence and Rogers (1992) showed that bocac-
cio selectivity patterns were inadequately described by the age-based Stock
Synthesis model (see Methot 1990). Like them, we used the length-based
implementation of the model, although the selectivity curve for the pelag-
ic juvenile rockfish survey was modeled as full vulnerability at age-1 and
no vulnerability at any other age. Similarly, in the previous assessment, a
component of the trawl fishery selectivity function was allowed to vary
with time. We initially explored a model with constant selectivity and com-
pared this to models where the ascending inflection point of the selectiv-
ity curve was allowed to vary. When interannual variation in that parameter
was fully expressed (i.e., a value was estimated for each year), a gain of 49
log-likelihood units was realized at the cost of eleven new parameters,
representing a significant improvement in fit. We were able to further sim-
plify the model and reduce the total number of parameters by pooling five
of these, without substantially affecting the total log-likelihood of the
model. A similar procedure was used for the selectivity curve in the recre-
ational fishery, except that two parameters were allowed to vary with time
(i.e., the ascending inflection point and the initial selectivity).

Thus, the final “baseline” version of the bocaccio model included elev-
en loge-likelihood components (i.e., m = 11) that together controlled the
fit of the model to the data. These were components for: (1) the trawl
fishery length composition data, (2) trawl fishery surface age composition

Table 2. Summary of parameters estimated in the baseline Stock Synthe-
sis model of bocaccio (M was fixed at 0.15 yr–1).

Model element Number of parameters

Trawl selectivity Stationary 8

Time-varying 8

Setnet selectivity 9

Hook-and-line selectivity 9

Recreational selectivity Stationary 5

Time-varying 21

Triennial survey selectivity 3

Recruit survey selectivity 1

CalCOFI survey selectivity 0

Recreational fishery effort 1

Growth 5

Recruitments  28

Total 98
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Figure 6. Probability transition matrix used to generate predicted sur-
face age distributions.

data, (3) trawl fishery break-and-burn age composition data, (4) hook-and-
line fishery length-frequency data, (5) setnet fishery length-frequency data,
(6) recreational fishery length-frequency data, (7) a recreational fishing
effort series, (8) the triennial trawl survey time series of catch rate, (9)
triennial survey length compositions, (10) the pelagic juvenile rockfish
survey, and (11) the CalCOFI larval abundance survey (assumed ∝ spawn-
ing biomass). To fit the baseline bocaccio model a total of 98 parameters
were estimated (Table 2). Also note that, once converged, the model solves
for the fishing mortality rate that is required to produce an exact match to
the observed landings, subject to the specific constraints imposed by the
estimated parameter set.

Model Results
All of the age data used in the previous assessment (Bence and Rogers
1992) were based on surface ages. In our assessment we attempted to
incorporate new age data that were derived from the break-and-burn meth-
od. This had the unfortunate effect of adding a new level of complexity in
interpreting the age data. First, it became evident that, given the spread at
older ages in the transition matrix, very little information could be ex-
tracted from surface ages (Fig. 6). Second, the percent agreement between
reexamined break-and-burn samples was rather poor (Fig. 2). Finally, spe-
cific age determination criteria for bocaccio had not been rigorously vali-
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dated and the two age readers indicated that, at least relative to other
species of rockfish, bocaccio otoliths were difficult to decipher. The lack
of validation implied that the break-and-burn ages could be biased. These
issues led us to question the fundamental reliability of the different data
sources, particularly the age composition data.

Concerns over the age composition data component were verified when
the model was fit with (1) all the age data fully emphasized, (2) reliance on
break-and-burn ages only, and (3) nil emphasis on any of the age composi-
tion data (Fig. 7). In the last case the model indicated a strong recruitment
event of age-1 fish occurred in 1978 and that minor but above average
events occurred in 1985 and 1989. These patterns were also evident in
the trawl length composition data (Fig. 8), the recreational length compo-
sition data, and in the recruit survey (Fig. 4). The strong 1977 year class
was, moreover, well known to California Department of Fish and Game
biologists based on a tremendous influx of small fish in the 1977 and
1978 nearshore recreational fishery. In contrast, in the first two cases,
wherein the age data were allowed to influence the fit of the model, the
estimated time series of recruitments was blended in the 1980s and no
dominant 1977 year class was evident.

Based on these findings, we classified the data into three general
groups: primary, secondary, and tertiary (Table 1). This was done to im-
prove the robustness of model outputs and to avoid model sensitivity to
data that were noisy or were otherwise questionable. The primary data
types were used in the estimation of growth, year-class strength, and pop-
ulation trend. The secondary data were used only to estimate selectivity
patterns for the different gear types and the tertiary data were effectively
omitted from the analysis except to highlight their deficiencies. To fit the
model to the different data classes, we followed a simple, iterative scheme,
i.e., (1) fitting the model with only the primary data types emphasized, (2)
fixing parameters estimated in the first step and estimating selectivity
parameters for secondary data types, and (3) repeating steps one and two
until the model showed no further tendency to change. The resulting base-
line model was characterized by trajectories of bocaccio summary bio-
mass and spawning output that showed severe declines over the course of
the modeled period, with terminal year values in the range of 5-10% of
their maxima, which occurred in 1969 (Fig. 9). The obvious “bump” in
these downward trends represents the strong 1977 year-class passing
through the population.

Discussion
The assessment of bocaccio was complicated by a number of factors. In
particular, we modeled the effects of four distinct fisheries on the abun-
dance of male and female bocaccio. In addition, the trawl and recreational
fisheries were marked by significant time-varying effects on selectivity.
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Figure 7. Time series of age-1 recruitments estimated with different emphasis
levels on the age composition data.
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Figure 8. Relative length composition distributions of bocaccio caught in the trawl
fishery (1980-1994).

Figure 9. Estimated trends in summary biomass and spawning poten-
tial from the baseline bocaccio Stock Synthesis model.
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We also included three separate sources of fishery-independent information
in the model. Perhaps most complex, however, was the inclusion of surface
and break-and-burn age information in the assessment and unraveling
the conflicting signals of those data with other information in the model.

In the case of bocaccio, the age data were of questionable utility, ap-
parently due to problems with bias and imprecision (Figs. 2 and 6). In
contrast, the length composition data were very informative and carried
clear, unambiguous signals of strong year-classes passing through the fish-
eries (e.g., Fig. 8). Biologically, we believe that these two observations are
related. The clear progression of modes in the length data was due to the
rapid absolute growth of young bocaccio and the relatively brief seasonal
expression of spawning. However, these two features exacerbated the in-
terpretation of bocaccio otoliths. Rapid growth of subadult fish resulted
in the proliferation of false annuli and accessory check marks in the otoliths,
which were difficult to interpret, resolve, and validate through the appli-
cation of marginal increment analysis.

We also utilized two new sources of information in a groundfish stock
assessment, i.e., the SWFSC midwater trawl survey of pelagic juvenile
rockfish abundance and the CalCOFI database of larval bocaccio abundance.

Figure 10. Relationship between the Southwest Fisheries Science Center’s pe-
lagic juvenile rockfish midwater trawl survey index of bocaccio
abundance and year-class strength estimated from the Stock Syn-
thesis model with no emphasis on those survey data.
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These complemented the traditional triennial groundfish trawl survey,
which has been used extensively in previous stock assessments. To
substantiate and validate the midwater trawl survey index as a relative
index of recruitment, we also fitted our final model with zero weight on
the recruit survey (Fig. 10). In this independent comparison the survey
index was in full agreement with the model’s interpretation of year-class
strength, which was largely based on the available length-frequency data,
particularly those from the trawl and recreational fisheries. It is our belief
that in future applications this index will provide a reliable basis for pro-
jecting trends in biomass into the near future. Likewise, the CalCOFI data-
base was used for the first time to index the relative spawning biomass of
a groundfish. Except for the obvious outlier in 1970, it tended to closely
follow the overall pattern of decline in spawning output observed in the
base run model (Figs. 5 and 9). Based on our experience with these infor-
mation sources, we encourage and advocate the use of both these fishery-
independent auxiliary data sets in future groundfish stock assessments.
However, one should always closely examine models for assumptions made
about data quality.
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Abstract
An integrated catch-age mark-recapture model is described along with its
application to two British Columbia sablefish stocks. The model can be
implemented with explicit migration or not, and the model structure in-
cludes age- and sex-specific depth stratification. Model parameters esti-
mated through the analyses include recruitments, fishery parameters,
emigration rates, tag loss rates, and tag reporting rates. The parameters of
the catch-age and mark-recapture components of the model are estimated
simultaneously. The results indicate a high degree of correlation between
tag loss and reporting rate but the estimated values for these parameters
are precise and robust. The tag attrition rate is greater than would be
expected from natural and fishing mortality rates alone. The model ac-
counts for this with high values for the instantaneous tag loss rate (0.26-
0.27). These values are significantly higher than would be expected if tag
shedding were the major component of tag loss. Implementation of the
migration component of the model does not provide a satisfactory fit to
the observed tag recovery data, again because the tag attrition rate for
migrant fish is greater than model predictions. A multi-stock model that
explicitly accounts for immigration as well as emigration may resolve some
of the remaining questions.

Introduction
The use of catch-age models in fisheries stock assessments has become
common practice for stocks where a reasonable time-series of catch and
age composition data is available. However, catch and age composition
data alone are generally inadequate to reconstruct the history of a fish
population and catch-age analyses require auxiliary information to accu-
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rately estimate absolute abundance (Doubleday 1976, Pope and Shepherd
1982, Deriso et al. 1985). Survey-based relative or absolute abundance
indices are commonly used to tune catch-age analyses. In the absence of
fishery-independent auxiliary data, catch-effort statistics from fisheries
are often used. This requires the assumption that the catch per unit effort
is proportional to stock abundance, an assumption which is often violated
(Hilborn and Walters 1992, Chapter 5).

Alternate methods to catch-age analysis for estimating fishing mor-
tality rates and stock abundance include various forms of mark-recapture
analysis (Ricker 1975, Seber 1982, Pollock 1991). Mark-recapture analyses
generally require independent estimates of model parameters such as tag
loss rates and tag reporting rates because these parameters are confound-
ed with fishing and total mortality estimates (e.g., Kleiber et al. 1983,
Myers et al. 1997). Ricker (1975, pp. 113-120) suggests that tag loss can be
calculated as the difference between the total mortality rate for the popu-
lation as estimated from catch curve analysis and the total mortality esti-
mates for the marked fish. However, catch curve analysis requires
assumptions of regularity in recruitment and constant fishing mortality
rates, assumptions that are rarely met in commercial fishery situations.
These assumptions can be eliminated by integrating mark-recapture anal-
ysis in a catch-age model.

For British Columbia sablefish stocks, time-series of catch and age
composition data are available; however, commonly used auxiliary data
are either unavailable or are considered unreliable indices of stock abun-
dance. Tagging studies were conducted on these stocks in the early 1980s
and again during the 1990s, so a reasonable time-series of mark and re-
capture data is available to provide auxiliary information for catch-age
analysis. In this paper I describe an integrated catch-age mark-recapture
model that was developed to assess the abundance of B.C. sablefish stocks.
Parameters of the catch equations and the mark-recapture equations are
estimated simultaneously. The model can be implemented as a migration
model, with explicit immigration and emigration parameters, or as a non-
migration model. Analyses of the B.C. sablefish data are presented for
both implementations of the model.

Model Description
Population Dynamics and Catch Equations
Biological data indicate that sablefish are both age- and sex-stratified.
Younger fish are relatively more abundant in shallow waters and the pro-
portion of females in samples collected in shallow waters is higher than in
samples from deeper waters (Saunders et al. 1997). The model developed
for the sablefish stock reconstructions includes age- and sex-specific seg-
regation of the population by depth strata. The model structure assumes
partial recruitment of younger age classes and that all recruited fish are
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vulnerable to the fisheries. The catch equations, which relate the numbers
of fish in the population to the numbers of fish in the catch, are described
by the following relationships:
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where,
i indexes year,

j indexes age,

a is the number of age classes,

k indexes depth stratum,

s indexes sex,

pd
jks is the proportion age class j and sex class s fish in stratum k,

 where 
    

p pjks
d

k
jks
d∑ = ≥1 0and ,

pr
js is the proportion age class j and sex class s fish that are recruit-

ed to the exploitable population, where 0 ≤   pjs
r  ≤ 1

Cijks is the catch (in numbers) of age class j and sex s fish in stratum
k in year i

Ci⋅k⋅ is the total catch (in biomass) in stratum k in year i,

Fik is the instantaneous fishing mortality rate in stratum k in year i,

Ms is the instantaneous natural mortality rate for sex s fish,

G is the instantaneous net migration rate,

Ziks is the instantaneous total mortality rate for sex s fish in stratum
k in year i,

Nijs is the number of fish in age class j and sex class s in year i,

Eik is the number of exploitable fish in stratum k in year i,

wjs is the average weight of fish of sex s and age j.
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Parameterizing Partial Recruitment, Depth Stratification,
and Mortalities
The partial recruitments are defined in terms of parameters cms such that
they are constrained between 0 and 1, are non-decreasing with age, and
are fixed at 1.0 for age classes a′ and older. That is,

    
p c cjs

r
ms

m

j

ms
m

a
= ∑ ∑

= =

′

1 1
for j ≤ a ′

    pjs
r = 1 0. for j > a ′

The parameter a ′ is fixed at 9 for all analyses presented here. For each sex,
the proportion of an age class occurring in a depth stratum is parameter-
ized as a linear trend from the first age class through the penultimate age
class. The trend parameters, tjks,

    
t b

j
a

bjks ks ks= +
−

1 2

1

are re-scaled so that for each sex the sum of the proportions for each age
class are 1.0,

  
p t tjks

d
jks jks

k
= ∑

The proportions by depth strata for the final age class are independent of
those for younger age classes.

    
p b baks

d
ks ks

k
= ∑3 3

The estimated instantaneous natural mortality rate for B.C. sablefish stocks
has been estimated as 0.08 (Sunders et al. 1994). For this analysis, the
average instantaneous fishing mortality rate (M) is fixed at 0.08, but a sex-
specific deviation (m) from the average rate is estimated. That is,

M1 = M + m and M2 = M – m,

where M1 and M2 are the instantaneous natural mortality rates for males
and females respectively.

The fundamental parameters, i.e., those which are estimated when
minimizing the log-likelihood function, are the ln(Ni11), ln(N1j1), ln(Fik), cms,

    b b bks ks ks
1 2 3, , , G, and m. The number of females (sex 2) are assumed to be

equal to the number of males in the population for the first age class
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(Ni,11 = Ni,1,2). For the first year, the numbers of females at each age are
scaled relative to the number of males based on an estimate of their cu-
mulative total mortality. The cumulative total mortality for an age and sex
class is calculated under the assumption that fishing mortality rates for
years prior to the first year of the analysis are equal to the fishing mortal-
ity estimates for the first year and that the estimated partial recruitment
and age-sex specific depth stratification hold for earlier years.

Likelihood of Observed Catch-at-Age
For fitting the model to the observed catch and age composition data I
assume the error structure assumptions proposed by Fournier and Archi-
bald (1982). That is, the proportion-at-age result from taking a sample of
size Sik from a population that has a multinomial distribution and the
estimates of total catch result from sampling a lognormal distribution.
The negative log-likelihood function for the data observations is then

    
− ∑∑∑∑ + ( ) −[ ]∑∑
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skji
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where Sijks is the number of fish taken from samples of the catch in depth
stratum k in year i that were sex s and age j,     C̃ik  is the observed catch in
depth stratum k in year i, and the pijks are the predicted proportions at age

  
p C Cijks ijks ijks

sj
= ∑∑



 . The term wC is determined by the prior assumption

made about the accuracy of the observed catch data. For the sablefish
analysis, I assumed wC = 5000, which is consistent with a coefficient of
variation of about 0.01. The sample sizes, Sik, were scaled relative to the
actual number of samples collected with a maximum value of 200.

Relative Abundance Data
For the model as described there is little information in the catch and age
composition data to determine the proportions of the population in each
depth stratum. To provide some stability to these parameters, the model
has a component for the fit to survey estimates of the relative abundance
of fish in each depth stratum (    Ẽik ). Because there appear to be environ-
mentally induced anomalies in the survey data for some years, the model
is fit to the average abundance in each depth stratum rather than the time-
series of observations. The average observed relative abundance (    ̃xk ) and
predicted absolute abundance (xk) are

    
˜ ˜x E nk ik

i
k= ∑

  
x E nk ik

i
k= ∑



474 Haist — Catch-Age Mark-Recapture Model

where nk is the number of years with survey observations for depth stra-
tum k. Assuming a lognormal error distribution for the survey abundance
data, the contribution to the negative log-likelihood equation is

    
w qx xE k k

k
ln ln ˜( ) − ( )[ ]∑


2 (2)

where q is an abundance scalar and the constant wE reflects the prior as-
sumptions about the accuracy of the survey relative abundance data. For
the sablefish analysis, values of wE ranging from 5 to 500 were investigated.
This range is consistent with coefficients of variation from 0.03 to 0.32.

Mark-Recapture Equations
The mark-recapture component of the integrated model tracks tag co-
horts, i.e., all the fish tagged in a year. The age and sex of tagged fish is
estimated based on the number of tags applied in each depth stratum and
the age and sex composition estimated for the stratum. The model explic-
itly accounts for emigration from the tagged population but not for move-
ment between depth strata. Movement between depth strata is implicit in
the model in that the probability of a fish being in a depth stratum is
related to its age. Note that the population migration rate is different from
the tag cohort migration rate because the population parameter accounts
for net movement (i.e., immigration plus emigration) whereas for the tag
cohorts only emigration can be estimated. The following equations de-
scribe the relationships for the non-migrant component of the tag cohorts,
where tag cohorts are referenced by the year in which they were tagged.
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where,
Tlijs is the number of tag cohort l fish of age j and sex s remaining in

year i

s is the rate of tag loss that occurs immediately after tagging

    Ũlk is the number of fish of tag cohort l (i.e., tagged in year l ) tagged
in depth stratum k

GT is the instantaneous rate of emigration for the tagged fish

L is the instantaneous rate of tag loss

  Ziks
T is the total instantaneous mortality for tagged fish of sex s in

year i

  Clik
T is the predicted catch of tagged fish from tag cohort l in year i

and depth stratum k

Ili is the number of number of fish from tag cohort l migrating out
of the population in year i

A number of the relationships described above are defined for a tag
cohort only for the years following the tagging year (i > l ). During the
same year that tags are applied, the tagged fish are susceptible to only a
fraction of the annual mortalities, dependent on the time of year tagging
takes place. For the situation, i = l, the quantities, Fik,   Ziks

T , and GT in the
preceding mark-recapture equations are replaced with the following quan-
tities;     ′ = =′F t F Z h Zik ik ik iks

T
i ik, , and GT ′ = hiG

T. The tik are the proportions of
the annual catch in year i and depth stratum k which are taken after tag-
ging occurs and hi is the proportion of year i remaining after tagging oc-
curs. The values of the tik and hi are calculated from the data and are fixed
model inputs.

Because migration, as defined, is continuous throughout the year, not
all fish that migrate during a year will be vulnerable to the fisheries in the
area they migrate to. The model structure assumes that the fish that mi-
grate during a year will incur only half of the fishing mortality for that
year. The relationships that describe the dynamics for the migrant fish are
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where,
Vli is the number of tagged fish from tag cohort l in the migrant

pool in year i

  Fi
TM is the instantaneous fishing mortality rate for tagged migrant

fish in year i

  Zi
TM is the instantaneous total mortality rate for tagged migrant fish

in year i

  Cli
TM is the predicted catch of migrant fish from tag cohort l fish in

year i
I do not attempt to estimate all the annual fishing mortality rate parame-
ters for the migrant tagged fish, because the information relative to these
parameters is limited (i.e., only tag recovery data) and the parameter val-
ues will be highly confounded with other model parameters. Rather, two
parameters are estimated, one for the first year and one for the last year
(    F FTM TM

80 96 and ), and a linear trend between these two is assumed. More
complex formulations than the linear time trend could be developed; how-
ever, preliminary analyses suggested that there is not enough information
in the data to estimate even an average level of fishing mortality for the
migrant tagged fish.

Likelihood of Tag Recoveries
There are two observation error structure models commonly used when
fitting tag recovery observations in mark-recapture analysis (Seber 1982,
Hilborn 1990). These are the Poisson and the multinomial distribution. I
have implemented both in the integrated sablefish model and as reported
by Hilborn (1990), found that results are virtually identical for the two.
Results presented in this paper are based on analyses conducted with the
multinomial implementation. The quantities required to fit the multinomial
model are the total tagged for a tag cohort (    Ũl⋅),

    
˜ ˜U Ul lk

k
⋅ = ∑ ,

the total number of tags in a tag cohort which are not recovered (    W̃l ),
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i
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⋅ ,

(    
˜ ˜C Clik

T
li
T and  are the number of tags from tag cohort l returned in year i

from depth stratum k and from outside the assessment region, respective-
ly), and the predicted proportion of tag releases recovered in each recov-
ery stratum (glik and   gli

M ) and the predicted proportion not recovered (  gl
W ),

    g r C Ulik i lik
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Note that additional mark-recapture parameters are introduced in these
equations; ri is the proportion of tagged fish that are reported in year i.
Two alternate hypotheses regarding the reporting rates are explored. The
first is that reporting rates have been constant over the time-series. In this
case the parameters, ri are replaced with a single parameter (i.e., ri = r*).
Alternately, the ri have an autoregressive form, that is

r1 = r*

    
r ri i i= ( ) +[ ]−exp ln 1 δ for i > 1

where the δi are independent normally distributed random variables.
The negative of the log-likelihood for the mark-recapture component

of the model, assuming a multinomial error structure for tag recovery
data is then,
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where the constants wT and wR are adjusted to reflect prior assumptions
about the variance of the tag recovery data and the trends in reporting
rates, respectively. The additional fundamental parameters for the mark-
recapture component of the model, i.e., ones that are estimated through
the minimization, are G, GT,     F FTM TM

80 96, , L, r*, and δi. The full objective func-
tion is the sum of equations 1, 2, and 3. Note that the model as described
can also be implemented as a model without migration if the value of the
parameters; G, GT,     F FTM TM

80 90,  and  are fixed at 0. This implementation of the
model will be termed the “non-migration” model, as opposed to the “mi-
gration” model where all the mark-recapture related parameters are esti-
mated.

Model Implementation
The model, as described, is implemented using AD Model Builder soft-
ware (Otter Research Ltd. 1994). This software uses automatic differentia-
tion for calculating the derivatives needed for finding the posterior mode
via a quasi-Newton function minimization routine. The software provides
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estimates of the variance-covariance matrix for all dependent and speci-
fied independent variables. Likelihood profiles of key quantities of interest
are also produced. The following list shows model parameters whose values
are either fixed or constrained, except where explicitly stated otherwise.

Fixed parameters Constrained parameters

wC = 5,000 G ≥ 0
wE = 50 GT ≥ 0
wT = 0.5 s = 0.15
wR = 20 0 ≤ L ≤ 1.0
M = 0.08 0 ≤ r ≤ 1.0
δi = 0.0

Data Sources
Analyses using the integrated catch-age mark-recapture model were con-
ducted for the northern B.C. and the southern B.C. sablefish stocks with
the data segregated into three depth strata (<500 m, 500-800 m, >800 m).
The commercial sablefish fishery is composed of three gear types (trap,
longline, and trawl), with the trap fishery accounting for 80 to 85% of the
total annual landings. There is no program to obtain biological samples
from the commercial catch; however, since 1980 biological data have been
collected during research trips onboard commercial trap fishing vessels
using commercial gear. In some cases the commercial vessels were char-
tered specifically for research purposes (e.g., tagging and abundance sur-
veys) and in other cases research activities, primarily tagging, occurred
during regular commercial fishing operations. Because these research ac-
tivities used commercial trap gear and fished in commercial fishery loca-
tions, age composition samples collected during the research operations
should reflect fishing selectivities similar to the commercial trap fishery.
However, age and sex-specific fishing selectivity for the longline and trawl
fisheries probably differs from the trap fishery. The estimates of the age
and sex composition obtained during the research operations are used to
approximate the age and sex composition of the entire commercial catch.
It is possible that these are biased estimates of the removals from the
stock, particularly for the longline and trap components. A potential bias
arising from the assumption of common fishery selectivities for the dif-
ferent gear types would be worth exploring, but is beyond the scope of
the current analysis. Annual catch data, by stock and depth strata, are
shown in Table 1 for the 1980 to 1996 period. Annual age and sex compo-
sition data is plotted in Fig. 1 and summarized in Table 2.

Annual relative abundance indices were calculated from survey CPUE
(catch in numbers per trap) data for each depth strata. The mean annual
CPUEs are assumed to be indices of fish density and these estimates were
weighted by the relative size of the depth strata (Saunders and McFarlane
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1993, Table 5.6) to generate relative abundance estimates for each stra-
tum. The depth strata area measurement were based on slightly different
geographical units from those used for the current analyses, so the abun-
dance indices may not provide accurate information on the relative abun-
dance by depth.

Sablefish were tagged in British Columbia during the late 1970s through
early 1980s and from 1991 to the present. Only tag release data since 1980
and recovery data from these taggings are used. Summaries of tag and
recapture data are presented in Table 3. Of the tags applied to fish in the
southern B.C. stock assessment region, approximately 84% were recovered
in the southern region, with the remainder of the recoveries primarily in
the northern B.C. assessment region and in Alaska. For the northern B.C.
assessment region, 79% of recoveries were in northern B.C. and 12% were
in Alaska.

Stock Reconstructions
A series of stock reconstructions were conducted using both the migra-
tion and the non-migration implementations of the sablefish model. For
the migration version of the model all recoveries of tags which occurred

Table 1. Catch in metric tons by depth strata for two B.C. stocks.

Southern B.C. Northern B.C.

Year <500 m 500-800 m >800 m Total <500 m 500-800 m >800 m Total

1980 422 1,466 302 2,192 384 896 321 1,602

1981 303 924 106 1,334 660 971 775 2,407

1982 260 1,116 149 1,526 541 932 864 2,338

1983 234 1,073 163 1,471 217 1,062 1,308 2,588

1984 141 1,487 10 1,639 250 1,399 327 1,977

1985 172 1,813 0 1,986 439 1,496 111 2,047

1986 930 1,181 70 2,182 742 1,380 143 2,265

1987 913 1,508 27 2,449 440 1,212 481 2,133

1988 1,609 1,101 117 2,828 291 1,797 565 2,654

1989 1,135 1,532 193 2,861 478 2,001 150 2,631

1990 1,188 949 182 2,319 1,252 1,382 157 2,793

1991 689 594 84 1,368 754 3,181 164 4,100

1992 628 245 142 1,016 592 3,462 300 4,355

1993 457 1,254 54 1,765 297 2,526 519 3,343

1994 571 1,360 48 1,980 515 2,372 274 3,162

1995 401 1,236 232 1,870 283 1,416 605 2,305

1996 564 736 33 1,334 213 1,615 260 2,089
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Table 3. Number of fish tagged by stock, year, and depth strata and num-
ber of tag recoveries by tag year and area.

Number tagged by depth Number of recoveries by area
500- Total

Year <500 m 800 m >800 m Total S.U.S. S.B.C. N.B.C. N.U.S. known Total

Southern B.C.

1980  0 4,410  275 4,685 17  732 84 30  863  930

1982 1,632 1,091  0 2,723 12  411 25 41  489  517

1991  0  525  963 1,488  3 49  2  4 58 73

1992  326 1,030  920 2,276  4 79 12 16  111  164

1993  530 2,045 1,957 4,532 12  190 34  9  245  331

1994  605  618  759 1,982  1 96 18  4  119  161

1995 1,925 2,258  965 5,148  1  200  9  6  216  284

Total 5,018 11,977 5,839 22,834 50 1,757 184 110 2,101 2,460

(0.024) (0.836) (0.088) (0.052) (1.00)

Northern B.C.

1980  641 3,555 1,963 6,159  3 55  752 98  908  966

1981  123 1,901 95 2,119  4 17  227 53  301  320

1982  472 2,242  0 2,714  8 23  345  122  498  523

1991  0  555  403  958  1  3  107 27  138  173

1992 45  755  508 1,308  1  5 93 27  126  170

1993  170 1,552  765 2,487  1  8  218 43  270  371

1994  874 3,282  900 5,056  0 22  289 40  351  462

1995  577 9,959  257 10,793  0 73  633 68  774 1,060

Total 2,902 23,801 4,891 31,594 18 206 2,664 478 3,366 4,045

(0.005) (0.061) (0.791) (0.142) (1.00)

Proportion of total recoveries by area shown in brackets.

outside of the assessment (and tagging) region were treated as a single
migrant pool. For the non-migration version of the model, tags that were
recovered in areas outside the assessment area were treated as if they had
been recovered within the assessment area. This treatment of the data
would be consistent with the stock dynamics if there were no net stock
migration (i.e., immigration is equal to emigration) and if the fishing mor-
tality rates on the tagged migrant population were the same as the rates
on the tagged non-migrant population. The first series of results present-
ed are from analyses using the migration model.

Migration Model
Initial runs using the migration implementation of the model indicated
that values for the migrant fishing mortality parameters (    F FTM TM

80 96, ) were
unrealistically high so a series of runs were conducted where the value of
these parameters were constrained to maximum levels ranging from 0.08
to 0.45. Estimates of the mark-recapture model parameters for this series
of analyses are shown in Table 4. For the southern stock the 1980 fishing
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Table 4. Parameter estimates from the migration model for the southern
and northern B.C. sablefish stocks.

Constraint Function 1997
on FTM G GT

    F
TM
80     F

TM
96 L r value biomass

Southern B.C.
0.08 0.00 0.10 0.08 0.07 0.29 1.00 1173.8 27.6
0.15 0.00 0.06 0.15 0.13 0.31 1.00 1164.4 28.0
0.25 0.00 0.04 0.25 0.21 0.32 1.00 1157.2 28.5
0.35 0.00 0.03 0.35 0.30 0.32 1.00 1152.4 28.9
0.45 0.00 0.03 0.45 0.39 0.32 1.00 1148.9 29.2

Northern B.C.
0.08 0.03 0.22 0.04 0.08 0.29 1.00 1595.2 25.6
0.15 0.01 0.19 0.06 0.15 0.29 0.76 1583.0 19.5
0.25 0.00 0.15 0.10 0.25 0.29 0.66 1575.8 17.4
0.35 0.00 0.12 0.13 0.35 0.29 0.63 1573.7 16.7
0.45 0.00 0.11 0.16 0.45 0.29 0.61 1573.2 16.2

mortality parameter is at the upper limit for all runs, while for the north-
ern stock the 1996 estimates are consistently at the upper limit. Results
from these runs show a high correlation between the fishing mortality
parameters and the tag migration rate parameter, although estimates of
1997 exploitable biomass are relatively insensitive to these parameters.
The value of the population migration parameter was 0 for most runs,
indicating that the best fit to the observed catch and age composition data
is obtained with no immigration to the population.

The residuals (standard normal deviates) of the predicted versus ob-
served proportion of tag recoveries by recovery stratum are shown in Fig.
2, for the runs with the maximum fishing mortality parameters fixed at
0.15. For the migrant tag recoveries, the patterns of residuals follow a
strong nonrandom pattern with primarily negative residuals for 0 and 1
year-at-large followed by positive residuals for 2 and greater years-at-large.
That is, the model is unable to fit the observed attrition of tag recoveries
for migrant fish that occurs over time. The analyses with high F values on
migrant fish and low migration rates provide a somewhat better fit to the
data observations because under this scenario the migrant pool of tagged
fish decreases at a faster rate. With higher migration rates and lower F
values the ongoing emigration of tagged fish maintains the numbers in
the migrant pool. However, the nonrandom pattern of residuals holds even
for the runs where the maximum value for the migrant fishing mortality
parameter was fixed at 0.45. Clearly, the pattern in the residuals suggests
that the model formulation for the migration implementation is inconsis-
tent with the data observations.
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Figure 2. Tag recovery residuals by tag cohort and years-at-large for the migra-
tion model. Positive residuals are represented by open circles and nega-
tive residuals by closed circles. The circle area is proportional to the
absolute value of the residual.
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Non-Migration Model
A series of runs were conducted with the non-migration implementation
of the integrated model to evaluate the sensitivity of parameter estimates
to the penalty weights for the tag data and the survey abundance data.
The weightings for the tag data are 1.0, 0.5, and 0.1, and for the survey
data they are 500, 50, and 5. Results from this series of runs are shown in
Table 5. For the runs with a high weight on the survey data, the model
estimates of the proportions of the population in each depth stratum fit
the observations almost exactly. With lower weighting on the fit to the
survey data the model estimates a higher proportion of the population in
the middle depth stratum for the northern population and a higher pro-
portion in the shallow stratum for the southern population. The tag loss,
reporting rate, and 1997 exploitable biomass estimates are relatively in-
sensitive to the weightings, with the exception of analyses for the north-
ern stock with low weight on the fit to the tagging data. The likelihood
profiles indicate relatively precise estimates for these model parameters,
given the model structure and data observations (Fig. 3). The fit to the age
composition data is similar for all weighting combinations, and there is
reasonable agreement between predicted and observed proportions-at-
age (Fig. 1). For further analyses the penalty weights used are 0.5 for the
fit to the tagging data and 50 for the fit to the survey relative abundance
data.

Although the estimated values for the tag loss parameter appear to be
relatively precise, they are high relative to expected values if this param-
eter accounts primarily for tag shedding. A series of runs were conducted
with the tag loss parameter fixed at values ranging from 0.05 to 0.35 (Ta-
ble 6). The model fits to the data observations, as measured by the objec-
tive function value, deteriorates significantly when the tag loss parameter
value is less than 0.20. Also, the reporting rate parameter is highly corre-
lated with the tag loss parameter.

For the analyses described so far, the value of the initial tag loss pa-
rameter was fixed at a value of 0.15, as reported by Beamish and McFar-
lane (1988). This parameter is intended to account for the immediate losses
of tags from the tag cohort resulting from tag shedding and tag-induced
mortality. Table 7 shows the results of model runs where the value of this
parameter was fixed at levels ranging from 0.05 to 0.35. As the results for
the northern stock show, this parameter is completely confounded with
the reporting rate parameter. That is, as the initial tag loss value is changed,
the values for the tag loss parameter, the 1997 exploitable biomass, and
the function value remain the same and only the value of the reporting
rate parameter changes. For the southern stock, the estimate for the re-
porting rate parameter is at its upper bound (1.0) so the correlation with
the initial tag loss parameter is not apparent.

Because of concerns that the reporting rate for recaptured tags has
changed over time, a final set of analyses was conducted with year-dependent
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Table 5. Parameter estimates from the non-migration model result-
ing from alternative weightings for the tag data (WT) and
relative survey abundance data (wE).

Northern B.C.
Proportion at depth

wT wE <500 500-800 >800 L r B

1.0 5 0.09 0.79 0.12 0.26 0.59 13.0

50 0.16 0.72 0.12 0.26 0.59 12.9

500 0.22 0.65 0.13 0.26 0.59 12.9

0.5 5 0.08 0.81 0.11 0.26 0.59 13.6

50 0.15 0.73 0.11 0.26 0.59 13.6

500 0.21 0.65 0.13 0.26 0.60 13.8

0.1 5 0.06 0.83 0.11 0.27 0.63 16.3

50 0.07 0.82 0.10 0.23 0.51 11.9

500 0.11 0.77 0.11 0.16 0.35 7.9

Observed: 0.22 0.64 0.13

Southern B.C.
Proportion at depth

wT wE <500 500-800 >800 L r B

1.0 5 0.72 0.11 0.17 0.30 1.0 29.7

50 0.54 0.20 0.26 0.28 1.0 28.0

500 0.45 0.22 0.33 0.27 1.0 28.4

0.5 5 0.74 0.09 0.17 0.29 1.0 29.4

50 0.52 0.21 0.27 0.27 1.0 26.6

500 0.45 0.22 0.33 0.26 1.0 26.8

0.1 5 0.67 0.14 0.19 0.28 1.0 27.8

50 0.48 0.21 0.31 0.26 1.0 25.5

500 0.45 0.22 0.34 0.25 1.0 25.6

Observed: 0.44 0.22 0.34

Model parameters are: tag loss rate (L), tag reporting rate (r), and 1997 exploitable biomass (B).
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Figure 3. Likelihood profiles for tag loss rates, tag reporting rates, and 1997 bio-
mass estimates. The solid lines and dashed lines are from analyses with
penalty weights of 0.5 and 0.1 on the tag data, respectively. The weight-
ing for the survey data is 50 in both cases.
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Table 6. Parameter estimates for alternative runs of the non-migration
model with the tag loss parameter fixed at various levels.

Southern B.C. Northern B.C.

Reporting Function 1997 Reporting Function 1997
Tag loss rate value biomass rate value biomass

0.05 0.59 1,272.8 22.5 0.30 1,718.9 6.9

0.10 0.82 1,227.0 29.5 0.36 1,673.5 8.4

0.15 1.00 1,188.1 33.5 0.43 1,643.3 10.0

0.20 1.00 1,162.8 30.1 0.50 1,625.9 11.6

0.25 1.00 1,151.2 27.6 0.58 1,619.4 13.3

0.26 0.59 1,619.2 13.6

0.27 1.00 1,149.9 26.6

0.30 1.00 1,151.2 25.6 0.66 1,622.1 14.9

0.35 1.00 1,160.8 23.9 0.74 1,632.8 16.5

The best model fits are underlined.

reporting rate parameters. The time series of estimated reporting rates is
shown in Fig. 4. The estimated reporting rates are similar for the northern
and southern B.C. stocks for the 1986 to 1996 period, but are higher for the
southern stock in the earlier years. Under the variable reporting rate sce-
nario, the estimated stock trajectories change somewhat with a lower 1997
exploitable biomass estimate for the southern stock and a higher terminal
biomass estimate for the northern stock.

Discussion
The inability of the migration version of the integrated model to fit ob-
served recoveries of migrant tags is of concern because significant num-
bers of tags are recovered outside the tagging area, suggesting migration
is an important aspect of stock dynamics. The lack of model fit may be
caused by a number of factors. The structure of the integrated model
assumes that tag migration is a permanent event. That is, after tagged fish
leave the population they do not return. There is some evidence suggest-
ing that this assumption is not appropriate for sablefish in the eastern
Pacific. That is, analysis of tag return data shows a tendency for smaller
fish to move in a northwesterly direction and larger fish to move in a
south and easterly direction (Heifetz and Fujioka 1991, Maloney and Heif-
etz 1997). This pattern suggests that there may be different phases to the
ontogenetic dispersion of sablefish where the direction of migration is
age-or size-dependent. If the sablefish migration pattern is more complex
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Table 7. Parameter estimates for alternative runs of the non-migration
model with the initial loss parameter fixed at various levels.

Southern stock Northern stock
Initial Tag Reporting Function 1997 Tag Reporting Function 1997
loss loss rate value biomass loss rate value biomass

0.05 0.29 1.00 1,140.6 29.6 0.26 0.53 1,619.2 13.6

0.15 0.27 1.00 1,149.9 26.6 0.26 0.59 1,619.2 13.6

0.25 0.26 1.00 1,161.7 23.5 0.26 0.67 1,619.2 13.6

0.35 0.23 1.00 1,177.1 20.3 0.26 0.77 1,619.2 13.6

than what has been modeled, for example, age- or sex-specific migration
or seasonal migration, model parameter estimates will likely be biased.

Another model assumption that may account for the lack of fit of the
migration implementation is that tag reporting rates are the same for the
migrant and non-migrant fish. Beamish and McFarlane (1988) suggest that
most tags recaptured in British Columbia are reported, and based on this
Heifetz and Fujioka assume a tag reporting rate of 0.90 for British Colum-
bia. For Alaska fisheries, reporting rate estimates range from 0.25 (Heifetz
and Fujioka 1991) to 0.50 (Bracken 1983). Results from the analyses pre-
sented here suggest higher tag return rates for British Columbia than those
estimated for Alaska. If the U.S. reporting rate is lower than the B.C. rate,
the integrated model will underestimate migration rates and thus overes-
timate the numbers of tagged fish at large in both the migrant and non-
migrant components of the population.

An extension to the single-stock analytical approach presented here,
to a multi-stock model that explicitly allows movement between all stock
components may provide more consistent fits to the tagging data. For the
single stock model, the migration rate parameters are highly correlated
with the fishing mortality rates for migrant fish. In a multi-stock analysis,
the additional information from catch-age data for each stock may allow
relatively independent estimates for these parameters. Alternately, treat-
ment of all sablefish in the eastern Pacific as a single population, as sug-
gested by Beamish and McFarlane (1988), may be the appropriate
geographic scale for stock assessment, given the apparent high migration
rates between stock units.

For the non-migration implementation of the integrated model, the
parameters representing ongoing tag loss and reporting rates appear to
be well determined, given the model structure and data observations. That
is, although the parameters are correlated, their estimates are precise and
robust to alternative model assumptions. The parameter representing the
immediate loss of tags from the population is completely confounded
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Figure 4. Estimates of time-dependent reporting rates and resulting exploitable
biomass estimates for northern and southern B.C. stocks.
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with reporting rates, so either one parameter must be fixed at an assumed
value or a single parameter accounting for the joint effect can be estimat-
ed. The similarity between the estimates of the annual reporting rates for
the northern and southern B.C. stocks suggests that there may be ade-
quate information in the tag recovery data to obtain reasonable estimates
for these parameters. The B.C. sablefish fleet fishes both of these assess-
ment regions, so there is no reason to believe that reporting rates should
be different in the two areas. If the model estimates of the reporting rates
were driven by random noise rather than an underlying signal in the tag
return data the high level of agreement in the estimates for the two stocks
would not be expected.

The estimates for the ongoing tag loss parameter are unexpectedly
high and suggest that there may be aspects of sablefish population dy-
namics that are not accounted for in the model. In mark-recapture analy-
sis the parameter that I have termed “tag-loss” is generally attributed to
tag shedding. However, the values of the tag loss parameter obtained in
these analyses (0.26 – 0.27) are substantially higher than those estimated
from double tagging experiments. Beamish and McFarlane (1988) estimat-
ed immediate tag shedding at 10% and ongoing tag shedding at 2% per
year for sablefish tagged in British Columbia. Similar, low tag shedding
rates were estimated by Lenarz and Shaw (1997) for sablefish tagged in
the southern U.S. zone. Their estimates were 5% for immediate tag shed-
ding and instantaneous ongoing shedding rates ranging from 0.03 to 0.07.
Thus, it is likely that the tag loss parameter in the integrated model is
accounting for the disappearance of tagged fish resulting from mecha-
nisms in addition to tag shedding. Other potential sources of tag loss
include ongoing tagging-induced mortality and migration to areas where
there are no fisheries. Alternately, the model estimates of fishing mortal-
ity rates may be biased (i.e., underestimated).
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Abstract
Ecosystem studies are difficult to interpret because of the complexity and
number of pathways that may affect a phenomenon of interest. It is not
possible to study all aspects of a problem; thus subjective judgment is
required to weigh what has been observed in the context of components
that were not studied but may have been important. This subjective judg-
ment is usually a poorly documented and ad hoc addendum to a statistical
analysis of the data. We present a Bayesian methodology for document-
ing, quantifying, and incorporating these necessary subjective elements
into an ecosystem study. The end product of this methodology is the prob-
ability of each of the competing hypotheses. As an example, this method
is applied to an ecosystem study designed to discriminate among com-
peting hypotheses for a low abundance of sea otters at a previously oiled
site in Prince William Sound, Alaska.

Introduction
Ecosystem approaches are increasingly advocated as a way of improving
the science and management of natural systems (Lackey 1998). For in-
stance, studies of the effects of anthropogenic stressors on a species can
be misleading if they ignore possible indirect effects acting through pred-
ator or prey populations (Higashi and Patten 1989). Further, natural changes
in these other components of the ecosystem may cause changes in the
focal population, masking or exaggerating the effects of the stressor (Piatt
and Anderson 1996). Many studies of the impacts of human actions on a
particular species now include research on other components of the eco-
system thought to be important to the focal species.

Current address for Milo Adkison is Juneau Center, School of Fisheries and Ocean Sciences, University
of Alaska Fairbanks, 11120 Glacier Highway, Juneau, AK 99801
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Nonetheless, there are practical limitations to an ecosystem approach.
Because of cost and logistical constraints, not all ecosystem components
can be studied and therefore some indirect impacts may be missed. Ex-
perimentation or replication may not be possible, and it may thus be dif-
ficult to unambiguously assign causes to any observed differences in
populations between impacted and non-impacted sites, or before versus
after an impact at a single site. It is also highly likely that among the suite
of studies, some will give results that are to some degree contradictory.

For these reasons, interpreting the results of an ecosystem study re-
quires some degree of expert judgment. Synthesizing the results of nu-
merous studies of parts of a complex problem is difficult, and it may thus
be difficult for investigators to reach conclusions in a rational fashion.
Further, different scientists faced with the same evidence may arrive at
different conclusions. As the subjective interpretation of results tends to
be an ad hoc and poorly documented process, the sources of disagree-
ment may be difficult to uncover and resolve. This paper presents a struc-
tured method for documenting and quantifying the expert interpretation
of the results of an ecosystem study.

Proposed Methodology
The methodology presented here is designed for testing ecosystem-level
hypotheses. It integrates studies of diverse components of the ecosys-
tem, summarizing the results as the relative evidence for each hypothesis
from each study and the overall evidence for each hypothesis from the
ensemble of studies. Its Bayesian features consist of incorporating and
quantifying the subjective step of interpreting results, and calculating a
probability that each hypothesis is true.

The method consists of the following steps:

1. Generate hypotheses

2. Summarize the experiments and their results

3. Create a table of the expected results under each hypothesis if each
experiment were ideal

4. Calculate the probability of the observed result under each hypothe-
sis using statistical considerations

5. Adjust probabilities by considering potential violations of statistical
assumptions

6. Adjust probabilities to account for differences between the hypothe-
ses tested and the hypotheses of interest

7. Summarize the evidence for each hypothesis, accounting for depen-
dencies among experiments
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Steps 3-6 deal with eliciting statements of probability from experts.
Such elicitations can be problematic if experts are unfamiliar with trans-
lating their experiments into numerical probabilities (Morgan and Henri-
on 1990, Ch. 7). Our sequence of steps is designed to overcome such
problems by sequentially considering several sources of uncertainty, pro-
gressing from the most to least familiar. At each of the seven steps, in
particular those where subjective judgment is required, the rationale lead-
ing to the decision should be thoroughly documented.

Step 1. Generate Hypotheses. The first step is to have the experts iden-
tify the hypotheses that are the competing explanations for the phenom-
enon under investigation. It is important that the hypotheses be both
exhaustive and mutually exclusive. If not, the confidence assigned to some
hypotheses will be overstated, as the evidence for them will in some re-
spects be counted twice.

Often, there will be reason to believe that several of the hypothesized
phenomena might act simultaneously. There are two principal ways of
constructing mutually exclusive hypotheses if this is a possibility. The
first is to consider a “multiple causes” hypothesis. The second is to rede-
fine the hypotheses to allow minor effects of other factors. For instance,
the two hypotheses “effect is produced by factor A” and “effect is pro-
duced by factor B” can be made mutually exclusive by redefinition as “ef-
fect is principally produced by factor A” and “effect is principally produced
by factor B.”

Step 2. Summarize the Available Data. In this step, the studies and
their results are summarized. For clarity, it is often more useful to use a
short verbal description of the results. For instance, a study of differences
in prey abundance between control and treatment might be summarized
as “much greater abundance found at the control site.”

Step 3. Consider Ideal Studies. The third step in this process is to lay
out a table with the different hypotheses as the top row and the different
experiments as the left-most column (Table 1). Then, have the experts fill
out this table as if each study were an ideal experiment; i.e., there was no
possibility of either false positive or false negative results.

Table 1. Hypothetical results of a set of ideal experiments.

Hyp. 1 Hyp. 2 Hyp. 3 Hyp. 4

Study A Positive Negative Negative Positive

Study B Negative Negative Positive Negative

Study C Positive Positive Positive Negative
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In the hypothetical example in Table 1, Study A would distinguish
between Hypotheses 1 or 4 and Hypotheses 2 or 3. In combination, the
three studies would be able to determine which hypothesis was true.

Step 4. Statistical Considerations. While ideally the three studies would
determine which hypothesis was true with 100% accuracy, in the real world
misleading results may be obtained. One of the ways this may happen is
through random sampling error. Often, almost any result is possible un-
der any of the hypotheses. Nonetheless, the observed result will be more
probable under some hypotheses than others.

The objective of this step is to calculate these relative probabilities,
otherwise known as the likelihoods of each of the hypotheses (Gelman et
al. 1995, Ch. 1). Often, with continuously distributed variables, the likeli-
hood is a probability density rather than a probability per se. Likelihoods
(Table 2) are usually obtained from standard statistical distributions such
as the normal or binomial. The exact distribution used depends upon the
assumptions made about the experimental data, such as whether each
point is independent and identically distributed, whether the sampling
variance is constant, etc.

Table 2 shows the first of a series of steps in which experts are asked
to assign probabilities to the competing hypotheses. Some experts are
unfamiliar with quantitative probability statements and scientists in par-
ticular are often uncomfortable making assertions about the relative mer-
its of competing hypotheses without conclusive evidence. This step is
important in that it introduces experts to assigning probabilities to the
hypotheses, yet does so in a rigorous way using familiar statistical calcu-
lations.

Step 5. Account for Possible Biases in the Test or Experimental Results.
The assumptions of statistical tests are rarely exactly met. Samples may
not be completely independent, important sources of error may not be
included in the statistical model (e.g., ignoring error in the measurement
of the independent variable), and measurements may have some unknown
biases. Historically, statistical confidence tends to overstate the certainty
of scientific results (Henrion and Fischoff 1986).

Table 2. Table of likelihoods.

Hypothesis 1 Hypothesis 2

Study A P (Result of A |Hyp. 1) P (Result of A |Hyp. 2)

Study B P (Result of B |Hyp. 1) P (Result of B |Hyp. 2)

P (Result of A |Hyp. 1) means the probability of getting the observed result of Study
A if Hypothesis 1 were true.
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In constructing the table of likelihoods of results, this overconfidence
needs to be accounted for. Generally, the effect of such errors is to make
the probabilities of the result under each hypothesis more similar. Based
on their knowledge of the experiment, experts should determine which
assumptions of the test are likely to be violated, and to what degree. These
judgments are to some extent subjective, but once made the statistical
literature or computer simulations can provide guidance on their likely
effects. In consultation with a statistician, the experts should adjust the
table of probabilities to account for such violations.

Step 6. Account for Differences Between the Statistical Hypothesis Being
Tested and the Biological Hypothesis That Is Actually of Interest. Often, an
experiment to test a hypothesis tests it only indirectly. The results may
thus be ambiguous if the indirect indicator could occur in several ways,
some of which are not related to the hypothesis.

For example, if the hypothesis were that some population was affect-
ed by an environmental contaminant, an investigator might test the envi-
ronment for the presence of the contaminant and test individuals for signs
of poor health. A positive result in either case would not necessarily im-
plicate the contaminant; the contaminant might be present yet not be
causing health effects, or poor health might be due to causes other than
the contaminant.

As in step 5, the effect of a difference between the hypothesis tested
and the hypothesis of interest is to even further equalize the probabilities
of the observed results under each hypothesis. The appropriate amount
of adjustment of the table entries depends on the probability of other
(possibly unknown) alternative explanations for the test results.

Such assessments are unavoidably subjective and require the judg-
ment of experts. Hopefully, by this point in the process the experts are
comfortable with assessing the relative probability of the data under each
hypothesis and how violations of assumptions may result in misleading
experimental results. It is crucial that they consider alternative explana-
tions for their data yet not be paralyzed by such possibilities. They should
be willing to examine data that seems to strongly favor one hypothesis
and consider whether there are other, possibly unstudied ecosystem path-
ways that could produce similar results and state how probable they feel
such pathways are.

Step 7. Summarize the Evidence. In this step, the table of probabilities
is summarized to derive the overall weight of evidence for each hypothe-
sis provided by the ensemble of studies. If the studies are independent,
then elementary statistical theory says the joint likelihood of each hy-
pothesis is simply the multiplication of its probability under each study
(equation 1). The overall likelihood of each hypothesis is then simply the
product of its column of probabilities (here R1, R2, and R3 signify the
results of experiments 1, 2, and 3, respectively).
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Likelihood of hypothesis = P(R1|hyp.) × P(R2|hyp.) × P(R3|hyp.) (1)

The different hypotheses can then be compared in terms of their rel-
ative likelihoods. This comparison is easier if the likelihoods are re-scaled
so that the sum of all of the likelihoods is 1. From a Bayesian perspective,
each re-scaled likelihood could then be interpreted as the probability that
a hypothesis was true.

Complication A. Dependencies among Results. There are two ways that
experimental results might not be independent. First, the data from two
experiments may have been taken from the same random sample. Second,
two experiments may measure the same ecological phenomenon two dif-
ferent ways. In either case, it is not appropriate to treat the results as
providing independent evidence bearing on the alternative hypotheses;
i.e., simply multiplying the probabilities of the two experiments together
will overweight the evidence.

There are several possible methods to account for dependencies among
experimental results. If experiments are highly interdependent, they should
be lumped and a single probability of each hypothesis calculated for the
ensemble results. If experiments are only partially dependent, the corre-
lation of results must be accounted for. If the correlation can be calculat-
ed, probability theory provides methods for calculating a joint probability.
If not, a value must be obtained from experts, although experts have been
found to perform poorly at providing a numerical value for correlation
coefficients (Morgan and Henrion 1990, Ch. 7).

A more intuitive method for dealing with partially correlated results
is to ask investigators to provide an estimate of the “effective” number of
experiments. For instance, investigators may feel that dependence between
two experiments is such that they jointly provide only as much evidence
as 1.5 independent experiments. Then, the appropriate adjustment would
be to raise each of the probabilities to the 0.75 power (e.g., equation 2). In
general, if N experiments are correlated so that the effective number is E,
probabilities for hypotheses for each experiment should be adjusted by
raising them to the E/N power.

Likelihood of hypothesis = P(R1|hyp.)0.75 × P(R2|hyp.)0.75 (2)

Complication B. Prior Probabilities. Bayesian statistics involves multi-
plying the likelihoods by a set of prior weights (the prior probabilities) for
the hypotheses before re-scaling to calculate the posterior probabilities.
In the Bayesian approach, these prior probabilities reflect the weight ac-
corded each hypothesis before the experiments were conducted. Assum-
ing the probability of each hypothesis to be proportional to the joint
likelihoods treats each hypothesis as being equally likely a priori, thus
letting the data determine the relative probability of each hypothesis. While
this is intuitively appealing, it may not be appropriate.
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For instance, if the analysis were being used in a legal proceeding, it
might be appropriate to give the benefit of the doubt to the defendant by
assigning small prior weights to hypotheses implicating the defendant.
Similarly, in investigating current scientific theory a high prior weight
might be assigned to the currently accepted paradigm, so that a novel
competing theory would not get much credence unless the evidence for it
was overwhelming. An alternative to using prior weights is to calculate
probabilities only from likelihoods, but require a very high probability
that a hypothesis is true before acting on it. Whatever the prior weights, if
data strongly support one hypothesis over the others the final probabili-
ties will reflect this.

Standard Bayesian practice is to compare the evidence for competing
hypotheses using Bayes factors (Kass and Raftery 1995). The Bayes factor
is simply the ratio of the posterior probabilities of two competing hypoth-
eses divided by the ratio of the prior probabilities assigned before the
experiments were conducted. When the prior probabilities of the hypoth-
eses are equal, this is simply the ratio of the posterior probabilities.

An Example: Sea Otters after the
Exxon Valdez Oil Spill
On March 4, 1989, the supertanker Exxon Valdez spilled nearly 42 million
liters of crude oil in Prince William Sound, Alaska (Spies et al. 1996). This
spill is hereafter referred to with the acronym EVOS. Sea otter populations
in oiled areas suffered high mortality (Loughlin et al. 1996). Other compo-
nents of the ecosystem were likewise severely affected. Five years after
the spill, residual oil was present in sediments and mussel beds in some
areas of the spill (Spies et al. 1996). Even today, residual oil is found in
some areas.

The Nearshore Vertebrate Predator (NVP) project (Holland-Bartels et
al. 1996), a multi-university and agency investigation funded by the EVOS
Trustee Council, is aimed at determining whether top predators in Prince
William Sound are still suffering the effects of the oil spill. The question is
difficult to answer unambiguously because of the complicated nature of
the ecosystem and the lack of data from the period before EVOS. The NVP
project studies predator populations from several points of view, and also
looks at other components of the ecosystem on which these predators
depend. If a population is still being affected by EVOS, the study is de-
signed to ascertain whether the effects are due to the continuing toxic
effects of oil, a slow rate of recovery from past mortality, or an indirect
effect on some critical ecosystem component.

With limited resources and such an intensive approach, few popula-
tions can be studied. Sea otter abundance at Knight Island, which was
oiled in 1989, is lower than at Montague Island, which was not. The NVP
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sea otter study has focused on these two populations, trying to find the
reason for these differences in abundance. The principal hypotheses are:

1. Direct toxicity of residual oil. Residual oil is present and reducing
the fecundity and/or survival of otters at the oiled site.

2. Reduced forage due to oil effects. The initial impact of oil or re-
sidual oil is reducing prey available to sea otters.

3. Slow recovery due to demographic limitations. Aside from the
initial otter mortality from EVOS, residual oil is absent or does not
affect otters or their food. However, limitations on the maximum growth
rate of the population have prevented the population from reaching
capacity yet.

4. Natural differences in capacity. The oiled site has poorer or less
abundant otter habitat.

A variety of studies have been undertaken to determine which hy-
pothesis is the most likely. These include:

1. Demographic comparisons. Population abundance, age structure,
and reproductive rates were compared between islands.

2. Individual health. Otters were captured at both locations. Individu-
als were weighed and measured, and blood samples taken. In particu-
lar, blood cells and serum chemistry were examined for signals of
poor health, and a specific signal of exposure to oil (the enzyme P450)
was tested for.

3. Prey abundance and foraging success. The abundance and size
distribution of major prey items of sea otters were compared among
islands. In addition, foraging sea otters were observed to determine
relative rates of success in obtaining prey items.

Statistical hypothesis tests were performed for many of the studies
but are not reported here. We chose not to calculate likelihoods based
solely on statistical distributions—step 4 of our methodology—because
the limitations imposed by the design of the study tended to emphasize
the considerations dealt with in steps 5 and 6. There are multiple predic-
tions from each of the hypotheses, not all of which are distinct. Any par-
ticular study result may eliminate some hypotheses but leave several
others. More likely, any particular study result would be ambiguous, as
there is a small likelihood of almost any result from each hypothesis. In
particular, the detection of a phenomenon does not necessarily imply that
this was the cause of the difference in abundance between the two islands.
For instance, oil could be present but yet not greatly affect survival. Like-
wise, prey abundance could differ between one site and another but be
unrelated to the difference in otter abundance.
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Thus, the interpretation of the results of the studies required some
judgment. Our chief tool was to ask ourselves, “What is the probability we
would get the result we observed from Study ___ if Hypothesis ___ was
true?” We attempted to quantify our impression of the strength of each
piece of evidence by filling out the table of probabilities, sequentially
considering what the result would mean in an ideal world, what the statis-
tical tests implied, how the assumptions of the tests might be violated,
and what mechanisms might cause the results to be misleading.

We felt our ability to discriminate among probability levels was fairly
coarse. Accordingly, we initially filled in the table of probabilities verbal-
ly, using the categories “high,” “moderate-high,” “moderate,” “low-moder-
ate,” and “low,” which we later replaced with 0.9, 0.7, 0.5, 0.3, and 0.1,
respectively (Table 3).

The result of our first analysis was to assign more than a 98% proba-
bility to the hypothesis that the population differences were due to a de-
mographic limitation in the rate of recovery of the Knight Island population
from spill mortality. All other hypotheses combined had less than a 1.5%

Table 3. First attempt at integrating studies.

“A” “B” “C” “D”
Experiment and Demographic Food Oil Recovery has
(result) limitation limitation persistence occurred

Otter density 0.9 0.9 0.9 0.3
(K << M)

Repro. rates 0.9 0.5 0.7 0.9
(equal)

Blood chemistry 0.9 0.7 0.3 0.9
(equal)

P450 0.7 0.7 0.1 0.9
(equal)

Prey abundance 0.9 0.1 0.1 0.1
(M < K)

Foraging success 0.9 0.1 0.7 0.1
(M < K)

Joint likelihood 0.4133 0.0022 0.0013 0.0022

Probability of 98.6% 0.53% 0.32% 0.52%
hypotheses

Top row gives hypotheses, and left column gives experiments with the results in parentheses. “M” re-
fers to Montague Island (control), and “K” to Knight Island (oiled). The main body of the table gives the
probability of obtaining each experimental result under each hypothesis. The bottom two rows sum-
marize the result as the product of the probabilities for each hypothesis (i.e. the joint likelihood) and
the probability products re-scaled to sum to 100%.
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probability of being true. We were unhappy with this result, as this high
degree of confidence did not reflect our personal higher degree of uncer-
tainty. We felt that the evidence for this hypothesis was not that strong.

In examining the reasons for this initial result, we identified three
principal sources of error. First, we overstated the power of the studies to
discriminate among hypotheses. For instance, we assigned a 0.90 proba-
bility of seeing greater prey abundance at the oiled site if demography
was limiting recovery, but only a probability of 0.10 under any of the
other hypotheses. We did not adequately address step 6 of our methodol-
ogy; for instance, there would be a fairly good chance of seeing higher
prey abundance at the oiled site under several alternative hypotheses.

Second, the range of hypotheses we considered was too narrow. In
retrospect, we felt there was a strong possibility that all of the hypotheses
might be incorrect, and some other factor might be responsible for differ-
ences between areas. This resulted in an unrealistically high probability
for the hypothesis most consistent with the data.

Third, we did not adequately account for dependencies among exper-
imental results (step 7, complication A). While we lumped most blood
chemistry measures into one result, we kept the assay for the enzyme
P450 (a more direct measure of exposure to oil) as a separate experiment.
Since this assay could indicate the same phenomenon, and was measured
on the same sample of animals, we felt the two results were effectively
equivalent to only 1.5 experiments. Similarly, measures of prey size, prey
abundance, and foraging success to some extent measured the same phe-
nomenon. In retrospect, we decided to consider them as equivalent to two
experiments.

We therefore revised the tabled probabilities, taking what we hoped
was a more realistic look at the power of the studies and adding another
alternative hypothesis to those we had listed. While we were able to think
of several specific alternatives, we felt the true explanation for population
differences might be something we hadn’t considered. Therefore, we add-
ed only one hypothesis; an “unknown causes” category. Meanwhile, the
completion of analyses of blood chemistry and the enzyme P450 suggest-
ed that residual oil might be present at the oiled site, and new information
became available about the size distribution of prey species (Table 4).

The revised table again supports the hypothesis that the populations
differ because the population in the oiled area has not had the time to
recover fully from the losses due to the oil spill. However, it shows even
greater support for the hypothesis that residual oil is still affecting the
population. The hypothesis that some unknown factor accounts for the
difference between populations is also quite probable.

Two hypotheses were eliminated from consideration, principally be-
cause of the forage abundance studies. Forage was more abundant and
foraging success higher at the oiled site. These results were not at all
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consistent with the food limitation hypothesis, and were also unlikely if
the population at the oiled site had recovered to its carrying capacity.
However, it should be noted that the “unknown causes” hypothesis, which
has a fairly high probability of being true, is not necessarily related to the
spill. Thus it would be inappropriate to say the probability that the popu-
lation is no longer suffering effects of the spill is only 0.01.

We will refine and expand this analysis as more data become available
and more experts are consulted. These results are not our final interpreta-
tion, and should be viewed as a preliminary analysis. We provided this
example solely to illustrate the use of the methodology.

Table 4. Second attempt at integrating studies.

Experiment “A” “B” “C” “D” “E”
and Demogr. Food Oil Unknown

(result) limit limit persist Recovered causes

Otter density 0.9 0.9 0.9 0.3 0.9
(K << M)

Repro rates 0.9 0.5 0.7 0.9 0.9
(equal)

Blood CBCs & 0.5 0.5 0.7 0.3 0.5
chemistry
(weak indication
of liver damage
at K)

P450 0.3 0.3 0.9 0.3 0.3
(M < K)

Prey abundance 0.9 0.1 0.5 0.3 0.5
(M < K)

Prey size 0.9 0.1 0.7 0.3 0.7
(M < K)

Foraging success 0.9 0.1 0.7 0.3 0.7
(M < K)

Joint likelihood 0.1581 0.0011 0.1744 0.0040 0.0764

Probability of 38.2% 0.3% 42.1% 1.0% 18.5%
hypotheses
Top row gives hypotheses, and left column gives experiments with the results in parentheses. “M” re-
fers to Montague Island (control), and “K” to Knight Island (oiled). The main body of the table gives the
probability of obtaining each experimental result under each hypothesis. The bottom two rows sum-
marize the result as the product of the probabilities for each hypothesis (i.e. the joint likelihood) and
the probability products re-scaled to sum to 100%.
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Discussion
The Bayesian aspects of the proposed methodology are (1) use of subjec-
tive expert judgment in interpreting indirect tests of hypotheses, and (2)
integration of experimental results and expert judgment into an overall
probability for each hypothesis using Bayesian probability calculations. A
large literature exists on using Bayesian methods to compare hypotheses
(Kass and Raftery 1995).

Bayesian methods have been criticized from a variety of standpoints
(e.g., Dennis 1996). The principal criticism is that Bayesian methods inject
subjectivity into scientific analyses that should be objective. However, in
extrapolating from the results of diverse studies on small aspects of a
larger question, subjectivity in the form of expert judgment is unavoid-
able. We propose a methodology that formalizes the intuitive process ex-
perts use in interpreting the results of ecosystem studies. This approach
clearly distinguishes subjective interpretation from experimental results,
and clearly shows the reasoning used.

Our methodology provides a tool for investigators to organize their
thinking. The ecosystem and the results of the numerous studies may be
too complex to be readily grasped in their entirety. By allowing investiga-
tors to approach the synthesis of the studies one element at a time, our
method increases the tractability of the process.

The methodology also facilitates openness and discussion, since sub-
jective components of the synthesis of the studies are documented and
quantified. It clearly shows why a particular conclusion was reached, and
what evidence investigators felt was ambiguous or particularly strong.
Areas of disagreement among investigators are also easily identified.

Our methodology is based on principles derived from other methods
widely used for eliciting probabilities from experts (summarized in Mor-
gan and Henrion 1990, Ch. 7). Examples of such methods include the Stan-
ford/SRI protocol (Spetlzer and Stael von Holstein 1975, Merkhofer 1987)
and the Wallsten/EPA protocol (Wallsten and Whitfield 1986). We’ve tai-
lored our methodology to the specific goal of summarizing the relative
support for alternative hypotheses from an interrelated but necessarily
incomplete set of studies.

Most methods for probability elicitation pay great attention to getting
experts comfortable with the idea of translating their knowledge and judg-
ment into probability statements, and to overcoming a tendency of ex-
perts to give probabilities that overstate the level of certainty (Tversky
and Kahneman 1982; Morgan and Henrion 1990, Ch. 7). Our solution to
these difficulties is to take experts through a specific sequence of proba-
bility elicitation steps. These start with specifying deterministic outcomes,
then progress through familiar specifications of probability (likelihood
calculations) to less familiar probability specifications (the effects of vio-
lation of statistical assumptions and of not directly testing the hypothesis
of interest). This sequence gradually introduces the process of making
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probability statements. It also sequentially introduces more and more forms
of uncertainty, continually forcing the expert to reflect on whether the
degree of confidence he’s previously expressed is appropriate.

Our example illustrates both the utility and limitations of the method-
ology. The summary table lists the hypotheses and the experimental re-
sults. Probabilities within the table explicitly document the experts’
interpretation of the consistency of the results of each experiment with
each hypothesis. The summary probabilities excluded two hypotheses but
retained three others, one of which appears to be only half as probable as
the other two.

However, the 18.5% probability assigned to the “Unknown Causes”
hypothesis makes interpretation of the other probabilities somewhat am-
biguous. Much of the probability assigned to this hypothesis may indicate
that recovery has occurred, and the differences we found are caused by
some unknown factor(s) unrelated to the spill. It is also possible that “un-
known causes” represents effects related to the spill such as cascading
ecological effects. In either case, the results do provide guidance for fur-
ther research; they suggest that continuing studies should focus on hy-
potheses “A,” “C,” and “E.”

The necessity for re-evaluating our initial analysis because of unreal-
istic results in instructive. It reinforces the experience of others who have
found that numerical statements of probability given by experts tend to
be overly confident (Tversky and Kahneman 1982, Henrion and Fischoff
1986). Our second try produced a result that we felt better reflected the
strength of the evidence provided by the experiments.

There is a danger that allowing such reanalysis could result in inves-
tigators juggling numbers to arrive at a result that reflected their precon-
ceptions. However, an honest reappraisal of each element in the table is
not inappropriate. Most methods for probability elicitation do recommend
that assessors return to an earlier phase in the process whenever ques-
tioning reveals that the probabilities elicited clearly don’t reflect the ex-
pert’s judgment (Kadane et al. 1980; Morgan and Henrion 1990, Ch. 7;
Laskey 1995). We found the reanalysis of the table caused us to re-exam-
ine the basis of our interpretations; rather than reinforcing our precon-
ceptions, it tended to make us change them.

Use of our methodology will make it easier to examine the source of
differences in interpretation of a study. For example, a scientist who dis-
agreed with our conclusions might find that the basis of his difference
was the weight placed on the blood chemistry results. A sensitivity analy-
sis to alternative interpretations would be easy to perform by replacing
the disputed probability with an alternative value to see if this affected
the conclusions.

This method is not proposed as a substitute for good experimenta-
tion. With scarce, poor quality, and ambiguous data the conclusion reached
after applying this method will be that considerable uncertainty remains.
However, in such situations this methodology may identify areas of major
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uncertainty and suggest fruitful lines of investigation. The major benefit
of this approach is the explicit documentation and quantification of the
unavoidable subjective interpretation of ambiguous results that arise in
many ecosystem investigations. In contrast, when strong experimental
designs are available that produce clear evidence, subjective interpreta-
tion will be minimized and investigators should reach consensus.
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Abstract
Pink salmon (Oncorhynchus gorbuscha) is the most abundant salmon spe-
cies in Southeast Alaska and supports an important commercial fishery.
Like most salmon fisheries in Alaska, pink salmon fisheries in Southeast
Alaska are managed by a fixed escapement policy. To achieve a targeted
escapement, managers must know the abundance of the incoming spawn-
ing run. The accuracy of abundance information acquired inseason sub-
stantially affects the manager’s ability to achieve management objectives.
To improve accuracy of inseason forecasts of southern Southeast Alaska
pink salmon runs, we incorporated sex ratio information into inseason
forecast models to annually adjust timing and shape of the run timing
curves. First, we developed a sex ratio index and subsequently evaluated
three inseason forecast models—linear, nonlinear, and combined—using
this index and cumulative catch of all gears or cumulative catch per unit
effort of the seine fishery from 1983 to 1997. Based on a cross-validation
evaluation of forecast accuracy, the nonlinear model outperformed the lin-
ear and combined models. Cumulative catch per unit effort was a better
predictor than cumulative catch in the first three weeks (weeks 28-30) of a
fishing season, and vice versa in the remaining five weeks. Inseason abun-
dance estimations greatly improved the preseason forecasts.  Incorporat-
ing sex ratios into inseason forecast models correctly adjusted the run
timings during a large majority of years and thus improved overall fore-
casts starting in the second week. In weeks 29-32, the best performing
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model using sex ratios improved forecasts more than 30% over the best
model without using sex ratios; improvements included averages of rela-
tive forecast errors, absolute deviations, or squared residuals. Averages
of relative forecast errors in weeks 29-34 were less than 24% for the best
performing model using sex ratios and less than 38% for the best model
without using sex ratios, compared to 51% for preseason forecasts. Aver-
age relative forecast errors from the best model were less than 20% before
the run midpoint and less than 14% after the run midpoint.
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Abstract
Management procedures have formed the basis of the regulation of two of
the three major fisheries of South Africa (the demersal trawl fishery for
hake, and the purse-seine fishery for anchovy and sardine) since 1990,
and have recently been developed and implemented in the third (west
coast rock lobster). Essentially, these procedures comprise a set of pre-
agreed and possibly simple rules, tested by simulation to give an appro-
priate catch vs. risk tradeoff in the medium term, that routinely translate
data from the fishery into a TAC (total allowable catch) each year. Uncer-
tainty is dealt with directly, by requiring rules that provide robust perfor-
mance over a range of plausible scenarios for resource status and dynamics.
This can circumvent issues such as appropriate weightings of different
data sources, which can prove problematic if TACs are to be based on an
annual “best assessment” coupled to some biological reference point. The
paper discusses some key experiences in developing and implementing
management procedures for the three fisheries above, specifically: that
robustness to model structure uncertainty is of greater importance than
“optimal” estimation; that feedback-control procedures do indeed self-cor-
rect in practice; and that short-term sociopolitical considerations under-
cut longer-term objectives in selecting between alternative candidate
procedures when quota holders do not have established long-term rights.
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Introduction
Management procedures (MP) are described by Butterworth et al. (1997) as
a set of clearly defined, possibly quite simple rules, which translate data
from the fishery into a TAC (or other regulatory mechanism, e.g., maxi-
mum fishing effort) each year. These rules are first tested by simulation to
ensure reasonably robust performance in terms of expected catches and
risk to the resource, given the prevailing uncertainties about resource
status and dynamics. The rules should be agreed upon by all parties con-
cerned (scientists, industry, managers) before being implemented, and
should specify exactly how the regulatory mechanism is to be calculated
and what data are to be collected and used for this purpose. Once imple-
mented, MPs should be left to operate “automatically” for a period of 3-5
years (i.e., scientists should not seek to alter the recommendations which
they provide unless very strong evidence pointing to such a need becomes
available). After such a period, MPs should be reviewed and modified as
necessary in the light of any changes in understanding of the resource or
fishery which may have occurred in the interim (Butterworth et al. 1997,
Cochrane et al. 1998).

A key difference between the MP and the conventional fisheries man-
agement approach is that the latter requires a regular and time-consum-
ing re-evaluation of data, assessment methodology and the process for
setting the regulatory mechanism as well as an update of the actual as-
sessment results, typically on an annual basis. MPs require a more com-
prehensive re-evaluation but at a less frequent interval (typically only once
every 3-5 years), hence arguably leading to a more time-efficient process,
and a better basis to prioritize and pursue longer term research aimed at
resolving key uncertainties. They also allow for the fact that a proper
appraisal of risk for most fisheries cannot be made for a management
decision that applies to a single year only, but needs to be based on the
repeated application of a decision-making formulation over a number of
years.

MPs have formed the basis of the regulation of two of South Africa’s
three major fisheries since the early 1990s, namely the demersal trawl
fishery for hake (two species of hake are caught: Merluccius capensis and
M. paradoxus), and the purse-seine fishery for anchovy (Engraulis capen-
sis) and sardine (Sardinops sagax). They have recently been developed and
implemented in the third major fishery, that for west coast rock lobster
(Jasus lalandii). MPs are in the process of being formally incorporated into
the South African Fisheries Act as a requirement for management of the
larger South African fisheries. The following extract is taken from the gov-
ernment’s White Paper on marine fisheries policy for South Africa (Depart-
ment of Environmental Affairs and Tourism 1997):

Long-term management plans, which include operational man-
agement procedures, will be developed and published to ensure
optimal utilization of all significant marine resources. They will:
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• be developed through a cooperative process involving all
interested parties

• be binding, though with procedures to allow amendments
• include appropriate and cost-effective monitoring and con-

trol programs and strict enforcement of fishing regulations
• consider the socioeconomic implications of altered levels

of utilization (e.g. the effect of a reduced TAC on employ-
ment).

Operational management procedures will be based on scien-
tific principles recognizing the inherent variability of resources
and the interdependence of the components of marine ecosys-
tems.

Finally and importantly, conservative interim approaches will
have to be adopted where insufficient scientific information is
available; research will be dedicated to filling the gaps in knowl-
edge.

There has been ongoing debate about whether MPs as opposed to
conventional annual “best assessment” type approaches are a better way
to manage fisheries (Butterworth et al. 1997, Cochrane et al. 1998). It is
not the intention of this paper to repeat these arguments, nor to provide a
comprehensive account of the MPs used in South African fisheries. Rather,
a few examples of their application in the South African context are pro-
vided to illustrate three key points:

1. Robustness to uncertainty about model structure is a more important
concern than the development of an “optimal” estimator (assessment
procedure) for a given model and assumed error structure for input
data.

2. MPs involving feedback control mechanisms can indeed appropriate-
ly adjust TACs as new data show past perceptions to have been in
error, though this does not obviate the need to eventually revise the
MP to better reflect such changed perceptions.

3. Short-term sociopolitical considerations often undercut longer-term
objectives when there is an immediate threat to the long-term securi-
ty of quota holders.

These three points are illustrated by considering the South African sar-
dine, hake and west coast rock lobster fisheries respectively.

Sardine
The South African pelagic fishery has recorded average annual landings of
some 400,000 t for all species over the last ten years. Catches currently
comprise two species for which TACs are set, namely anchovy and sardine,



516 De Oliveira et al. — Management of South Africa’s Major Fisheries

and four likely underutilized “non-quota” species of which round herring
(Etrumeus whiteheadi) is the most important in terms of landed mass. MPs
were first applied in the pelagic fishery to anchovy in 1991 and to both
anchovy and sardine together in 1994. These procedures are well docu-
mented elsewhere (Butterworth and Bergh 1993, Butterworth et al. 1993,
Cochrane et al. 1998, De Oliveira et al. 1998). The sardine procedure of
1994 is multispecies in nature because it accounts for operational interac-
tions between anchovy and sardine, and also between round herring and
sardine (De Oliveira et al. 1998). These interactions take the form of mixed
shoaling, such that when either anchovy or round herring is targeted, a
bycatch of sardine is unavoidable (0 aged fish with the former, 1+ aged
fish with the latter). The 1994 sardine procedure was therefore a complex
one which provided both a directed catch TAC (1+ fish only because 0
aged fish are not targeted for an operation aimed primarily at canning)
and a bycatch TAC (both 1+ and 0 aged fish) whose size depended, inter
alia, on the size of the anchovy TAC (primarily converted to fishmeal).
When anchovy abundance fell to a very low level at the end of 1996 so that
the directed anchovy fishery was suspended, a simpler MP for sardine
was developed and implemented in 1997. This accounted for directed
adult catches and a fixed bycatch of adult sardine with the round herring
fishery. It is this procedure which is used here to illustrate the importance
of structural uncertainty considerations.

The process of developing the MP for sardine had two phases. The
first consisted of an assessment of the sardine resource to estimate its
“status” and productivity under a variety of assumptions. The second in-
volved the development and simulation testing of an array of alternative
MPs. These tests were based on the results of the first phase, so that the
alternative scenarios considered remained consistent with the available
information. Finally, all parties concerned (scientists, managers, indus-
try), participated in selecting an MP whose performance was suitably ro-
bust to key uncertainties about model structure and which achieved an
appropriate tradeoff in satisfying conflicting objectives such as maximiz-
ing catch and minimizing risk to the resource. Figure 1 illustrates how
these phases are linked.

Population parameter values were obtained by maximum likelihood
estimation in the assessment procedure of the first phase, and were used
as input into the testing process of the second phase (see Butterworth et
al. 1993 and De Oliveira 1995 for a description of the methodology). The
same age-structured population model was used for both phases; its key
assumptions were 6 age-classes, pulse fishing for all ages in the middle of
the fishing season and a year-invariant natural mortality whose value for
the 0 age group might differ from that for the 1+ age group. The stock-
recruit relationships required by the testing process of the second phase
to provide levels of future recruitment were obtained from the assess-
ments of the first phase by fitting stock-recruit curves to the estimates of
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Figure 1. A flow diagram of the overall testing process for MPs. The structure of
the MP component is the same for sardine and rock lobster, but differs
for hake (see main text for details).
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recruitment and 1+ biomass provided (Fig. 2). The data used in the assess-
ment were

a. 1+ biomass estimates (B1+) and sampling CVs. from hydroacoustic
spawner biomass surveys conducted in November each year.

b. Recruit estimates and sampling CVs. from hydroacoustic recruit sur-
veys held in May/June each year.

c. Age composition information from the surveys mentioned in (a).

d. Commercial catch-at-age data.

Data series (a)-(c) contributed to the likelihood function, which related
model predictions to observations, where the model assumed data series
(d) to be without error.

In the development of the 1997 sardine MP, the following key uncer-
tainties for which it was considered a selected MP should show adequate
robustness, were identified.

i. Levels of natural mortality for the 0 and 1+ age group (M0 and M1+

respectively)—different values (reflecting various assumptions about
the “true” values for M0 and M1+) had to be assumed, as the available
data hardly admitted their direct estimation.

ii. Bias in the B1+ estimate resulting, inter alia, from possible bias in hy-
droacoustic target strength estimation.

iii. Additional variance (λ1+ and λr respectively) not explained by the sam-
pling (i.e., inter-survey-transect) variability of the B1+ and recruit sur-
vey estimates—the λ and sampling variability summed together reflect
the overall precision of the corresponding survey estimate in relation
to the true abundance (increasing λ1+ or λr implies down-weighting the
associated data in the likelihood function).

iv. Appropriate weighting (γage) in the likelihood function of the age com-
position data (decreasing γage implies down-weighting the age compo-
sition data in the likelihood function).

v. Choice of an appropriate stock-recruit (S/R) curve.

The testing process of the second phase essentially encompassed pro-
jecting the sardine population into the future (a 20-year projection period
was used) from estimates of the current level of the resource provided by
the assessment procedure of the first phase, by using the stock-recruit
relationship fitted to recruitment and 1+ biomass estimates from the as-
sessment results to provide future recruitment values. Two sources of
variability in the data were taken into account, namely observation error
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Figure 2. The stock-recruit curves considered for sardine. The “flat” curve decreases
linearly from an estimated median recruitment level to zero below 20%
of the average pre-exploitation 1+ biomass value, but reflects no depen-
dence of recruitment on spawning stock size above this value. The “B/H”
curve reflects a Beverton-Holt type stock-recruit relationship. The dots
are estimates of 1+ biomass and recruitment from the assessment pro-
cedure.

in the form of sampling variability in simulated future 1+ biomass survey
estimates (which are used in the formula which provides TAC recommen-
dations—see below), and process error in the form of recruitment vari-
ability, which was based on the assumption that recruitment is lognormally
distributed around the stock-recruit relationship. The future catches in
these tests were as specified by the MP being tested. Selection between
alternative MPs was carried out by considering the summary statistics
described in the footnote to Table 1, and robustness to the key uncertain-
ties listed in (i)-(v) above. For ease of presentation, only the MP that was
eventually selected and implemented in 1997 is discussed below.

The 1997 sardine MP (intended for implementation in the absence of
any anchovy fishery) is described by the following equations and con-
straints:
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Table 1. Results for the robustness trials for the 1997 sardine manage-
ment procedure (MP) described by equations (1) and constraints
(2) in the main text.

Uncertainty Summary statistics

B1+
mult. S/R

M1+ M0 bias λ1+ λr γage curve   Ctot     g1+ risk   V

1 0.6 1.0 1.5 0.0 0.4 0.1 Flat 164 1.18 0.030 22%

2 0.4 186 1.37 0.022 16%

3 0.6 166 1.24 0.016 22%

4 1.4 156 1.11 0.048 23%

5 1.0 169 1.18 0.006 21%

6 2.0 153 1.17 0.052 24%

7 0.2 163 1.17 0.036 23%

8 1,000 147 1.19 0.012 25%

9 0.3 152 1.20 0.028 24%

10 B/H 179 1.61 0.104 17%

“Uncertainty” reflects key uncertainties about model structure or optimal estimation, as defined in
points (i)-(v) in the sardine subsection of the main text. “Summary statistics” reflect the sensitivity of
the 1997 sardine MP to the robustness trials with respect to the given performance attributes.

The summary statistics are defined as follows:   Ctot  is the average annual total catch (directed and by-
catch combined) over the 20 year projection period;     g1+  is the average 1+ biomass at the end of the
projection period as a proportion of the 1+ biomass at the start of the projection period; risk is the
probability that the 1+ biomass falls below 20% of its average value in the absence of exploitation at
least once during the projection period;   V  is the average annual change in directed TAC as a percent-
age of the directed catch portion of   Ctot . The “flat” and “B/H” stock-recruit (S/R) curves are detailed in
the caption to Fig. 2. Catch values are in thousand t, and empty cells acquire the corresponding value
in robustness trial 1.

subject to
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where
TACdir(y) is the directed sardine TAC (1+ fish only) implemented at the

start of the fishing season (January) in year y;

TACbyc(y) is the bycatch sardine TAC (1+ fish only) to accommodate
the round herring fishery, implemented at the start of the
fishing season (January) in year y; and

B1+(y –1) is the 1+ biomass estimate from the hydroacoustic spawner
biomass survey held in November of year y –1.
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Robustness of this procedure to the key uncertainties (i)-(v) is reflect-
ed in Table 1. Essentially, the results in this table are obtained by keeping
equations (1) and constraints (2) unchanged, but inputting sets of popula-
tion parameter estimates from the assessment procedure to the testing
process that differ for each robustness trial, the appropriate changes hav-
ing been made to the model structure of both the assessment procedure
and testing process.

When the results of Table 1 were discussed with the industry, an im-
portant concern from a conservation point of view was that the risk level
was contained below an acceptable limit across the range of model struc-
ture uncertainties considered, while at the same time some scope for growth
of the resource was consistently ensured (an accepted goal in the sardine
fishery since the early 1980s has been to rebuild the resource, Cochrane
et al. 1998). The actual criteria used were that risk should not much ex-
ceed 0.1, and that the resource growth measure     g1+  should exceed 1 (the
definitions of risk and     g1+  are given in the footnote to Table 1).

These two criteria were met for the 1997 sardine MP for all the robust-
ness trials of Table 1, and hence led to its selection. However, it is clear
that robustness trial 10, which assumes a different though still quite plau-
sible shape for the stock-recruit relationship (given the data, see Fig. 2),
has by far the worst effect on risk. In particular, this effect is much larger
than that arising from statistical estimation considerations, such as the
values used for λ1+, λr and γage which amount to different weightings given
to different sources of data in the likelihood. This highlights the point
that considerations of structural uncertainty, such as the form of the stock-
recruit relationship, are the much more important concern in this case.

Hake
The fishery for Cape hakes, with annual catches over the last ten years
averaging 143,000 t, forms the backbone of the demersal trawl fishery,
and is currently the most valuable fishery in South Africa (Crawford et al.
1987, Department of Environmental Affairs and Tourism 1997). Two spe-
cies of hake occur in the fishery, and because they are morphologically
very similar, the catch and effort statistics collected from the fishery have
not been able to distinguish between them (Punt 1993). However, Punt
(1992) found that aggregation of data for the two species should not com-
promise assessment results seriously. In the analyses described below,
the two species have been treated as one, and only the west coast compo-
nent of the hake fishery is considered.

The MP used for hake differs in one important respect from that just
described for sardine (see Fig. 1). The latter reflects a “Myopic Bayes” ap-
proach, i.e., the MP is based on perceptions of resource parameter values
at the time of its development, and no attempt is made to update these
values as more data become available. This process is left to the 3-5 year
review of the procedure itself. In contrast, the MP for hake encompasses
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feedback control; whereas the sardine MP sets TACs as a fixed fraction of
the most recent survey biomass estimate, the hake MP updates popula-
tion dynamics parameters given new data, and uses these updates in com-
puting its TAC recommendations. Although this re-estimation appears to
mimic the conventional management process, it differs in two important
aspects (Butterworth et al. 1997). First, the combination of the estimation
and the TAC calculation is an automatic process repeated every year and
does not necessarily correspond to the “best” assessment of the resource
possible at any one time. Second, as in the selection of the sardine MP, this
procedure was chosen over other possibilities after extensive tests had
been carried out of the anticipated performance of the fishery and its
robustness to prevailing uncertainties in the medium term (Punt 1992,
1993). These characteristics shift the process into the realm of a “manage-
ment procedure” (Butterworth et al. 1997).

The current MP for hake comprises a process for setting a TAC which
includes an observation error estimator based on a dynamic age-aggregat-
ed surplus production model assuming a Schaefer form for the produc-
tion function (Payne and Punt 1995). The estimator (Fig. 1) utilizes the
following data:

a. Total biomass estimates (with CVs) from swept area surveys treated
as an index of abundance in relative terms.

b. Commercial CPUE data (standardized using power factor analysis).

c. Total annual commercial catches.

A TAC is calculated directly by using an f0.2 harvesting strategy (the f0.2

harvesting strategy is a constant effort strategy, where the effort level is
calculated from a surplus production model and is that for which the
slope of the equilibrium yield vs. effort plot is 20% of the slope of this
curve at the origin; Payne and Punt 1995 document the reasons for the
selection of the f0.2 strategy). Note that although an age-aggregated esti-
mation model is used, its selection was based on superior performance in
simulation tests conducted using a fully age-structured model, with its
greater biological realism, to better mimic the actual underlying dynamics.

The plot in Fig. 3a illustrates the model fit of this estimator to ob-
served CPUE data up to 1990, when this MP was first implemented. It also
shows the corresponding fits in 1993 and 1996, after 3 and 6 years addi-
tional data respectively. Figure 3b shows the sequence of future TACs pre-
dicted by projecting the model fit in 1990 forward (using data up to 1990
only) under an f0.2 harvesting strategy, and compares these to the TACs
subsequently set under the MP. As time proceeded, the CPUE did not show
as rapid an increase as expected, suggesting that resource productivity as
assessed in 1990 was too high. However, the feedback nature of the MP
(which automatically refitted the model each year to the data series updated
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by one year) allowed it to compensate for this, by indicating catch levels
less than predicted earlier (see Fig. 3b).

Recent research suggests that these features in the recent CPUE data
may be a consequence of a change in the age-specific selectivity pattern in
the fishery away from younger fish. This is possibly the result of a reduc-
tion in the illegal use of net liners as the industry’s economic “need” for
this to enhance catch rates diminished as the resource size recovered.
Therefore, the poorer fit to the data in the most recent years (Fig. 3a) may
be a consequence of model misspecification. Such a possibility was not
considered when the tests for the original MP were conducted, but is be-
ing taken into account in its re-evaluation which is currently in progress.

West Coast Rock Lobster
South Africa’s west coast rock lobster resource has yielded an average
commercial catch of 2,600 t over the past ten years. The resource was
heavily fished earlier this century, and the current biomass of exploitable
animals (>75mm carapace length) is estimated to be only 5% of its pre-
exploitation level. Furthermore, following a period of low somatic growth
that commenced in the late 1980s, this component of the biomass has
dropped to about half of its mid-1980s level.

An MP for the west coast rock lobster fishery has only recently been
developed and was implemented for the first time in 1997. The process
followed in its development is similar to that for sardine and hake, name-
ly that an assessment procedure determines the status of the resource,
and forms the basis for the testing process from which an MP is selected
by the parties concerned (Fig. 1). The MP selected, which is to apply for
three years before revision, is strictly Myopic Bayes without feedback of
new data to update estimates of population dynamics parameters. Never-
theless the manner in which these data are used to calculate TAC recom-
mendations does have some self-correcting properties.

The assessment procedure uses maximum likelihood estimation to fit
a size-structured sex-disaggregated model to observed data which include
the following:

a. CPUE.

b. Catch-at-size frequencies for male and female lobsters.

c. Percentage females caught.

d. Somatic growth for males, females and juveniles.

e. Total commercial catch.

Data series (a)-(c) are available from two sources (one fishery dependent,
the other fishery independent) and are used directly in the likelihood func-
tion, whereas series (d) and (e) are assessment model inputs.
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Figure 3. Results of applying the hake estimator (Fig. 1) to the west coast
component of the hake fishery. Figure 3a reflects the model fit of
this estimator to observed CPUE data at three-year intervals from
1990. Figure 3b shows the observed catch history on the west coast
up to 1990, the TAC values predicted by the model fit in 1990
using an f0.2 harvesting strategy, and the TACs subsequently award-
ed as the model fit was updated from 1991 onwards. (Formally, a
single TAC is awarded each year for the hake fishery, being the
sum of TACs calculated by the management procedure for each
of the west and south coast components. Advice is then that 2⁄ 3 of
the total TAC should be taken on the west coast. Accordingly from
1991, Fig. 3b shows 2⁄ 3 of the total TAC awarded annually.)
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The MP for rock lobster comprises a relatively simple formula which
uses three indices of resource status, namely the two CPUE series and the
somatic growth data given in (a) and (d) respectively above (Sea Fisheries
Research Institute 1997). The formula is such that an increase in any one of
the indices tends to adjust the TAC upward, while a decrease has the oppo-
site effect. In the process of making an appropriate choice of MP for this
rock lobster fishery, 12 candidate MPs were presented to the Sea Fisheries
Advisory Council (SFAC), a statutory body providing advice to the Govern-
ment Minister responsible for fisheries management. Each of these had been
tested for robustness across a wide range of uncertainties (as was done for
sardine), and each was considered by scientists to have displayed an ade-
quate level of resilience to these uncertainties in achieving management
goals (Sea Fisheries Research Institute 1997). These management goals in-
cluded maintaining a reasonable chance of achieving rebuilding targets and
ensuring low inter-annual variations in TAC recommendations.

The 12 candidate management procedures presented to the SFAC are
shown in Table 2. They differ in two respects, namely the level to which
they are intended to rebuild the exploitable biomass (i.e., biomass of ani-
mals >75mm carapace length) over a period of 10 years, and the immedi-
ate effect on the TAC of applying the selected management procedure.
Figure 4a illustrates catch trajectories (expectation in terms of the base-
line assessment) associated with the four of these MPs which correspond
to an immediate 20% increase in TAC for 1997 (compared to that for 1996),
but differing recovery levels over a 10 year period, while Fig. 4b shows the
corresponding biomass trajectories. The greater the extent of recovery
desired, the lesser the increases in TAC over the period.

On being asked to choose one of the 12 MPs, SFAC members selected
MP3 (Table 2). This choice amounted to selecting an MP which was the
least conservative of the 12, providing the maximum immediate TAC gain
and the lowest level of rebuilding. The probable reasons for this choice
are discussed below.

1. Because of the changing political circumstances in South Africa, with
redistribution of wealth and opportunity being a focal point in many
spheres of public life, and stressed in the White Paper on marine fish-
eries policy (Department of Environmental Affairs and Tourism 1997),
existing quota holders in this fishery are uneasy about their immedi-
ate and medium-term future, given much talk of “restructuring” (i.e.
introduction of new entrants) to the fishery. These existing quota hold-
ers see their interests best served, given the present recovery trend in
the resource following TAC cutbacks during the period of low somatic
growth, by a rapid increase in the TAC giving them a better chance of
securing larger rights in the long term; in contrast, they see the risk of
the slow TAC increases associated with higher biomass recovery tar-
gets as likely to lead to all the consequent lesser TAC increases being
allocated to new entrants. Furthermore, why sacrifice TAC increases
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now for greater levels of future biomass recovery when it will be oth-
ers who reap the benefits of these sacrifices in the future.

2. The SFAC includes members of the fishing industry, though these per-
sons are appointed in their personal rather than a representative ca-
pacity. Because all 12 candidate MPs were deemed “scientifically”
acceptable in terms of risk to the resource, differing only in the target
level of recovery and the amount of immediate TAC increase, non-
industry members probably had no strong basis on which to object to
any of the 12 MPs. Opinion within the SFAC was therefore likely heavily
influenced by the members of the industry driven to some large ex-
tent by the considerations above.

Discussion
The above examples of the application of MPs in the South African context
show that the MP approach provides a natural way to deal with uncertain-
ties about model structure in a direct manner. This is achieved by consid-
ering the effect on key performance statistics of the MP of changes in
model assumptions which reflect these uncertainties, and seeing which
uncertainties have the greatest impact on these statistics. For example, in
the case of sardine, robustness trials revealed that the form of the actual
stock-recruit relationship is a far greater concern in terms of risk than the
appropriate weighting of data used for estimation in the likelihood func-
tion. In a formal sense, evaluation of the results of a potentially large
number of these different trials would entail taking weighted averages,
where the weight corresponds to the relative likelihood of the scenario

Table 2. The 12 candidate management procedures (MP1-MP12)
for the west coast rock lobster resource presented to
the SFAC for different “rebuilding strategy–immediate
TAC increase” combinations.

10-year Immediate TAC increase
rebuilding strategy 3% increase 10% increase 20% increase

20% recovery MP1 MP2 MP3

30% recovery MP4 MP5 MP6

40% recovery MP7 MP8 MP9

50% recovery MP10 MP11 MP12

The “rebuilding strategy” options reflect the increase in biomass (of animals above 75 mm
carapace length) at the end of a 10-year period when the corresponding MP is applied for
the whole period. The “immediate TAC increase” options reflect the immediate increase in
the TAC relative to the TAC in 1996 when the corresponding MP is applied in 1997. Catch
and biomass trajectories for the MPs in the “20% increase” column are shown in Fig. 4.
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Figure 4. Predicted catch and biomass trajectories for the four candidate MPs for
west coast rock lobster corresponding to an immediate 20% increase in
TAC for 1997 compared to 1996 (Table 2), but for differing recovery lev-
els of exploitable biomass (biomass of animals >75mm carapace length)
over a 10-year period. Figure 4a shows the catch trajectories, while Fig. 4b
shows the exploitable biomass trajectories.
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reflected by the trial representing reality (Butterworth et al. 1996). Howev-
er, experience has shown that, as in the sardine example, usually only one
or two factors dominate in terms of their impact on MP performance sta-
tistics. Therefore, the problem of assigning appropriate weights effective-
ly disappears as only a relatively small set of trials need be considered
when comparing the anticipated performances of different candidate
management procedures.

The hake MP is appealing in its ability to self-correct by directly up-
dating parameter estimates as it encompasses new data through a pro-
cess of feedback-control. This type of approach may be useful in situations
where there is unease (not necessarily justifiable from a scientific point of
view) about letting the MP operate “automatically” for a number of years
without carrying out a new assessment each year. This type of unease was
experienced with the MP implemented recently for west coast rock lob-
ster, where considerable resistance from the industry was encountered.
The difficulty of using estimators in the rock lobster (or sardine) MPs which
are similar to the assessment procedures for those resources is that the
latter involve complex age/size structured models, for which estimation
is highly computer intensive. Full-scale simulation testing of MPs involv-
ing such assessments thus becomes problematic because of computing
time requirements. Whether or not these assessment procedures could be
adequately mimicked by simpler models in the estimator components of
the MPs (as, for example, in the hake MP for which the estimator involves
a relatively simple age-aggregated model) is a matter still to be investigat-
ed for the sardine and west coast rock lobster resources.

Short-term sociopolitical considerations carry considerable weight
when industry and managers are faced with the selection of one of many
candidate MPs in a situation of uncertain long-term security of quotas.
This was probably the major concern that drew the SFAC to make the
choice they did when selecting an MP for the west coast rock lobster.
Cochrane et al. (1998) highlight establishment of long-term rights as one
of three important criteria to be met if MPs are to be fully able to achieve
objectives expected of them. Nevertheless, the approach used in the rock
lobster example of presenting only those MPs that met more essential
criteria, such as achieving at least “some” recovery while still being robust
to key uncertainties, is important. Therefore, even though the SFAC opted
for the least conservative MP for rock lobster, it remained acceptable from
a conservation point of view.

At root, the MP approach to fisheries management is philosophically
very different from the traditional approach in primary use throughout
the world of the combination of an annual “best assessment” coupled with
a regulatory mechanism (e.g., a catch control law) based upon some bio-
logical reference point (Butterworth et al. 1997, Cochrane et al. 1998). The
scientific motivation in South Africa to move towards an MP approach to
fisheries management arose from involvement in the process of develop-
ment of the Revised Management Procedure (RMP) in the International
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Whaling Commission’s (IWC) Scientific Committee that took place over the
1987-1992 period (Kirkwood 1992, 1997; IWC 1994). The particular ap-
peal of the approach was the manner in which it took uncertainties into
account. For reasons essentially outside the scientific domain, the IWC
has yet to apply the RMP in actuality. The South African experiences refer-
enced above therefore provide some of the few available examples that
address the question of whether or not this is indeed a viable basis to
manage fisheries in practice.
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Abstract
Invertebrates such as shrimp and prawns are notoriously difficult to age,
but much information about their length, growth, and harvest is routinely
collected. We construct a length-based population model that utilizes and
explains such harvest and survey information. The model contains popu-
lation parameters for recruitment, growth, and mortality, and the data are
used in conjunction with the model to estimate parameters. Our model is
an extension of the model of Deriso and Parma (1988), which determines
probability distributions of abundance and catch as a function of length.
Our extension of their model is to “discretize” the length distribution, to
allow more general selectivity and natural mortality representations, and
to generalize the model for two sexes. These enhancements provide a
more flexible approach to length-based modeling, although the solutions
are recursion equations that are more difficult to compute. We illustrate
application of the model to the Torres Strait prawn (Metapenaeus sp.) fish-
ery in Australia. For this invertebrate population, dynamics occur rapidly
over the course of a year, so the time step for the data and the model is
monthly. Relative trends in estimated recruitment and abundance are sim-
ilar among model configurations, which depend on the model parameters
to be estimated, but absolute estimates differ substantially. While the model
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is able to fit the harvest and length frequency data, there is not enough
information to jointly estimate all model parameters, especially catchabil-
ity and natural mortality. However, estimates of growth and selectivity
parameters are robust and differ from those obtained from tagging data
collected from a different time period. Further resolution of model pa-
rameters should be possible with additional research survey information.

Introduction
Aging of invertebrates is notoriously difficult, because molting of the ex-
oskeleton prevents the establishment of annuli. Thus, for invertebrate
populations, length information is the primary data source for stock as-
sessment, and a length-based population model is the primary analytical
approach for estimating population parameters. A length-based model that
utilizes harvest and survey information would be useful to integrate var-
ious sources of available information and to estimate population parame-
ters such as recruitment, abundance, growth, and mortality. We propose
such a model based on an extension of the length-based model of Deriso
and Parma (1988).

There is a long history of development of length-based models, which
are exceedingly important in tropical climes; a summary of length-based
methods is contained in the volume edited by Pauly and Morgan (1987).
Many of the methods are for analysis of growth information and varia-
tions of cohort analysis using length data. Parametric uncertainty induces
inaccuracy in estimates of abundance from length cohort analysis, which
weakens the utility of such procedures (Lai and Gallucci 1988). Several
more flexible and more complicated length-based models have emerged
in the late 1980s and 1990s (see the discussion section). Yet Hilborn and
Walters (1992) pointed out: “Analysis of length data ... is a very fashion-
able topic at the moment, but we are very skeptical that much can be
learned from length data even in principle .... We believe that not enough
is known about the reliability of most of the new length-based methods ...
at present.” Since then, more familiarity with these methods has resulted
in wider use, but Hilborn and Walter’s cautions are still relevant.

One important length-based model (Deriso and Parma 1988, Parma
and Deriso 1990) incorporates stochastic variation in growth. This sto-
chastic population model uses a recurrence relationship (developed by
Cohen and Fishman 1980) to generate growth using a von Bertalanffy or
Gompertz growth curve and an underlying normal or lognormal distribu-
tion for statistical variability. Because growth is stochastic, probability
distributions of length at age for abundance and catch are generated. By
assuming a piece-wise quadratic polynomial function for selectivity, De-
riso and Parma (1988) obtained closed-form solutions for these distribu-
tions. The model incorporates recruitment, growth, natural mortality,
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selectivity, and fishing mortality and includes stochastic elements for the
mortality process and gear selectivity as a function of length.

Our extension of the length-based model of Deriso and Parma (1988)
is designed to be more applicable for hard-to-age invertebrate and fish
populations. This model characterizes the probability distributions of
abundance and catch as a function of length in the presence of a general
gear selectivity function. Our extension of their model is to “discretize”
the length distribution, to allow more general selectivity and natural mor-
tality representations, and to generalize the model for two sexes. These
enhancements provide a more flexible approach to length-based model-
ing, although the solutions are recursion equations more difficult to com-
pute. However, it has not been difficult to use a spreadsheet or computer
program to perform the necessary calculations.

We illustrate application of the model to the Torres Strait prawn (Meta-
penaeus sp.) population in Australia. Its fishery is jointly managed by
Australia and Papua New Guinea as required under the Torres Strait Trea-
ty, and has been the focus of a major research program since 1985. The
model is applied to length frequency data by sex from sampling commer-
cial catches and total catch information from fishery logbooks.

Model
One-Sex Model
Our length-based model determines the length frequencies and correspond-
ing probability density functions (PDFs) of the catch and the population
for each cohort present. Starting with the PDF and total abundance of
recruitment for a cohort, recursion equations are developed to obtain the
PDF and total abundance of the cohort at each subsequent age during its
lifetime. Following Deriso and Parma (1988), mortality is assumed to oc-
cur first, followed by growth.

Suppose that recruitment of Nr individuals occurs at age r, where age
can have any time unit (e.g. daily, monthly, yearly). The length x of each
individual is considered to be a discrete variable. Assume that the distri-
bution of lengths x for age r is discrete normal (ND) with mean µr and
variance     σ r

2; the probability density function (PDF) can be written
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The constant ξr is a normalizing constant so that the sum of equation (1)
over x equals 1. The abundance of age r individuals at each length is then

Nr(x) = Nrfr(x).  (2)
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To obtain abundance Na+1(x) at age a + 1 from abundance Na(x) at age
a (starting at age r), the processes of growth and mortality must be con-
sidered. Natural mortality and gear selectivity are assumed to be func-
tions of length, not age. Let

x, L = subscripts for length,

Mx = natural mortality,

Sx = gear and/or survey selectivity,

Fa = full-recruitment fishing mortality, and

Fa,x = fishing mortality for partially selected lengths.

Fishing mortality is assumed separable into selectivity and full-recruit-
ment fishing mortality:

Fa,x = SxFa . (3)

Total mortality is the sum of natural and fishing mortality:

Za,x = Mx + Fa,x . (4)

Model parsimony can be enhanced by specifying functional forms for
some parameters. For example, natural mortality can be parameterized as
a linear function Mx = Ma + Mb x or an exponential function Mx = Ma exp(−Mb x),
where Ma and Mb are parameters. Zheng et al. (1995) give a U-shaped mor-
tality function, for species in which mortality increases at older ages. Sim-
ilarly, selectivity Sx can be parameterized as the logistic function

    
S ex

x L= +( )− −1 1 50γ ( )% ,

where L50% is the size where 50% of the fish are vulnerable and γ is a shape
parameter for the logistic function. Finally, if fishing effort data {Ea} are
available, then full-recruitment fishing mortality may be approximately
related to fishing effort as Fa = qEa where catchability q is assumed con-
stant. Fishing effort and mortality are written as functions of age that are
equivalent to functions of time, because as a cohort ages, time elapses as
well.

For a given PDF fa(x) at the start of age a, the relative distribution of
lengths in the population after mortality occurs (at the end of age a) is

    p x f x e f x ea Z a
M S F

a
Zx x a a x

,
( )( ) ( ) ( ) ,= =− + − . (5)

The absolute number of individuals at length x after mortality is given by

    N x N p xa Z a a Z, ,( ) ( ),=  (6)

and the PDF for lengths after mortality is then
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From Deriso and Parma (1988), the relative distribution of lengths in
the catch follows from the Baranov catch equation C = N (F/Z )[1 – exp(–Z )]
and is given by
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Absolute catch at age a and its PDF follow from equations (6) and (7) by
replacing Z with C, which yields

    C x N p xa a a C( ) ( ),=  (9)

and
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Total catch at age a from equation (9) is Ca = ∑xCa(x).
If a survey is conducted with gear similar to the fishery, then the re-

sulting length distribution will be influenced by gear selectivity. In es-
sence, it is the surveyable or exploitable population that is measured.
Even if a survey is not conducted, the exploitable population is often a
primary quantity of interest. The mathematical definition of the survey-
able or exploitable population for length x at age a is
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where the approximation holds for small Z. Thus, the relative distribution
of lengths in the exploitable population for age a (after mortality occurs)
is given by

    p x S p xa S x a Z, ,( ) ( ).= (8b)

Exploitable abundance at age a and its PDF follow from equations (6) and
(7) by replacing subscript Z with S, which yields

    EN x N p xa a a S( ) ( ),=  (9b)

and

    
f x p x p xa S a S a S

x
, , ,( ) ( ) / ( )= ∑ . (10b)
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Total exploitable abundance at age a from equation (9b) is ENa = ∑xENa(x).
If the survey has a different selectivity pattern than the fishery, then a
separate set of selectivity parameters can be used.

To account for growth, it is assumed that an individual of length x will
grow to length L in one time step according to a stochastic growth model.
One useful model is the von Bertalanffy (LVB) model with stochastic error,
which was first derived in Cohen and Fishman (1980) and utilized in the
length-based model of Deriso and Parma (1988). The deterministic LVB
model is written

    L L ea
a a= −∞

− −( )( )1 0κ ,

where L∞ is asymptotic length, κ is a growth parameter, and a0 is the age
corresponding to length 0. An equivalent formulation for size La+1 at age
a+1 as a function of previous size La with the inclusion of a stochastic
term is

    L L La a a+ ∞= − + +1 1( ) ,ρ ρ ε  (11)

where the Brody coefficient ρ is exp(−κ) and εa is an independent, normal-
ly distributed random variable with mean zero and variance σ2. From Cohen
and Fishman (1980), the expected length and variance at age a+1 for an
individual of length x at age a, considering that it was recruited at age r,
are

    µ ρ ρa x L x+ ∞= − +1 1( ) ( ) (12a)

and
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Alternative models include a gamma distribution for variance (Sulli-
van 1992, Zheng et al. 1995), more general growth models (e.g., Gomp-
ertz, Schnute), and letting     σa+1

2  be a function of length x as well as age; we
use the stochastic LVB model for simplicity. For the LVB model, mean length
at age a+1 for an individual at length x is not a function of age a, but for
other models, it would be, which is why we write the subscript in the
equation. Equation (12b) may not be exactly correct due to selectivity ef-
fects, in which case different variance parameters {σa} for individual ages
could be used in place of relationship (12b), in which variance is solely as
function of parameters σr, σ, and ρ.

The normal PDF for the length distribution after one growth incre-
ment for an individual originally of size x is given by
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The relative distribution of lengths at the start of age a+1 is then obtained
from the relative distribution of lengths after mortality equation (5) and
the PDF for growth equation (13), which results in
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The absolute numbers at length at age a+1 and corresponding PDF are
then

    N L N p La a a+ +=1 1( ) ( ) (15)

and

    
f L p L p La a a

L
+ + += ∑1 1 1( ) ( ) / ( ) . (16)

The total number of individuals at age a+1 from equation (15) is then

    
N N La a

L
+ += ∑1 1( ). (17)

Conversion of abundance (in numbers) to biomass (in weight) for ei-
ther the population or the catch is easily accomplished by assuming an
allometric weight-length relationship

    W L L( ) = α β, (18)

and then multiplying length-specific values by the corresponding weight.
Thus biomass (abundance in weight) and yield (catch in weight) are found
by multiplying length-specific abundance and catch, respectively, by weight
at that length and summing over length, or

    
B N L W L Y C L W La a

L
a a

L
= ∑ = ∑( ) ( ) ( ) ( ).   and   (19)
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This formulation covers the progress of a single year class through its
lifespan. Identical equations can be constructed for all year classes and
referenced to the passage of time. Thus, the length distributions of the
population at a given time from this model can be assembled by summing
over all age classes present.

Two-Sex Model
This model can be easily generalized to account for sex. We denote sex by
subscript y where y ∈ {m,f } (male, female). All previous parameters, vari-
ables, and PDFs that are to be a function of sex are then written with
subscript y, such as sx,y, Fa,y, ρy, fa,y(x), and Na+1,y(L). The first step in con-
structing a two-sex model is to first consider each sex at recruitment. If χy

is the proportion of sex y at recruitment (such that χm + χf = 1), then the
initial abundance for each sex is given by

    N Nr y r y, .= χ (20)

An added complexity would be to make the abundance of each sex a ran-
dom variable using, say, the binomial distribution, but for large popula-
tions only a miniscule amount of variation would be added.

The dynamics of each sex are then followed separately according to
the one-sex model with Nr,y in place of Nr, resulting in separate relative
length distributions pa+1,y(L) from equation (14), abundance distributions
Na+1,y(L) from equation (15), and PDFs fa+1,y(L) from equation (16). Analo-
gous distributions for catch and exploitable abundance follow as above.
Finally, corresponding distributions combined over sex are found by sum-
ming abundance over sex and then converting to relative distributions.

Estimation
The appropriate objective function to construct for fitting data to the length-
based model depends on the type and amount of data available. Either
sums of squares or likelihood objective functions can be constructed to
fit observed data, as explained in Deriso et al. (1985), Deriso and Parma
(1988), Methot (1990), Sullivan et al. (1990), and Zheng et al. (1995). Let
subscripts L, y, and t denote length, sex, and time, respectively. For use in
the illustration below, we construct an objective function for the situation
where length frequency data by sex     { }, ,′fL y t  and total yields   ′{ }Yt  (catch in
biomass) for combined sexes are available. Their counterparts without
primes denote equivalent quantities obtained from the length-based model.
We estimate the length frequencies {fL,y,t} from the model by multiplying
the monthly sample size by the proportion of prawns of a particular sex
and length in the model catch.

By assuming an underlying root normal distribution (Quinn 1985), a
possible objective function is a combination of residual sums of squares,
given by
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where λ is a weighting term governing how close the yield data and model
values match up. The square root transformation in equation (21) is not as
aggressive as the logarithmic transformation, handles 0 values readily,
and in our experience provides more reliable convergence and stable pa-
rameter estimates than no transformation.

Model parameters that might be estimated include year-class strength
parameters {Nr}, fishing mortality parameters {Ft}, selectivity parameters
which permit calculation of {Sx}, growth parameters {L∞, ρ, σr

2,σ2, α, and β},
natural mortality parameters which permit calculation of {Mx}, and auxilia-
ry catchability parameter(s) if fishing effort data are used (as in Ft = qEt). It
is usually desirable to specify as many parameters as possible from auxil-
iary information, because many combinations of parameters can explain
the observed data equally well. In our experience, estimating parameters
on a square root or log scale is advantageous, in that resulting transformed
estimates are always positive and stable.

Illustration—Torres Strait Prawns
Brief Description
The Torres Strait prawn fishery is estimated to be worth AU$18-23 million
annually and is jointly managed by Australia and Papua New Guinea (PNG)
as required under the Torres Strait Treaty. The fishery operates in the
eastern section of the Torres Strait Protected Zone (Fig. 1) and is managed
by both seasonal and spatial closures. Although the brown tiger prawn
(Penaeus esculentus) is the primary target species, the blue endeavour prawn
(Metapenaeus endeavouri) examined in this study composes approximately
60% of the catch. These species are fast-growing and short-lived.

The fishing fleet is composed of about 90 Australian prawn trawlers
that operate in Australian waters within Torres Strait and on the Queens-
land East Coast. Several PNG licensed trawlers that mainly fish the Gulf of
Papua also fish PNG waters of Torres Strait in the later part of the season.
The fleet is highly mobile and most vessels fish Torres Strait for only part
of the fishing season. Fishing licenses are transferable and have an alloca-
tion of fishing access days attached to them. The fleet has rapidly adopt-
ed new electronic navigational systems (GPS), which may have increased
the effective effort of the fleet in recent years.

Although the commercial prawn species in Torres Strait exhibit a typ-
ical penaeid life history, the seagrass meadows utilized by the juvenile
phase occur on coral reef platforms (Turnbull and Mellors 1990). In other
penaeid fisheries these seagrass meadows occur along sheltered coast-
lines. Juvenile prawns grow and migrate from seagrass habitat into shal-
low waters that are mainly located to the west of the Warrior Reefs (Fig. 2).
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Figure 1. The location of the prawn fishery within the Torres Strait Pro-
tected Zone.
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At 4 to 6 months of age they move into deeper waters (18 to 50 m) that are
largely found east of the Warrior Reefs. These species reach maturity at
about six months of age and have a high fecundity, which generally in-
creases with age. Although prawns migrate only short distances (an aver-
age of 30 to 40 km) their movement is significant to management strategies.
Tagging studies (Watson and Turnbull 1993) and analysis of length fre-
quency data indicate that prawns in the Torres Strait fishery generally
migrate from around the Warrior Reef Complex to the east and southeast.

Observed Data
The model covers the period between March 1992 to November 1994; no
fishery data are available from December to February due to a seasonal
closure of the fishery. We selected this period because it was the most
recent period for which length frequency data were available (see below).
A maximum age of 18 months is used in the model, because catch of
animals older than that comprise less than 1% of the highest monthly
catch from a particular cohort. We use data from the fishery in 1993-1994
and also ancillary fishing effort and research survey information from
other periods to develop and test the model. Since 1989 the entire fleet
has been required to complete daily catch and effort returns (logbooks);

Figure 2. Life history of Torres Strait prawns.
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summary statistics of yield and effort are shown in Fig. 3 with correspond-
ing values of catch-per-unit-effort (CPUE) shown in Fig. 4. Effort data from
1992 are used to determine fishing mortality in 1992, so that estimates of
recruitment can be made for year-classes originating in 1992.

During the late 1980s and early 1990s the Queensland Department of
Primary Industries investigated the basic life history of the tiger and en-
deavour prawn species in Torres Strait using monthly research trawl sur-
veys and prawn tagging. This information provides initial estimates of
parameters for growth, selectivity, and the length distribution at recruit-
ment, and an understanding of the life history of endeavour prawns against
which the model results can be verified. In 1991, an area-swept estimate
of exploitable biomass from the surveys of about 800 t was obtained (Turn-
bull and Watson 1995). This value is useful for comparing results of differ-
ent model configurations, because annual CPUE was nearly constant from
1991-1994 (Turnbull, unpubl. data).

A commercial catch sampling program was conducted bimonthly dur-
ing 1993-1994, starting in March. A researcher on board commercial trawl-
ers measured length and sex of prawns in subsamples of the catch, which
provided estimates of the commercial catch size distributions for females
(Fig. 5) and males (Fig. 6). There were 464 length frequencies (29 length
intervals between 13 and 41 mm × 8 months sampled × 2 sexes) and 18
non-zero observations (9 months that the fishery is open per year × 2
years) of total catch for a total of 482 observations.

Initial Parameters
The fixed parameters given in Table 1 are obtained from previous research
to reduce the number of parameters estimated. The length-weight param-
eters come from samples collected during the research trawl program.
The recruit parameters (µr, σr) in Table 1 come from examination of beam
trawl samples on the seagrass meadows, based on the size at which post-

Figure 3. Observed yield and effort data, and yield estimated from case 3.
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Figure 4. Observed and estimated catch per unit effort from case 3.

larvae settle at about r = 1 month. The sex ratios of prawns from commer-
cial catch sampling data and from research surveys conducted during the
late 1980s and early 1990s were near 50/50 pooled over all size classes,
so it is assumed that the sex ratio at recruitment (χy) must be near 50/50.

Initial values for growth parameters (L∞, κ, σ) by sex given in Table 2
are obtained by fitting the Cohen-Fishman growth model to research tag-
ging data. Commercial trawl selectivity parameters (γ, L50%) in Table 2 come
from a comparison of the catches of fine mesh and commercial mesh
trawls. Initial values for parameters common to both sexes are given in
Table 3. The natural mortality (Ma, Mb) and catchability (q) parameters are
based on values in the literature for other penaeid species and an assump-
tion that mortality decreases with age. Initial model runs were made with
a constant (flat) recruitment pattern.

Fitting Procedure
Estimates of model parameters were initially obtained by minimizing the
objective function (equation 21) using an Excel spreadsheet, but more
stable and quicker results were obtained with a Fortran program using a
Gauss-Marquardt search algorithm (either is available from the authors).
The Fortran program made it easy to obtain standard errors using the
Hessian.

The model is simultaneously fitted to yield data combined over sex
and to size data classified by sex, corresponding to how the data are col-
lected. Various starting values based on ancillary data as explained above
were used until a stable fit was obtained to both data sets. Recruitment
parameters are estimated for each month starting in November 1992 and
ending in November 1994 when the fishery closed and no more data were
available for that year. Recruitments in March-October 1992 are assumed
proportional to those in 1993, with proportionality constant ψ, resulting
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Figure 5. Female size data and corresponding estimates from the model (case 3).
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Figure 6. Male size data and corresponding estimates from the model (case 3).
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Table 1. Fixed parameters in the length-based model.

Parameter Female Male

Length-weight  parameter α (g) 0.0015 0.0017

Length-weight  parameter β 2.81 2.79

Mean length of recruits µr (mm) 2 2

Sigma of recruits σr (mm) 0.5 0.5

Sex ratio χy 0.5 0.5

Table 2. Estimated growth (L∞, κ, σ) and selectivity (L50%, γ) parameters by
sex and their coefficients of variation (CV).

Females Males

Initial Case 1 Case 2 Case 3 Initial Case 1 Case 2 Case 3

L∞ (mm) 36.87 31.64 31.58 31.93 27.75 27.43 27.35 27.53

CV 1% 1% 1% 1% <1% 1%

κ (mo)–1 0.30 0.52 0.53 0.52 0.39 0.58 0.58 0.56

CV 4% 4% 4% 2% 2% 2%

σ (mm) 0.98 1.57 1.69 1.54 1.08 0.82 0.81 0.78

CV 7% 6% 7% 7% 6% 8%

L50% (mm) 19.9 27.23 26.37 27.49 19.9 23.43 22.88 23.95

CV 1% 2% 2% 1% 1% 1%

γ (mm)–1 0.4 0.44 0.46 0.46 0.4 0.88 0.96 0.80

CV 7% 8% 6% 7% 9% 6%

“Initial” indicates initial values (see text). Case 1 fixes natural mortality and catchability parameters to
initial values shown in Table 3. Case 2 fixes Ma at 0.33 (mo)–1 and Mb at 0.02 (see Table 3). Case 3 fixes
catchability q at 1.0 × 10–5 (h/mo)–1 and natural mortality parameter Mb at 0 (see Table 3). Remaining
parameters are estimated in cases 1 to 3.
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in 26 recruitment parameters to be estimated. In addition there are 6 growth
(3 per sex), 4 selectivity (2 per sex), 2 natural mortality (Ma and Mb) and 1
catchability (q) parameters, for a total of 39 parameters to be estimated.

We conducted a study of the model’s sensitivity to various choices of
the model parameters to be estimated. The most optimistic situation is
that all parameters can be estimated precisely. However, it might be possi-
ble that the model can fit the data well but that there is not sufficient
information to estimate all parameters, such as catchability and natural
mortality. We estimate parameters for several alternative model configur-
ations, in which one or more of the model parameters (selected from catch-
ability, natural mortality, growth) is fixed at its initial value or a value
suggested by an alternate model configuration. Results are compared in
terms of their fit to the data and the plausibility of the estimates of ex-
ploitable biomass compared to the 1991 estimated exploitable biomass of
about 800 t.

Results
The single sex model fitted the size data poorly compared to the two-sex
model, because the two-sex model allows for differences between the sex-
es in the length-age and weight-length parameters. Consequently, further
analysis involved only the two-sex model.

Several different model configurations were investigated for the two-
sex model. The most important result is that widely different estimates of
catchability, mortality, and abundance occurred depending on the set of
fixed parameters and their specific values. The best fit to the data was
obtained by letting all parameters be estimated, but the model went through
several hundred iterations, which indicates difficulty in converging. Esti-
mates of exploitable biomass were implausible by the earlier mentioned
criterion of being near 800 t. Recruitment and natural mortality tended to

Table 3. Estimated parameters common to both sexes and their coeffi-
cients of variation (CV).

Parameter Initial Case 1 Case 2 Case 3

Natural Mortality Ma (mo)–1 0.42 0.42* 0.33* 0.36

CV 9%

Natural Mortality Mb (mm)–1 0.03 0.03* 0.02* 0.00*

Catchability q (h/mo)–1 2.5 × 10–5 2.5 × 10–5* 1.7 × 10–5 1.0 × 10–5*

CV 19%

Recruitment ψ 1.00 1.49 1.77 2.00

CV 12% 12% 15%

An asterisk denotes a fixed value. See Table 2 for definition of cases.
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increase as catchability tended to decrease. Even fixing one of the three
parameters {q, Ma, Mb} did not result in stable convergence or plausible
biomass estimates.

Convergence was usually obtained for model configurations in which
2 or 3 of {q, Ma, Mb} were fixed. We present three cases that illustrate the
range of results obtained. Case 1 fixes natural mortality and catchability
parameters to initial values shown in Table 3. Case 2 fixes Ma at 0.33
(month)–1 and Mb at 0.02 (see Table 3) corresponding to an intermediate set
of natural mortalities that provided plausible results. Case 3 fixes catch-
ability q at 1.0×10–5 and natural mortality parameter Mb at 0 (see Table 3).
The choices for case 3 were made based on the tendency of different
model runs to produce an estimate of q near that value (or even less) and
the tendency of Mb to go to zero when estimated (but not always).

The objective function values decrease from case 1 to case 2 to case 3,
showing that case 3 fitted the data best (Table 4). The improvements in fit
occurred uniformly among the data components for total catch, female
length frequency, and male length frequency (Table 4). We illustrate the
model fit using case 3; the graphs for the other two cases are similar but
have greater deviations. Model yield fitted the observed yield well (Fig. 3)
and both reflect the level of fishing effort. (The increase in effort and
catches in August was due to opening the spatial closure area to the east
of the Warrior Reefs.) Consequently, model CPUEs (Fig. 4) also closely fit-
ted the observed CPUEs and tended to increase around September-Octo-
ber indicating a second wave of recruitment to the fishery. This trend in
CPUE, however, also occurred in the years before the closure existed and
does not occur in tiger prawns, so it is not just a result of opening the
spatial closure area.

Table 4. Values of the objective function and its
components for the three cases.

Objective function Case 1 Case 2 Case 3

Total RSS 684 665 606

λ Catch RSS 86 91 78

Catch RSS 865 911 785

Size RSS 598 574 527

Female Size RSS 276 267 257

Male Size RSS 322 307 270

λ 0.1 0.1 0.1

See Table 2 for definition of cases.
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The fits of case 3 to the length frequency data for females (Fig. 5) and
males (Fig. 6) are generally good. Some data conflicts do exist between the
yield and size data. Using λ = 0.5 improves the fit to the yield data while
degrading the fit to the size data. The choice of λ = 0.1 was made to bal-
ance residual variability in the sources of information.

Absolute estimates of total and exploitable biomass (Fig. 7) vary greatly
among the three cases, but relative trends are the same. Exploitable bio-
mass has the same trend as CPUE (Fig. 4) as expected. Even more extreme
results than these were obtained, suggesting that determination of abso-
lute abundance is not possible given these data on total yield and length
frequency. Estimates of recruitment parameters for March 1992 to August
1994 (Fig. 8) also show large absolute differences but small relative differ-
ences among the cases. The first 8 recruitments in the series are forced to
have the same trend as the following year, but the other recruitments
have their own parameters. There appears to be an annual pattern in re-
cruitment with a large peak in November and a smaller peak about May.
The November 1993 recruitment peak produces a peak in biomass (Fig. 7)
in March 1994 and in exploitable biomass in April 1994. Similarly the
smaller March-July 1993 recruitments produce a slight peak in biomass
during July-September 1993 and in exploitable biomass during August-
November 1993. These results are in accord with auxiliary information
that percentage of female prawns with ovaries at the last stage before
spawning peaks in August-September and to a less extent in January-March
(Turnbull, unpubl. information). Settlement of post-larvae onto seagrass
beds, which is represented as recruitment in the model, occurs 2-3 weeks
after spawning.

There were some major differences between initial parameters and
final parameter estimates from the model. Female L∞ decreased while the
male L∞ stayed the same. Female and male κ increased to near the same
value, whereas female σ increased while male σ decreased (Table 2). Since
initial growth parameters were obtained from tagging data collected at
another time, it is not surprising that estimates from the model would
differ from the initial parameters. The higher L∞ and σ for females com-
bined with a similar κ compared to males result in females growing faster
than males on average and with greater variability. This phenomenon ex-
plains why the length frequencies of females in the commercial catch (Fig.
5) are farther to the right and have a broader distribution compared to
males (Fig. 6).

Estimates of selectivity parameters also differed from initial values
that were based on a comparison of fine and commercial mesh net sam-
ples collected during research surveys (Table 2). The fitted L50% values
agree with the mean sizes for each sex of prawns moving into fishable
areas (Turnbull, unpubl. survey data), and estimating selectivity parame-
ters separately for each sex considerably improved the fit to the size data.
It is interesting that selectivity parameters differ by sex, even though se-
lectivity is a function of length. This result suggests that selectivity repre-
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Figure 7. Estimated absolute and exploitable biomass from the model. The area-
swept exploitable biomass estimate from the 1991 survey is also shown.
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Figure 8. Estimated recruitment parameters from the model.

sents more than just the properties of the gear harvesting the prawns.
Because smaller prawns are not necessarily available to the fleet due to
the spatial closure, selectivity in the model serves as an availability func-
tion as well as representing gear selectivity. Further support comes from
the fact that the ratio L50%/L∞ is similar between sexes, so that the faster
growth of females to a larger size is also accompanied by a shift to larger
lengths in selectivity. The average age at which 50% of each sex are select-
ed can be resolved from the selectivity and growth parameters, which
results in an average age of about 4.5 months, or about 3.5 months after
post-larval settlement (or recruitment to the population) for both sexes.
This result is consistent with the hypothesis that females and males move
from the closure areas to the fishable areas at about the same time. The
ratio of female to male totals in the length frequency samples is about
0.97, suggesting that females and males experience similar mortality
throughout their lives despite differences in size. This is because fishing
mortality is low compared to natural mortality; estimated full-recruitment
fishing mortality is at most 1⁄2 of natural mortality and usually much less
(as can be seen by comparing yield in Fig. 3 with biomass in Fig. 7).

Neither growth nor selectivity parameters varied much across the dif-
ferent model configurations, and their coefficients of variation in Table 2
are small, suggesting that there is sufficient information in the combined
data for estimating these parameters. We also investigated a model con-
figuration that had growth parameters fixed at the initial values. The fit to
the length frequency data was very poor, reinforcing the conclusion that
estimated growth parameters are better than those obtained from tagging
data.
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The model tracks the size distribution of individual monthly cohorts,
so that the size structure of a particular month can be examined by co-
hort. Fig. 9 shows the main cohorts that make up the March 1994 female
endeavour prawn population from the case 3 fit. The strong November
1993 (age 5) and January 1994 (age 3) cohorts are obvious. Examination of
the PDFs of size from the model for ages 2, 3, 5, and 8 (Fig. 10) shows that
the spread of the cohort increases with age. This figure also shows that
the size distribution of the exploitable population is shifted to the right of
the population, particularly for the younger ages, which are not fully se-
lected. The difference between the exploitable and the total portion of a
cohort lessens with age as most members grow to vulnerable size (Fig.
10).

Discussion
The application to the prawn data set shows that our model is an effective
tool to investigate the interaction between available data on harvest and
size (by sex) and to examine the ability of estimating growth, selectivity/
availability, recruitment, and absolute abundance by size. Growth, selec-
tivity, and relative condition of the population could be determined from
the available information, but absolute estimates of biomass and recruit-
ment are not well determined. The estimates obtained from the three cases
are plausible with respect to other information collected from this popu-
lation, but this constitutes a fairly wide range of choices. Coefficients of
variation for the estimated parameters are underestimates, because no
estimates could be obtained from a model with all parameters estimated.
We determined that natural mortality and catchability are the most sensi-
tive of the model parameters and those that have the greatest impact. The
results suggest that catchability is the prime quantity for converting CPUE
into biomass and that natural mortality is the prime quantity for estab-
lishing absolute estimates of recruitment.

We attempted to fit natural mortality parameters because earlier re-
search provided little information. The initial natural mortality parame-
ters were based on literature values and the assumption that natural
mortality is higher for juvenile animals. There was little information in
the combined data for estimating natural mortality. Model configurations
with different values of natural mortality fitted the data about the same,
and there was no clear indication that natural mortality varied by age or
size. The fairly small coefficient of variation (CV) for Ma with case 3 (Table
3) is certainly an underestimate, because q and Mb were fixed. The range of
values for natural mortality across the cases in Table 3 is probably a better
indication of the true range of variability. Other studies have suggested
that parameter confounding may prevent good estimation of natural mor-
tality (e.g., Deriso et al. 1985, Zheng et al. 1995).
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Figure 9. Relative size distributions {pa(x)} for female cohorts in March 1994 from
the model (case 3).

Figure 10. Probability density functions {fa(x)} of the total female population (solid
lines) and the exploitable population (dotted lines) in March 1994 from
the model (case 3).
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Estimated catchability q was the most variable of the model parame-
ters (Table 3). The common confounding between catchability and natural
mortality found in the literature affirms our conclusion that the ability to
reliably estimate both factors is limited. We did not expect that catchabil-
ity would tend toward lower values than the initial value, because we also
introduced selectivity parameters that would tend to raise catchability to
that for fully recruited prawns. Perhaps the previous estimate was based
on a restricted population area, which would tend to elevate the value.

The parameter confounding we found is a recurring problem in stock
assessment with both age- and length-based models. We found that the
additional complexity in a length-based model increased the amount of
confounding and that it was more difficult to understand when it occurred.
Thus, length-based class of models should not be viewed as a panacea to
not collect aging information but rather a tool to be used when aging
information is not credible or available.

The best solution to reduce parameter confounding is to collect bet-
ter data. For example, if estimates of recruitment or biomass could be
made from a survey, then it would be possible to better isolate combina-
tions of model parameters to provide a particular level of biomass. Essen-
tially this additional data set(s) could be incorporated into the estimation
procedure by adding a term to the objective function equation (21) that
accounts for deviations between observed and modeled abundance. We
could have done this with the survey biomass estimate of 800 t, but for
the purposes of this study, we were more interested in examining whether
commercial fishery information alone was sufficient, and it was not.

There are alternative length-based models such as catch-length analy-
sis (Sullivan et al. 1990, Sullivan 1992, Zheng et al. 1995) and stock syn-
thesis analysis (Methot 1990), which are derived from catch-age analysis
(Deriso et al. 1985) in different ways. Catch-length analysis involves a
probability transition matrix for growth based on the von Bertalanffy growth
curve and an underlying gamma distribution for statistical variability, and
stock synthesis analysis in its length-based form utilizes a length-age prob-
ability transition matrix rather than a stochastic growth model. Both mod-
els have estimation procedures associated with them.

Our length-based model is similar to these models. Its primary dis-
tinction is in the way that cohorts are individually tracked throughout
their life with the possibility of age-specific differences in growth through
parameters {µa} and {σa}. Both catch-length analysis and stock synthesis
analysis utilize transition matrices that obviate the need to follow individ-
ual cohorts but are thus less general than our model. Our model also has
the capability to utilize sex-specific information but this feature could
easily be incorporated in the others.

Further improvements to the model and estimation procedure could
be made. Alternative growth functions could be considered. Fishing mor-
tality (F ) could be treated as a lognormal random variable about the fish-
ing mortality under constant catchability (qE ), as is done in the models of



Symposium on Fishery Stock Assessment Models 555

Deriso et al. (1985) and Sullivan et al. (1990). We did not do that at this
stage of model development to avoid further confounding caused by esti-
mating 18 fishing mortality parameters in addition to the others, but there
is the possibility that seasonal differences in catchability do exist. One
possible solution to this problem is to use the approach in stock synthe-
sis, wherein total yield is assumed to be measured without error so that
fishing mortality can be calculated by solving a nonlinear equation (Meth-
ot 1990). Combined process-measurement error models using Kalman fil-
ter methods (Sullivan 1992) could also be developed. With the variety of
different information sources available for the endeavour prawn popula-
tion, it might be useful to use some of it to construct prior distributions
for population parameters within the context of a Bayesian analysis (McAl-
lister and Ianelli 1996).

The additional information about population parameters provided by
this model has already been useful. An earlier version of this model was
used to generate simulated data to test various methods of isolating re-
cruitment patterns (Watson et al. 1994). Further, it may be possible to use
the model to explore the effects of seasonal closures, because the spatial
dynamics of prawns are related to growth. Other uses for the model in-
clude the investigation of the impacts of alternative harvest strategies by
varying fishing effort or mortality and examination of recruitment esti-
mates in relation to environmental and biological variables. Therefore, we
view this model as a necessary component of a rigorous stock assessment
process that, combined with contemporaneous collection of commercial
fishery and survey data including length frequency by sex, should be used
for management of the Torres Strait prawn population. Currently, the pro-
cess relies on CPUE information from the fishery combined with periodic
surveys, and we believe that the model should be used to integrate these
data sources. We also plan to apply this length-based model to other species.
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Abstract
Aerial biomass estimates and commercial-catch and total-run age compo-
sitions were the principal components of an integrative age-structured
model used to forecast spawning biomass of Pacific herring Clupea pallasi
returning to Kamishak Bay, Alaska. Poor weather in Kamishak Bay created
gaps in aerial survey coverage, and when surveys could be flown, the
ability of surveyors to observe herring schools was often limited by poor
water clarity. Resultant aerial biomass estimates were influenced by sur-
vey effort and conditions. Although we used standardized procedures to
quantify the surface area of observed herring schools and convert them to
biomass estimates, these standards could not compensate for poor sur-
vey conditions or extended gaps in survey coverage. Aerial survey diffi-
culties highlighted the importance of maximizing the quality and influence
of other data sources in the integrative model. Total-run age-composition
data, derived from fishery-independent samples, were instrumental in
tracking cohorts and evaluating the strength of recruiting year classes.
Historical and current data indicate that age structure was not static
throughout the Kamishak Bay run. In most years the age structure of her-
ring returning to the spawning grounds shifted from older to younger fish
around early May. This created the potential for a temporal sampling bias
that was mitigated by collecting age data from both early- and late-spawn-
ing components of the run and weighting the data according to the rela-
tive biomasses associated with these temporally distinct spawning
aggregations. Uncertainty about current abundance is increasing and war-
rants a conservative harvest strategy.
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Introduction
Mathematical models that integrate multiple information sources to as-
sess fish stocks have been used for many years (Deriso et al. 1985, Megrey
1989, Hilborn and Walters 1992). Integrative models, although represent-
ing a marked improvement over assessments using a single information
source such as fishery catch-per-unit-effort (CPUE), are still limited by the
quality of their input data and the model’s ability to relate estimated pa-
rameters to some aspect of stock dynamics. Problems that compromise
the quality of individual parameter estimates limit the model’s ability to
accurately represent natural phenomena. While this recognition is intui-
tive, approaches to mitigate the problems are not. Our paper uses the
1998 forecast of the sac-roe fishery for Pacific herring Clupea pallasi in
Kamishak Bay as a case study to illustrate some practical assessment chal-
lenges and strategies to mitigate them. Although the integrative model
used to assess Kamishak herring is briefly described, our discussion fo-
cuses on the assessment and management processes: adjusting sampling
strategies to maximize data quality, and considering sensitivity analyses
and auxiliary information when forecasting.

Study Area
Kamishak Bay is located at about 59°10′N latitude, 153°50′W longitude,
along the western shore of lower Cook Inlet in southcentral Alaska. Locat-
ed 150 km from Homer, Kamishak Bay is characterized by extensive rocky
reefs that create navigational hazards to mariners but provide abundant
spawning habitat for herring. Kamishak Bay is vulnerable to weather fronts
emanating from several directions; high winds and strong currents result-
ing from tidal fluctuations in excess of 8 meters frequently produce rough
seas in the area. These conditions stir up sediments along the beaches
and shallow bays that, combined with glacial silt from several freshwater
drainages, create persistent turbidity in the marine environment. This
turbidity hinders the ability of aerial surveyors to observe and quantify
herring schools in the 12 index areas composing the Kamishak Bay District
(Fig. 1).

Methods
Fishery and Assessment History
Pacific herring were first commercially harvested in lower Cook Inlet in
1914; however, not until 1973 did spotter pilots and pioneering fisher-
men first locate and exploit herring in Kamishak Bay (Schroeder 1989).
Frequent storms, treacherous reefs, and the relatively remote location were
responsible for the Kamishak Bay fishery’s delayed development. These
same characteristics created challenges for assessing and managing the
fishery. The fishery developed rapidly from 220 t harvested by just a few
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permit holders in 1973 to nearly 4,400 t landed by 66 permit holders in
1976. To abate further expansion of effort, a ceiling of 73 permits was
established when limited entry was imposed on the Kamishak Bay sac-roe
herring fishery in 1977.

The Alaska Department of Fish and Game (ADFG) began collecting
herring scales to estimate catch-age composition in 1973 and aerial sur-
veys to estimate spawning biomass were initiated in 1978 (Fig. 2). The
aerial estimate of total spawning biomass in a year was used to set the
harvest guideline for the succeeding year. However, harvests rapidly de-
clined from 4,393 t in 1976 to 376 t in 1979, and the fishery was closed
from 1980 through 1984 to allow stock rebuilding. Limited age, weight,
length, and sex data were collected, and aerial surveys were conducted to
monitor stock status during the closed period. The fishery reopened in
1985 with a revised assessment program and more conservative harvest
strategies. Catch-age analysis was used to develop age-specific estimates
of natural mortality and recruitment. These data were integrated with aerial
estimates of spawning biomass to track stock status and forecast the fol-
lowing year’s return (Yuen et al. 1990). A stepwise harvest strategy imple-
mented by the Alaska Board of Fisheries in 1993 set maximum exploitation
rates ≤10% of the spawning biomass if that biomass was projected to be

Figure 1. Lower Cook Inlet Alaska and the Kamishak Bay District. Names of index
areas are italicized; they indicate where aerial surveys of herring schools
occur.
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Figure 2. Kamishak Bay sac-roe herring fishery history: biomass trend, com-
mercial harvest trend, and commercial catch age composition by year.
Circle size represents the proportion that cohort contributed to the
overall age composition in a given year.
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7,257-18,144 t, ≤15% for biomasses of 18,144-27,216 t, or ≤20% for bio-
masses over 27,216 t. No harvest is allowed from a spawning biomass that
is projected to be < 7,257 t (ADFG 1996, 5 AAC 27.465.e [Alaska Adminis-
trative Code]). Twenty percent is a relatively conservative maximum ex-
ploitation rate for herring (Zheng et al. 1993, Schweigert 1993, Funk and
Rowell 1995). Reduced exploitation rates facilitate increased roe produc-
tion since more old fish survive to be harvested in subsequent fisheries
(Funk 1991). Conservative harvest rates are also prudent when stock abun-
dance is low and/or uncertain; our stepwise harvest strategy guards against
overexploitation of low biomasses.

Beginning in 1990, observer subjectivity in aerial surveys was reduced
by more rigidly quantifying the biomass estimation process and docu-
menting survey effort and conditions. In this process, the surface area of
a herring school observed from a fixed distance above the water surface
was converted to a biomass estimate based on a correlation developed for
herring in Bristol Bay (Lebida and Whitmore 1985). Conversion ratios were
stratified by water depth. Aerial observations in Bristol Bay were periodi-
cally calibrated when a commercial seine vessel captured an estimated
school of herring and the catch was pumped aboard a tender vessel to
determine the actual biomass. The 95% confidence interval (CI) around
Bristol Bay biomass estimates based on these conversion ratios has ranged
from ±14% to ±37% (L. Brannian, ADFG, Anchorage, unpublished data). Adop-
tion of these quantitative procedures helped Kamishak Bay managers stan-
dardize aerial surveys and estimates of observed herring schools, but could
not compensate for the poor visibility and large temporal gaps that ham-
per survey coverage in Kamishak Bay. As a result, estimates of total annu-
al spawning biomass from aerial surveys were frequently compromised.
To reduce the dependence on annual aerial surveys, Yuen et al. (1994)
developed an age-structured assessment (ASA) model for Kamishak Bay.

ASA Model
The ASA model was developed in the Microsoft Excel spreadsheet using
the Solver function (Microsoft 1993). The 2-dimensional format of the
spreadsheet facilitates a more intuitive understanding of the model’s me-
chanics. This feature has been very useful when explaining the model’s
basis to fishery managers and the Alaska Board of Fisheries, two very
important links in the management chain in Alaska.

Herring are first accounted for in our model at age 3 when they begin
to recruit to sexual maturity and are vulnerable to our sampling program.
Herring older than age 12 do not compose a significant component of the
stock and are pooled as age 13+. The ASA model integrates three hetero-
geneous sources of stock information: commercial catch age composi-
tion, total run age composition (i.e., total spawning biomass), and aerial
survey estimates of spawning biomass. Although some fishery and stock
information is available since 1978, we believed the data and collection
procedures prior to 1985 were too inconsistent for inclusion in the ASA
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model. Thus, we truncated the model’s source information in 1985, the
year the fishery reopened and ADFG began consistently collecting stock
information. The model estimates values for age-specific maturity, age-
specific fishery selectivity, and initial cohort abundance. Differences be-
tween predicted and observed values for the three input information
sources are minimized using a nonlinear optimization function (Excel Solv-
er). Further details on model mechanics are provided in Otis and Bechtol
(1997).

Because we did not believe sufficient data were available for the mod-
el to estimate survival (S ), we fixed S for all years at 0.67, a relatively
conservative rate that falls within the range of survival estimates reported
in the literature (Funk and Sandone 1990).

Although the model updated estimates of historical abundance from
1985 to present, our primary goal was to generate a 1-year-ahead forecast
of the herring spawning biomass. A forecast allows area managers to set
harvest guidelines for the following year’s commercial sac-roe fishery and
allows the industry to plan accordingly. Unless in-season assessment data
dramatically conflict with the pre-season forecast, the fishery is managed
based on the pre-season forecast.

Forecast Procedure
Model inputs for the 1998 forecast included commercial harvests, catch
age compositions, total run age compositions, weights-at-age, and aerial
survey biomass estimates from 1985 to 1997. Final parameter estimates
for initial cohort abundance and age-specific maturity and fishery selec-
tivity from the 1997 forecast were used as starting values for the 1998
forecast. Several scenarios were constructed whereby data inputs were
slightly modified. For instance, the 1997 aerial survey data were of low
value due to weather-induced gaps in survey coverage and a decision had
to be made whether to ultimately include those data in the model. Trials
were run with and without the 1997 aerial survey data to evaluate their
effect on results. Once all viable data input scenarios had been identified,
they were run through the model several times while incrementally in-
creasing the weighting factor attributed to each model component. The
resulting sum of squares (SSQ) values and historical biomass trends were
then plotted relative to these incremental changes to evaluate their re-
spective effects on select model results. This sensitivity analysis identi-
fied weighting scenarios yielding unstable or unrealistic model results.
The primary goal of data weighting is to allow the model to explore op-
tions to incorporate the different data sets, such that the deviation be-
tween predicted and observed values is minimized among all available
data. Finally, in a process that involved some qualitative decisions based
on all available auxiliary information, a single model run was selected to
represent the current stock status and provide a 1-year-ahead forecast.
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Results
Model Inputs
Since 1987, the commercial fishery has typically occurred over a very
brief period in late April. The 1997 fishery similarly consisted of short
openings on April 29 and 30 and May 1. ADFG staff collected catch sam-
ples from as many fishing vessels as possible while the catch was pumped
aboard tenders. Age, weight, length, and sex information were later com-
piled in our Homer laboratory. Each sampled vessel’s contribution to the
total catch was determined from harvest tickets, and the data were weighted
accordingly to estimate the age composition for the total catch.

Collecting age composition data to accurately represent the total run
was more problematic. Fishing vessels on the grounds prior to the com-
mercial opening collected early season data. Because ADFG will not an-
nounce fishery openings until adequate samples are collected to estimate
the age composition of the biomass on the grounds, the fleet had a vested
interest in collecting those data. ADFG’s ability to collect age samples di-
minished when the fishery closed and the fleet departed the grounds
around 2 May. Successive waves of herring continued to enter the spawn-
ing grounds until early June. Historical data collected in Kamishak Bay
indicated the age structure shifted from older to younger fish around the
first week of May (Yuen 1994). Samples collected from two temporally
distinct spawning aggregations in 1997 revealed a similar shift in age struc-
ture (Fig. 3), and chi-square analysis indicated the shift was significant at
α = 0.005 (χ2 = 1711; 10 d.f.). The mean weight of early returning fish (  x  =
202.8 g, SD = 65.6; n = 2,883) also differed significantly from late-return-
ing fish (  x  = 122.4 g, SD = 38.2; n = 2,203; two-tailed, two-sample t-test,
p < 0.0001). Differences in mean weights between components of the run
did not just result from their significantly different age structures; her-
ring mean weights-at-age were also consistently greater for early return-
ing fish (Fig. 3). These results revealed the potential for a temporal sampling
bias when estimating the total run age composition, herring mean weight-
at-age, and overall mean weight.

Although we have not yet evaluated the impact a temporal sampling
bias would have on the model’s estimate of stock level, we chose to guard
against potential impacts by selecting a transition date to represent the
shift between early and late returning components of the run. We then
weighted the age samples by the respective aerial-survey biomasses esti-
mated before and after the transition date. Based upon historical observa-
tions of age shift occurrence (Yuen 1994), we selected 8 May as the transition
date for 1997. By this criterion, early run fish composed 41% and late-run
fish 59% of the season’s total biomass. We used the same ratio to weight
our overall mean weight and mean weight-at-age data prior to their inclu-
sion in the model.
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Since the aerial survey program was restructured in 1990, only 1990
and 1992 were judged to have adequate survey coverage and conditions
during peak biomass periods to yield realistic total spawning biomass
estimates. An example of what we considered to be unrealistic aerial sur-
vey results occurred in 1991, a year characterized by good early season
survey coverage, but poor survey conditions. The peak counts of herring
biomass in 1991 amounted to less than 3,000 t. This contrasts with the
roughly 23,000 t estimated during 1990 and 1992. Ancillary stock abun-
dance information (e.g., fleet hydroacoustic observations and achievement
of the harvest quota after only 1 hour of fishing) also indicated that the
1991 aerial survey biomass estimate grossly under-represented the actual
abundance of spawning herring.

Evaluation of the 1990 survey year illustrates how important “good
timing” is, along with adequate survey effort and conditions, in order to
estimate total spawning biomass in Kamishak Bay (Figs. 4a and 4b). The
observed biomass increased rapidly from 22 to 25 April in 1990. As evi-
denced by miles of spawn observed from the air, significant spawning
also occurred throughout that period. Evidence of spawn in Kamishak Bay
disappeared concurrent with the abrupt departure of the spawning bio-
mass between 25-27 April 1990. This suggests the first spawning wave of
herring had a brief period of residency and immediately left the area after
spawning. About 4,500 t of spawning herring would not have been detect-
ed if flyable weather and good water visibility had not coincided during
that brief 4-day period in early April 1990. Similarly, another 4,500 t would

Figure 3. Age compositions and mean weights-at-age of two temporally distinct
spawning aggregations of herring sampled in Kamishak Bay, Alaska, 1997.
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have been unaccounted for had the 4 June survey not been successful.
The combined biomass from these two events, which easily could have
been missed, composed nearly 40% of the total observed spawning bio-
mass for 1990.

Weather-induced gaps in survey coverage hampered our ability to es-
timate total spawning biomass in 1997. Because of the effect that poor
survey coverage can clearly have on biomass estimates, we decided not to
include the 1997 aerial surveys in the model. Instead, we again used only
the survey years in which comprehensive coverage and adequate condi-
tions facilitated realistic total spawning biomass estimates.

Sensitivity Analysis and Forecast
Aerial survey weights >0.01 stabilized the forecast biomass (Fig. 5a). Thus,
we selected an aerial survey weight ≥0.01 that was strong enough to draw
the historical biomass trend through the 1990 and 1992 aerial survey data
points. We determined that an aerial survey weight around 0.1 was suffi-
cient to achieve this result without compromising the fit to the age com-
position data (Fig. 5b).

Similar techniques were used to filter out unstable weightings for catch
and total-run age composition data. The catch and total-run age composition

Figure 4. (a) Herring biomass estimates by index area from aerial surveys flown in
Kamishak Bay, Alaska, 1990; and (b) Aerial survey coverage and survey
condition ratings for aerial surveys flown in Kamishak Bay, Alaska, 1990.
Survey coverage indicates the number of index areas flown on a given
day; rating refers to the survey conditions: 0 = no survey, 5 = excellent.
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Figure 5. (a) ASA forecast biomass and aerial survey sum of squares (SSQ) trends
relative to increases in the log-scaled aerial survey weighting; and (b)
Historical biomass trend relative to increases in the log-scaled aerial sur-
vey weighting.
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sums of squares conflicted in their reactions to increases in weighting
(Fig. 6). Catch and total-run weightings in the range of 0.5-1.0 provided
relatively stable results without pushing the forecasted biomass into what
we perceived to be unrealistic ranges. The forecasted biomasses from these
alternative weightings ranged from 14,250 to 32,830 t. This wide forecast
range suggested there was some uncertainty, and perhaps even data con-
flicts, associated with the various model inputs. Given these uncertain-
ties, a relatively conservative forecast was the only prudent alternative.
We selected a final weighting schedule that yielded a forecast of 17,870 t
and a harvest guideline of 1,787 t.

Other auxiliary information was also instrumental in the final qualita-
tive decision to select a conservative forecast and harvest strategy. Our
1997 field samples indicated strong recruitment from the 1993 and 1994
cohorts; these year classes combined are projected to make up over 55%
of the 1998 return. However, these two cohorts are just beginning to ap-
pear in our field samples and their absolute abundance is still highly un-
certain. In addition, the regulatory Kamishak Bay Herring Management
Plan contains a provision to limit exploitation on herring age 5 and young-
er. This provision necessitates a conservative harvest strategy for 1998
because recruit classes are projected to compose the majority of our 1998
return. Forecast uncertainty is also increasing because of the years elapsed
since the last quality aerial survey biomass estimate in 1992.

Discussion
Aerial surveys generally provide the most direct means for assessing her-
ring spawner abundance. However, poor weather in Kamishak Bay creates
gaps in the aerial survey time series and high water turbidity frequently
limits the ability of surveyors to observe herring schools when surveys
can be flown. Resultant aerial-survey biomass estimates are sometimes
unrealistically low and highly influenced by a given year’s survey effort
(i.e., spatial and temporal coverage) and conditions. Our efforts to miti-
gate these effects by standardizing survey effort across years have been
largely unsuccessful. Attempts to standardize aerial biomass estimates
for survey effort by documenting the number of survey hours flown and
index areas surveyed does not account for temporal effects and variable
survey conditions. Surveys that are missed, incomplete, or of poor quality
during periods of peak abundance compromise the estimate of total spawn-
ing biomass more than surveys missed between spawning waves. It is
difficult to build this effect into a model (e.g., by fitting a run-timing curve
to aerial survey estimates) when the run is divided into waves of returning
herring whose spawning peaks exhibit inter-annual temporal variability
(H. Yuen, ADFG, Homer, unpublished manuscript). It is doubtful that a
long-term average run-timing curve will accurately represent the actual
run timing within a given year. Developing a baseline of run-timing curves
relative to varying physical (e.g., tide series, water temperature: Wespestad
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1991) and biological (e.g., age composition, fat content, and mean weight-
at-age of returning fish: Ware and Tanasichuk 1989, Rajasilta 1992) rela-
tionships may allow us to incorporate these parameters in future models.

Many herring are unaccounted for by our aerial survey assessments,
even during good survey years. For instance, in 1990 the miles of ob-
served spawn peaked on 21 April, prior to any herring schools being ob-
served from the air, despite good survey effort and conditions. Nøttestad
et al. (1996) found that Norwegian spring-spawning herring schools immi-
grating to the spawning grounds swam much deeper than spawning, feed-
ing, or emigrating schools. This behavioral trait may make immigrating
schools less susceptible to aerial assessment and partially explain why no
herring schools were observed in 1990 until spawning began in earnest.

More tangible evidence of unsurveyed herring biomasses was consis-
tently documented during the years 1992-1996. In each of these 5 years,
virtually no herring were observed from the air by management staff prior
to the date of the first commercial landings. An average of 2,050 t of
unassessed herring was caught in these initial openings, and over 3,200 t
of unassessed herring were caught in 1993. These data, along with anec-
dotal hydroacoustic observations by fishermen, have led us to be very
critical of our aerial survey results, particularly when poor weather inhib-
its visibility or creates lengthy gaps in survey coverage.

By using ancillary stock-abundance information and sensitivity analy-
ses to identify weak data sets, we can mitigate their impact on forecasts
by down-weighting them or excluding them from the model. While this
treatment of weak data is intuitively appealing, it can create side effects.
Although the ASA model does not require an abundance-scaling index for

Figure 6. Catch- and total-run age composition sum of squares relative to increases
in the log-scaled catch-age composition weighting.
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every year, moderate amounts of auxiliary information are required to
stabilize stock estimates generated by catch age analysis (Deriso et al.
1985). The greater the period between the last abundance-index (i.e., good
survey year) and the current forecast, the more uncertain the forecast
becomes.

We have tried to enhance the quality of other model inputs to com-
pensate for uncertainties caused by our lack of consistent auxiliary infor-
mation. Our expectation is that the effects of not having a recent abundance
index could be mitigated if we had a continuous time series of data to
annually represent the age composition of the total run. Collection of these
data has only been possible during 8 of the past 13 years. Lacking a con-
tinuous time series of total run age composition data, the model cannot
effectively scale upcoming recruit classes to strong cohorts it has tracked
for several years. Recognizing the importance of this limitation to the
model, ADFG has now begun to re-emphasize late-season sampling with
the addition of an annually chartered test-fishing vessel. As this continu-
ous time series grows and incorporates more years in which upcoming
recruit classes overlap with strong older age classes, the model’s ability to
compensate for infrequent aerial survey estimates should be enhanced.
The model’s ability to scale upcoming recruits to older year classes will be
particularly improved if a good aerial assessment occurs at least once
during the life span of strong year classes. Maintaining continuous time
series for both catch and total run age compositions also should improve
our estimates of age-specific maturity and fishery selectivity and allow
the model to estimate survival. These improvements may reduce the fore-
cast uncertainty resulting from our lack of a consistent abundance index.

Although maintaining a continuous time series of catch and total run
age compositions should improve the model’s performance, a reliable abun-
dance-scaling index remains its most integral component. Given the in-
consistency with which aerial surveys have been able to provide this index
we are considering other methods. Compact airborne spectrographic im-
aging (CASI) equipment has been used successfully to digitally remote-
sense and quantify forage fish schools in Canada (Borstad et al. 1992,
Nakashima and Borstad 1997) and Alaska (Funk et al. 1995). CASI works
by discriminating between the spectral signatures of fish schools and their
natural background; the surface areas of observed herring schools are
then calculated from the digital images captured by CASI. Unfortunately,
the turbid waters and inhospitable flying conditions characteristic of Ka-
mishak Bay would likely inhibit CASI’s ability to improve upon our current
aerial survey program (Pers. comm., Gary Borstad, G.A. Borstad Assoc.
Ltd., B.C. V8L 3S1, February 1998.).

Miles-of-milt indices have been used to scale spawner-abundance in
Prince William Sound herring assessments (Funk 1994). We have consis-
tently documented miles of milt observed during aerial surveys in Ka-
mishak Bay since 1990. However, the same conditions that limit our aerial
assessment of herring schools in Kamishak Bay also reduce our ability to



570 Otis et al. — Coping with a Challenging Stock Assessment Situation

observe and quantify evidence of spawn. Consequently, there is a high
level of uncertainty regarding the completeness of our miles-of-milt data
that has made us reluctant to use them in our model. In the future, we
may investigate the utility of including miles-of-milt indices from years
with good survey coverage and conditions. Developing technology, such
as high resolution images from low orbit satellites (Pers. comm., Ron Brooks,
remote sensing consultant, Fairbanks, AK, March 1998.), may facilitate
locating and quantifying spawning events (i.e., miles of milt) more consis-
tently in the future.

Egg deposition surveys have been used in Alaska (Funk 1994) and
elsewhere in the Pacific Northwest (Schweigert and Stocker 1988, Burton
1991) to calculate estimates of total spawning biomass. In 1991, ADFG
conducted foot surveys of the intertidal reefs and shoreline around Chenik
Lagoon in Kamishak Bay to determine the feasibility of estimating egg
deposition (Yuen 1993). These data allowed a rough calculation (i.e., 95%
CI was ±100% of the estimate) of spawning biomass for the small area
surveyed; however, several factors limit the feasibility of pursuing spawn
deposition surveys in Kamishak Bay. Most of them involve the fact that
the timing and distribution of spawning is protracted and would require
costly, labor-intensive surveys to obtain a viable sample. Akenhead et al.
(1993) investigated the feasibility of using CASI to quantify exposed egg
biomass at low tide. Remotely sensing herring eggs is a relatively expen-
sive and uncertain process that we decided not to pursue given the unique
characteristics of Kamishak Bay (e.g., poor flying conditions, relatively
sparse and widely distributed spawn, high potential for subtidal spawn-
ing to be missed; pers. comm., Gary Borstad, G.A. Borstad and Associates,
Ltd. B.C., V8L 3S1, February 1998.).

Another consideration that reduces the feasibility of spawn deposi-
tion surveys in Kamishak Bay involves establishing the extent of subtidal
spawning. To estimate spawning biomass from egg deposition with any
accuracy, one must estimate the total number of eggs deposited. Annual
scuba surveys would be required to estimate the contribution subtidal
spawning makes to total egg deposition. Along with their expense, high
energy beaches, swift tidal currents, sea lions and kelp forests make scu-
ba diving in Kamishak Bay an undesirable assessment method. These prac-
tical and budgetary limitations restrained our interest in pursuing egg
deposition surveys during an era when weather permitted the periodic
success of aerial surveys. Now that 5 years have passed since our last
“good survey” year, we are reconsidering alternative methods to obtain
consistent abundance indices to stabilize our age-structured herring as-
sessment model. Despite the challenges associated with securing accu-
rate and consistent input data, we believe our use of an integrative model
has resulted in improved management of the Kamishak Bay sac-roe her-
ring fishery.
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Abstract
We conducted a modified catch-survey analysis incorporating commercial
catch per unit effort and bottom-trawl survey data for the blue king crab
stock, Paralithodes platypus, near St. Matthew Island in the eastern Bering
Sea. Although the general area was surveyed to estimate abundance of
crabs, the commercial fleet fished over a more limited and generally un-
trawlable portion of the surveyed area. Therefore, the current abundance
estimation procedure based on assessment surveys was modified to in-
clude fishery performance data to explore the utility of both types of data
in estimating abundance. Total annual catch and observed relative survey
abundance of legal-sized crabs were classified into recruits and postrecruits
by shell age and size, and commercial fishing effort was defined as total
potlifts. The analysis separated measurement errors from the true changes
in population abundance and converted the relative abundance to an ab-
solute value. The analysis also provided smoothed annual estimates of
the legal blue king crab abundance. Based on a probable range of instanta-
neous natural mortality (0.16 to 0.35) and fishing effort weighting factors
(0.5 and 1.0), we estimated survey catchability to be 0.91 to 1.25. Weight-
ing the fishing effort heavier or assuming higher natural mortality result-
ed in lower estimates of survey catchability. Because of confounded effects
among survey catchability and natural mortality, additional information
is needed to reliably estimate these parameters.

Introduction
In the eastern Bering Sea, blue king crabs, Paralithodes platypus, support
commercial fisheries off St. Matthew Island and the Pribilof Islands. The
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St. Matthew Island fishery developed subsequent to baseline ecological
studies associated with oil exploration (Otto 1990); 10 U.S. vessels har-
vested 545 t in 1977. Harvest peaked in 1983 when 164 vessels landed
4,288 t. From 1986 to 1991 the fishery was fairly stable, harvesting a
mean of 731 t by <70 vessels. Participation increased from 68 vessels in
1991 to 174 vessels in 1992. Since 1993, the St. Matthew and Pribilof
Islands blue king crab fisheries have been opened concurrently, dividing
vessel effort between both fisheries and initially stabilizing vessel partic-
ipation at about 90 vessels. To reduce total fishing effort and improve
manageability of the relatively small allowable harvests, maximum limits
of 60 pots and 75 pots were set in 1993 for vessels <38.1 m and ≥38.1 m,
respectively. Those limits reduced the number of pots registered by a
third from 1992 to 1993 (Morrison et al. 1997). However, the number of
potlifts in the fishery increased slightly because the season length doubled
and pot turnover rates increased. In 1996 and 1997 participation increased
to an average of 120 vessels per year and the average number of potlifts
increased 56% from 1992.

St. Matthew Island blue king crabs inhabit rugged bottom typified by
patches of cobble, rocks, and boulders. This habitat is well suited to fish-
ing with crab pots. However, assessment surveys of the stock have tradi-
tionally been conducted with a bottom trawl, and area-swept estimates of
abundance have been used to set annual guideline harvest levels (Otto et
al. 1997). Area-swept abundance estimates are affected by survey mea-
surement errors, which for blue king crabs have been attributed to limited
trawlable terrain impeding gear performance and to potential changes in
crab distribution across fixed survey stations as effected by possible bi-
ennial mating and molting migrations of large female crabs (Somerton
and MacIntosh 1985; Jensen and Armstrong 1989; Blau 1996). Poor as-
sessments of female and juvenile crabs by the trawl survey may be due to
preferences for rocky habitat (Otto et al. 1997) that probably offers pro-
tection from predation and cannibalism.

Wide swings in annual survey abundance estimates affect interpreta-
tions of stock status, application of the fishery management strategy, and
stability in annual harvests. Underestimation causes reduced harvest op-
portunity; overestimation increases risk of overfishing. To separate sur-
vey measurement errors from the true changes in population abundance,
Zheng et al. (1997) constructed a catch-survey analysis (CSA, Collie and
Kruse 1998) of the St. Matthew blue king crab stock. CSA is particularly
well suited to this stock because of uncertainty in survey catchability,
large measurement errors, and limited size-frequency data needed for
more detailed length-based analyses (Zheng et al. 1996). Previously, we
used only survey and commercial catch data to analyze this stock (Zheng
et al. 1997). The survey area and the area of commercial harvest are not
coincident in part due to untrawlable habitat. The commercial fishery oc-
curs on grounds about 1,000 square nautical miles (nm2) whereas the sur-
vey stations cover a broad area and area-swept estimates are extrapolated
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to approximately 10,000 nm2 (Pers. comm., D. Pengilly, Alaska Department
of Fish and Game). In this study, we incorporated commercial catch per
unit effort (CPUE) data into the catch-survey model to account for the
disparity between survey and commercial fishing grounds and to exam-
ine the effect of fishery performance on estimates of survey catchability
and absolute population abundance. The application of the model is lim-
ited to estimating abundance of only legal-sized males because the analy-
sis relies on landings data.

Methods
Survey, Catch, and Effort Data
We obtained survey data from the National Marine Fisheries Service (Otto
et al. 1997) and catch and effort data collected by Alaska Department of
Fish and Game from 1980 to 1997 (Morrison et al. 1997). We updated the
area-swept estimates of crab abundance from the 1980-1997 trawl survey
data using the stratification method developed by Zheng et al. (1997).
Prior to 1980, trawl survey data are incomplete and few commercial ves-
sels targeted this stock. For convenience we refer to our area-swept esti-
mates of abundance as the “observed relative abundance.”

We defined nominal CPUE as total season catch of legal males divided
by potlifts. Because the nominal CPUE is greatly affected by total number
of vessels in the fishery and the season length, with a larger number of
vessels or a longer season resulting in a lower nominal CPUE, we stan-
dardized the CPUE as

    U C Et t t
r= / (1)

where Ut is standardized CPUE in year t, Ct is annual catch, Et is total pot-
lifts, and r is a parameter with a value < 1. Because pot limits were initiat-
ed in 1993, two r parameters, r1 and r2, were estimated for 1980-1992
and 1993-1997, respectively. For comparison to observed potlifts, we also
estimated total potlifts as

    
E

C
q A e Ct

t

c t
T M

t
rt

=
−−[ ( . )]( ) /0 5 1

(2)

where qc is commercial pot catchability, At is absolute legal crab abun-
dance in year t, Tt is the time lag from the survey to the midpoint of the
fishery in year t, and M is natural mortality.

Catch-Survey Analysis
We estimated abundance of legal blue king crabs by a modified CSA that
incorporates commercial CPUE data. Kruse and Collie (1991) and Collie
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and Kruse (1998) developed the two-stage CSA for red king crab popula-
tions, Paralithodes camtschaticus, and Zheng et al. (1997) applied it to the
two blue king crab stocks off the Pribilof and St. Matthew islands. A useful
feature of CSA, in addition to accounting for measurement errors sepa-
rately from true changes in stock abundance, is that the survey catchabil-
ity coefficient can be estimated given an estimate of natural mortality.

Legal male blue king crabs have a carapace length (CL) ≥120 mm in the
St. Matthew Island fishery. The average growth increment per molt for
legal male crabs is about 14 mm CL (Otto and Cummiskey 1990). Legal
blue king crabs were categorized into recruits (newshell, 120-133 mm CL)
and postrecruits (all other legal males). The model links postrecruits in
year t+1 to recruits, postrecruits, and catch in year t through natural mor-
tality and catchability of the survey gear:

    p p r e q C et t t
M

s t
M Tt

+
− − −= + −1

1( ) ( ) (3)

where pt and rt are relative abundances of postrecruits and recruits in year
t, and qs is the survey catchability for legal crabs. For simplicity, we as-
sumed that recruits and postrecruits have the same survey catchability.
These relative abundances divided by the survey catchability are equal to
corresponding absolute abundances of recruits and postrecruits by year.
Thus, for a given M, the CSA model will estimate qs, which scales relative
abundance to absolute abundance for the entire stock in both trawlable
and untrawlable areas.

Parameter Estimation
Measurement errors of survey estimates of recruit and postrecruit rela-
tive abundances and fishing effort were assumed to follow lognormal dis-
tribution, and the least squares approach was used to minimize residual
sum of squares (RSS ):

    

RSS p p r r

w E E
t t t t

t t

t
= + − + + + − +

+ + − +
∑ {[log( ) log(˜ )] [log( ) log(˜ )]

[log( ) log(˜ )}

κ κ κ κ
κ κ

2 2

(4)

where     ̃pt  and     ̃rt  are observed relative abundances of postrecruits and
recruits in year t,     Ẽt

 is observed fishing effort in year t, κ is a small con-
stant set as 0.001, and w is an effort weighting factor. We examined w
values ranging from 0 to 5.0.

Estimated parameters include M, qs, qc, r1, r2, recruits each year except
the last, and postrecruits in the first year. Ideally, survey catchability or
natural mortality would first be estimated through research studies. How-
ever, uncertainty exists about both parameters for the St. Matthew Island
blue king crab stock. For this reason, we used three different approaches
to estimate survey catchability and natural mortality, which are confounded
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and difficult to estimate simultaneously. First, we assumed qs = 1 and
estimated M. Second, we estimated qs for M ranging from 0.1 to 0.5 at
intervals of 0.05. Finally, we used a 2-phase approach to estimate both qs

and M by (1) setting qs = 1 and estimating M, and (2) estimating both qs and
M simultaneously.

Using AD Model Builder (Otter Research Ltd. 1994), we estimated pa-
rameters using the quasi-Newton method to minimize RSS. The Builder
calculates standard deviations for all estimated parameters and any other
desired values and calculates correlations among them.

Results
The results were quite robust in terms of sensitivity to the initial parame-
ter values and are summarized in Table 1 for w = 0, 0.5, and 1.0. M is about
0.3 when qs = 1 and w ≤ 1.0; qs decreased from 1.2 to 0.95 and M increased
from 0.21 to 0.33 under the 2-phase approach when w increased from 0 to
1.0 (Table 1). The 2-phase approach resulted in slightly smaller RSS than
fixing qs at 1.0. As expected, r1 and r2 were always <1.0.

The observed relative abundances of recruit, postrecruit, and all legal
crabs were fitted well for w = 0, 0.5, and 1.0 (Fig. 1). A higher w resulted in
a slightly poorer fit of the observed relative abundances. Large positive
bias in observed relative abundances occurred under all scenarios in 1982
and 1993. When qs was fixed at 1, there was no consistent trend in abso-
lute abundance estimates of all legal crabs as w was increased from 0 to
1.0 (Table 1). However, under the 2-phase approach, absolute abundance
estimates increased as w was increased (Table 1).

The relationship between survey abundance and commercial CPUE is
illustrated in Fig. 2. Because standardized CPUEs under different values of
w were in different scales, we scaled each series to a maximum value of 1.
Unlike survey abundance, there were no obvious temporal trends in nom-
inal CPUE, except perhaps a slight decline from 1980 to 1987. The flat
nominal CPUE was caused in part by changes in total potlifts (effort), which
decreased 94% from 1982 to 1988 and then increased 800% from 1982 to
1996. An extremely high number of potlifts in 1982 and extremely low
numbers in 1988 and 1986 caused the nominal CPUEs in these three years
to differ greatly from the observed survey abundances. Abundance in 1982
was also overestimated by the trawl survey. After standardization, CPUE
generally followed survey abundance trends, particularly for low values
of w.

The RSSs were inverted dome-shaped functions of estimated natural
mortality or survey catchability (Fig. 3). As expected, natural mortality
was negatively correlated with survey catchability, and both survey and
commercial fishery catchabilities (not shown) were positively correlated.
The response surface of objective function values was quite flat; different
combinations of M and qs resulted in similar RSSs. Increasing w reduced qs

and increased M.



580 Zheng et al. — Abundance Estimation of Blue King Crabs

Figure 1. Comparisons of observed and estimated relative abundances of recruit,
postrecruit, and legal blue king crabs in St. Matthew Island waters with q
fixed at 1 and with three effort weighting factors w = 0, 0.5, and 1.0.
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Figure 2. Comparisons of time series of observed legal crab abundance, observed
nominal catch per unit effort (CPUE), and estimated standardized CPUE
with three effort weighting factors w = 0.5, 1, and 2. Each time series was
scaled to a maximum value of 1.

Absolute abundance and fishing effort estimates were affected by w,
although their trends were similar over time with all five w values exam-
ined (Fig. 4). Abundance estimates were similar with w = 0 and 0.5 and
generally were the highest with w = 2.0. Abundance estimates were smooth-
er with w = 0.5 and 1.0 than with other w values and were least smooth
with w = 5.0. Estimated potlifts with w = 5.0 were similar to the observed
values, and as expected, a decrease in w caused further departure of esti-
mated values from the observed values.

Estimates of absolute abundance and harvest rates depend on qs and
M. When weighting the effort data half as much as survey abundance and
fixing survey catchability at 1.0, harvest rates increased from 0.01 in 1980
to 0.62 in 1983, declined steadily to 0.16 in 1989, and fluctuated between
0.22 and 0.32 from 1990 to 1997 (Fig. 5). Catch in 1997 was more than 3
times as high as catch in 1989 because of increased crab abundance.

Discussion
Traditional stock assessment models assume a unit stock without signifi-
cant internal spatial structure by sex, size, or age. This assumption is
reasonable if animals are distributed relatively uniformly across the space
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Figure 3. Relationships among survey catchability, natural mortality, and residual
sum of squares (RSS) for the St. Matthew Island blue king crab stock from
the catch-survey analysis using effort weighting factors w = 0.5 and 1.
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Figure 4. Comparisons of time series of absolute legal crab abundance estimates
and potlifts under the 2-phase approach with effort weighting factors
w = 0, 0.5, 1, 2, and 5.
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they occupy, or if survey and commercial fishing effort equally represent
all occupied habitats and the gear is not selective. Under such conditions,
gear catchability is expected to be independent of exploitable stock abun-
dance. Schooling behavior, common in many pelagic fish stocks (e.g., Mac-
Call 1976), violates this assumption. Schooling creates sharp density
differences in different habitats, and commercial fishing effort typically
concentrates in areas of high density, causing a nonlinear relationship
between commercial fishing catchability and exploitable stock abundance
(MacCall 1976). The traditional stock assessment assumption may also be
violated when areas of survey and commercial fishing do not completely
overlap, such as when the survey or fishery is concentrated in a small part
of the stock’s range. For such stocks, trends of survey abundance and
commercial CPUE may conflict, both of which may differ somewhat from
true population changes. Temporary local depletions may also occur in
areas where the commercial fishing effort concentrates.

In the case of St. Matthew blue king crabs, even though the trawl sur-
vey approximately covers the area in which crabs occur, each 1-nautical
mile tow is expanded to a very large area (20 × 20 nm2), and few tows are
located close to the island where the commercial fishing fleet concentrates

Figure 5. Time series of catches (solid line) and legal male harvest rates (dotted
line) for the St. Matthew Island blue king crab stock with q fixed at 1 and
w = 0.5.
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(Pers. comm., D. Pengilly, Alaska Department of Fish and Game). Because
the population is small and fishing effort is concentrated in a small area,
CPUE is strongly affected by the total number of potlifts or fishing effort,
which is a function of season length, pot limits, and number of vessels. A
longer season or more vessels will effect a lower nominal CPUE because
either vessels continue to fish crabs in the local area with a significantly
reduced density or localized depletions cause vessels to fish less produc-
tive waters. We dealt with these problems by taking a power transforma-
tion of fishing effort. After the transformation, the trends of standardized
CPUE and survey abundance were similar, even after weighting the effort
5 times heavier than the survey abundance.

Because of incomplete overlap between the survey area and commer-
cial fishing area and uncertainty in the natural mortality estimate, we have
low confidence in the estimate of survey catchability. Our earlier CSA model
without commercial fishing effort (Zheng et al. 1997), which is analogous
to the current model with a weighting factor of 0 on fishing effort, esti-
mated survey catchability to be >1 under a biological feasible range of
natural mortality. However, with our current analysis under the two-phase
approach, when effort was weighted as heavy as or heavier than survey
abundance, the survey catchability estimate is <1, which suggests the com-
mercial fishing area has higher crab density than the survey area. This is
supported by the results of a pot survey on St. Matthew blue king crabs in
1995 (Blau 1996). High natural mortality also results in estimates of sur-
vey catchability <1. Natural mortality of 0.3 or higher would generate a
survey catchability estimate for legal crabs close to or <1 when the ratio of
recruit to postrecruit catchabilities is fixed at 1 and the effort weighting
factor is 0. From a mark-recapture study, natural mortality for St. Matthew
blue king crabs was estimated at 0.78 to 0.97 for crabs 120-134 mm CL
(Otto and Cummiskey 1990). These estimates of natural mortality appear
to be too high; the return rate of tagged crabs may have been underesti-
mated because of tag loss, underreporting, and migration. By compari-
son, overall mean natural mortality for legal (≥135 mm CL) red king crabs
in Bristol Bay of the eastern Bering Sea was estimated to be about 0.3
(Zheng et al. 1995a, b). If natural mortality is indeed as high as that esti-
mated by the tagging experiments, the survey catchability will be much
smaller than 1. If the survey catchability of blue king crabs is indeed less
than 1, then absolute abundance is probably underestimated.

Another uncertainty of survey catchability estimates is whether re-
cruit and postrecruit crabs are subject to the same catchability. This un-
certainty cannot be resolved by the current data. For simplicity, we assumed
they have the same survey catchability in this study. Generally, this uncer-
tainty does not affect abundance estimates very much because a higher or
lower recruit catchability is offset by a lower or higher postrecruit catch-
ability. However, different survey catchabilities influence natural mortali-
ty estimates greatly; a higher recruit catchability results in a lower natural
mortality estimate (Zheng et al. 1997).
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Survey catchability >1 would result if higher density of legal crabs
occurred in trawlable habitats than in untrawlable habitats. A large bias in
catchability could also occur for the CSA model if errors in shell aging
were large and there was a difference of magnitude between recruits and
postrecruits, or if aging errors were very asymmetric (Collie and Kruse
1998). If the survey catchability is underestimated, then absolute abun-
dance estimates of blue king crabs are inflated and harvest rates are high-
er than managers now assume. Fortunately, much lower harvest rates were
used during the last 10 years than during the early 1980s. Based on our
upper-end estimate of survey catchability of 1.2, actual harvest rates real-
ized from the St. Matthew Island fishery were still ≤37% of the legal male
crabs during 1987-1997. However, the harvest rates on the targeted por-
tion of the stock were likely much higher than harvest rates on the sur-
veyed stock. Although the harvest rates on the surveyed stock are still
below the maximum legal male rate of 60% (Pengilly and Schmidt 1995),
precaution is advisable because of the possibility that survey catchability
is greater than 1.

Catchability of the trawl survey, used to estimate abundance and a
subsequent harvest level, has implications for management. If the current
harvest strategy is optimal for the current population abundance estimat-
ed by area-swept methods, then lower population estimates correspond-
ing to a survey catchability estimate >1 will result in underharvest of the
stock. Conversely, higher population estimates as a result of a survey catch-
ability estimate <1 will lead to overharvest. Unfortunately, only one pot
survey has been conducted in a limited area near St. Matthew Island (Blau
1996). Multiple years of tagging studies and pot surveys in both untraw-
lable and trawlable habitats would provide information germane to esti-
mating natural mortality and trawl survey catchability. The harvest strategy
needs formal reevaluation when survey catchability is better known. How-
ever, to avoid overfishing, it may be prudent to act sooner and consider
modifications in harvest strategy that would take into account uncertain-
ty in the assessments.

Concentration of commercial fishing effort in small areas has addi-
tional implications for management. Because the catch quota is currently
based on the whole survey area, fishing effort concentrated in small areas
results in higher actual harvest rates on the targeted portion of the stock
than would be the case if effort was spread over the entire stock. Further-
more, bycatch of female and juvenile crabs is probably higher in the un-
trawlable habitat, where the fishery concentrates, than further offshore.
Unfortunately, crab movements between the summer survey and the fall
fishery are unknown, as are timing variations in possible biennial mating
and molting cycle of large females (Jensen and Armstrong 1989). Informa-
tion on the spatial and temporal structures and migration patterns of the
stock, once available, needs to be incorporated into the harvest strategy.

Use of commercial fishery CPUE as a measure of population abun-
dance is well known to be problematic (e.g., Hilborn and Walters 1992).
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Gear developments, improvements in vessel positioning equipment, and
regulations affecting harvesting efficiency can have significant impacts
on CPUE independent of crab population size. Although we have not ad-
justed CPUE for such factors, except for the institution of pot limits in
1993, we believe that there is merit to including commercial CPUE data in
the annual assessment for St. Matthew blue king crabs because of the
disparity in survey and fishing locations. In addition, expanding the 2-
stage model to include a third stage for prerecruit abundance (crabs with
CL one growth increment below legal size) will improve estimates of legal
crab abundance in the terminal year. A 3-stage model is currently being
developed. However, further meaningful improvements in the assessment
of the stock will probably have to wait for better information on seasonal
migrations, natural mortality, and crab distributions among trawlable and
untrawlable habitats.
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Abstract
Red king crab, Paralithodes camtschaticus, in Norton Sound, Alaska, sup-
port three fisheries: summer commercial, winter commercial, and winter
subsistence fisheries. Four types of surveys have been conducted period-
ically during the last two decades: summer trawl, summer pot, winter pot,
and preseason summer pot, but none of these surveys were conducted
every year. To improve abundance estimates, we developed a length-based
stock synthesis model of male crab abundance that combines multiple
sources of survey, catch, and mark-recovery data from 1976 to 1996. A
maximum likelihood approach was used to estimate abundance, recruit-
ment, and catchabilities of the commercial pot gear. The model yielded a
time series of abundance that is smooth and consistent over time. Esti-
mates of parameters and legal crab abundance are not very sensitive to
weighting factors for survey abundances and fishing effort, and maxi-
mum effective sample size. Assumed natural mortality influenced recruit-
ment estimates, but had limited impact on estimates of legal abundances.
The model can be used to improve fisheries management by reducing
annual variations in catch and the risk of overfishing.

Introduction
Red king crab, Paralithodes camtschaticus, in Norton Sound, Alaska, sup-
port two small, but locally important commercial fisheries, summer and
winter, and a subsistence fishery. The commercial fisheries began in 1977.
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The summer commercial catch peaked in 1979 at 970,962 crabs and has
been under 130,000 crabs since 1987 (Lean and Brennan 1997). The win-
ter commercial catch has not exceeded 10,000 crabs and was less than
2,000 crabs during most years. The subsistence fishery mainly occurs
during winter, and the annual catch generally ranges from 1,000 to 12,000
crabs (Lean and Brennan 1997). Although annual ex-vessel values for the
commercial catch were under US$1.0 million during the last 15 years (Lean
and Brennan 1997), Norton Sound red king crab provide an important
economic opportunity and food source to local communities.

 Composition of the fishing fleet has changed over time. During most
years prior to 1993 the fleet consisted of a few catcher/processors (large
vessels) but in some years the fleet consisted of up to 24 catcher and
catcher/processor vessels (C. Lean, ADFG, personal communication). Due
to the establishment of a superexclusive registration area (i.e., if a vessel
participates the Norton Sound red king crab fishery, the vessel cannot
participate in any other red king crab fisheries in Alaska in the same year)
and a pot limit, large fishing vessels have been replaced by small fishing
vessels since 1993. The pot limit started in 1992 with 100 per vessel.
Since 1993, vessels longer than 125 ft (38.1 m) have been limited to 50
pots and smaller vessels to 40 pots per vessel.

The Norton Sound summer commercial red king crab fishery is cur-
rently managed with an exploitation rate ≤10%, which is half of rates com-
mon in other Bering Sea commercial king crab fisheries (5 AAC [Alaska
Administrative Code] 34.915). Estimates of annual abundance of legal crabs
(≥104 mm carapace length [CL]) are used to set the summer catch quota
each year. Because of low catch rates, catch levels for the winter commer-
cial and subsistence fisheries are not limited.

To assess abundance, four types of surveys have been conducted
periodically during the last two decades by the National Marine Fisheries
Service (NMFS) and Alaska Department of Fish and Game (ADFG): summer
trawl, summer pot, winter pot, and preseason summer pot. No individual
survey type, however, was conducted annually on this stock. Estimated
abundances fluctuate greatly from survey to survey because of changes in
stock size, survey methods, and annual measurement errors. Survey mea-
surement errors were large; for example, in 1979 commercial catch in the
summer fishery exceeded estimated abundance of harvestable (legal) male
crabs from the trawl survey. To help distinguish true changes in stock size
from measurement errors, we constructed a length-based population model
that synthesizes multiple sources of survey, fisheries, and mark-recovery
data and links population abundances by length classes in adjacent years.
The model is similar to length-based models developed by Zheng et al.
(1995) for crab populations. A maximum likelihood approach was used to
estimate male abundances, recruitment, molting probabilities, catchabili-
ties of the commercial pot gear, and selectivities of different survey and
commercial fishing gears.
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Methods
Data
Available data are summarized in Table 1. NMFS conducted trawl surveys
every three years from 1976 to 1991 (Stevens and MacIntosh 1986), and
ADFG conducted a trawl survey in 1996 (Fair 1997). Total population abun-
dances and length and shell compositions for males >73 mm CL were
estimated by “area-swept” methods from the trawl survey data (Alverson
and Pereyra 1969). The compositions consisted of six 10-mm length class-
es and two shell conditions (new and old shells). If multiple hauls were
conducted for a single station (10×10 nmi) during a survey, then the aver-
age of abundances from all hauls within the station was used. If a station
was not surveyed during a given year, its abundance was assumed to be
equal to the average of abundances in the four adjacent survey stations. If
more than two adjacent stations were not surveyed, the abundance of the
non-surveyed station was assumed as zero. Because the non-surveyed
stations are located in areas with very low density of red king crabs, esti-

Table 1. Summary of available data for Norton Sound male red king crab.

Data set Years Data types

Summer trawl survey 79,82,85,88,91,96 Abundance and proportion
by length and shell condition

Summer pot survey 80-82,85 Abundance and proportion
by length and shell condition

Winter pot survey 81-86,88-90,92,94-96 Proportion by length and
shell condition

Summer preseason 95 Proportion by length and
survey shell condition

Summer commercial 76-90,92-96 Catch, effort, and proportion
fishery by length and shell condition

Observer data 87-90,92,94 Proportion by length and
shell condition

Winter commercial 76-96 Catch
fishery

Subsistence fishery 76-96 Catch

Tagging data 80-91 Mean and standard deviation
of growth increment



594 Zheng et al. — Using Multiple Data Sets to Assess Red King Crab

mates of total crab abundance were little affected by these assumptions.
The complete data file from the survey in 1979 could not be located, so
we used the published population estimate for that year (Lean and Bren-
nan 1997) and estimated length and shell condition compositions from
the partial survey file. Some trawl surveys occurred during September,
the molting period. To make survey abundances comparable with premolt
abundances, we adjusted trawl survey abundances by subtracting aver-
age growth increment of each length class (Table 2) from the length of
each soft-shell crab (molting within the past two months).

Four summer pot surveys were conducted by ADFG (Table 1), and
total male crab abundances were estimated using Petersen mark-and-re-
capture methods (Brannian 1987). ADFG also conducted 13 winter pot
surveys and one preseason pot survey in the summer of 1995 (Table 1);
total crab abundances were not estimated for these pot surveys because
of unreliable catch per unit effort (CPUE) data due to change in environ-
mental conditions over time and lack of tagging data. For all pot surveys,
length and shell condition compositions were estimated.

Red king crab catches from the summer fishery were sampled by ADFG
from 1976 to 1996 to determine length and shell condition. Bycatch of
sublegal males (observer data) from the summer fishery in 1987-1990,
1992, and 1994 were also sampled by observers to determine length and
shell condition. Total catch from all fisheries and effort (potlifts) from the
summer fishery were obtained from Lean and Brennan (1997). Red king
crabs were tagged and released during 1980-1991 (Powell et al. 1983, Bran-
nian 1987); 222 tagged male crabs were recovered after spending at least
one molting season at liberty. These tagging data were used to estimate a
growth matrix and molting probabilities by premolt length.

Table 2. Means and standard deviations (SD) of growth increments per
molt and growth matrix (proportion of crabs molting from a giv-
en premolt carapace length range into postmolt length ranges)
for Norton Sound male red king crab.

Premolt Growth
 length increment Postmolt length range

Class Range Mean SD 74-83 84-93 94-103 104-113 114-123 >123

1 74-83 14.50 3.34 0.01 0.54 0.45 0 0 0

2 84-93 14.50 3.34 0 0.01 0.54 0.45 0 0

3 94-103 14.09 2.69 0 0 0.01 0.58 0.41 0

4 104-113 13.35 2.80 0 0 0 0.01 0.65 0.35

5 114-123 11.35 2.19 0 0 0 0 0.03 0.97

6 >123 11.35 2.19 0 0 0 0 0 1.00

Length is measured as mm CL. Results are derived from mark-recapture data from 1980 to 1991.
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Population Model
The summer fishery for Norton Sound red king crab usually occurs during
July and August, and crabs mostly molt after August. Thus, we modeled
male summer population abundance during July and winter population
abundance in January. Because few crabs <74 mm CL were caught during
surveys or fisheries and sample sizes for trawl and winter pot surveys
were relatively small, we modeled abundances for only male crabs ≥74
mm CL at 10-mm length intervals.

Observations on shell condition are commonly used to classify crabs
into two categories: newshell crabs, those that molted within the past
year, and oldshell crabs, those that did not. We modeled newshell and
oldshell male crabs separately but assumed they have the same molting
probability and natural mortality. Summer crab abundances are the survi-
vors of crabs from the previous winter:
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where Ns,l,t and Os,l,t are summer abundances of newshell and oldshell crabs
in length class l in year t, Nw,l,t and Ow,l,t are winter abundances of newshell
and oldshell crabs in length class l in year t, Cw,t and Cp,t are total winter
and subsistence catches in year t, Pw,n,l,t and Pp,n,l,t are length compositions
of winter and subsistence catches for newshell crabs in length class l in
year t, Pw,o,l,t and Pp,o,l,t are length compositions of winter and subsistence
catches for oldshell crabs in length class l in year t, and Ml is instantaneous
natural mortality in length class l, which, for simplicity, we assumed to be
constant (M) for all sizes and shell conditions except for the last length
class where M6 = 1.6M. Higher natural mortality for the last length class
was justified by the sharp decrease of observed length frequency, and
factor 1.6 resulted in a good fit of the data.

Winter abundance of newshell crabs is the combined result of growth,
molting probability, mortality, and recruitment from the summer popula-
tion:
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where Gl′,l is a growth matrix representing the expected proportion of crabs
molting from length class l ′  to length class l, Cs,t is total summer catch in
year t, Ps,n,l,t and Ps,o,l,t are length compositions of summer catch for new-
shell and oldshell crabs in length class l in year t, ml,t is molting probabil-
ity in length class l in year t, and Rl,t is recruitment into length class l in
year t. Winter abundance of oldshell crabs is the non-molting portion of
survivors of crabs from summer:
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Males >123 mm CL were grouped together to form the last length class.
Sublegal males (<104 mm CL) are not legally retained in the commercial
catch but are sorted, discarded, and subjected to handling mortality. Be-
cause of lack of data and complexity, we did not model handling mortali-
ty. Instead for simplicity we considered handling mortality to be included
in the M estimates.

Following Balsiger’s (1974) findings, we used a reverse logistic func-
tion to fit molting probabilities as a function of length and time:
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where αt, βt, and δt are parameters, and ι is the mean length of length class
l. The sample size for the mark-recapture data is too small to estimate
annual molting probabilities. However, residuals of length and shell com-
positions under a single molting probability function suggest molting prob-
abilities for Norton Sound red king crab were different during three periods:
1976-1981, 1982-1990, and 1991-1997. Accordingly, three logistic func-
tions were used to describe molting probabilities during different periods,
resulting in three sets of parameters: α1 and β1, α2 and β2, and α3 and β3. δt

was set to 1 for all years except in 1993 when it was set to 0.35 to closely
fit the low molting probability. The unusually long ice coverage in 1993
may have caused most crabs to skip molt.

We modeled recruitment, Rt, as a stochastic process about the medi-
an, R0:

    R R e Nt t R
t= 0

20τ τ σ, ~ ( , ). (5)

Rt was assumed only to enter length classes 1 and 2 (Table 2); thus, Rl,t = 0
when l ≥ 3. The recruits belonging to the first two length classes are:

    R rR R r Rl t t t t, ,, ( ) ,= = −2 1 (6)

where r is a parameter ≤ 1.
Estimated length and shell compositions of winter commercial catch

were derived from the winter population, winter selectivity for pot, and
proportion of legal crabs for each length class:
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where Ll is proportion of legal crabs for length class l estimated from the
observer data, Sw,l is winter selectivity for pot for length class l, and µ is an
additional selectivity parameter for oldshell crabs. Based on winter pot
survey data, winter selectivities for length classes 3-5 were assumed to be
1, Sw,1, Sw,2, Sw,6, and µ were estimated as parameters, and µ was greater
than one.

 The subsistence fishery does not have a size limit, but crabs smaller
than length class 3 are generally not retained. So, we estimated length
compositions of subsistence catch when l > 2 as follows:
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Estimated length compositions of winter pot survey for newshell and old-
shell crabs Psw,n,l,t and Psw,o,l,t were also based on equation (7) except that
l ≥ 1.

Estimated length and shell compositions of summer commercial catch
were based on summer population, selectivity, and legal abundance:
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where vl are additional selectivity for oldshell crabs, Ss,l is pot selectivity
for the summer commercial fishery, and At is exploitable legal abundance
in year t. Based on catch data, vl were equal to 1 except the last length
class, v6, which was estimated as a parameter (<1), and Ss,l was described
by a logistic function with parameters φ and ω:
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Ss,l was scaled such that Ss,5 = 1 and Ss,6 ≤ 1. Exploitable abundance was
estimated as
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Summer fishing effort (ft, measured as the number of potlifts) was esti-
mated as total summer catch, Ct, divided by the product of catchability q
and mean exploitable abundance such that
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Because of the change in the fishing fleet and pot limit in 1993, q was
replaced by q1 for fishing efforts before 1993 and by q2 after 1992. Esti-
mated length and shell compositions of bycatch were:
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Replacing vl and Lt in equations (9) and (11) with 1 resulted in estimated
length compositions of the summer preseason survey for both newshell
and oldshell crabs, Psf,n,l,t and Psf,o,l,t.

Estimated length and shell condition compositions of summer pot
survey abundance were
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where Ssp,l = 1 when l ≥ 3, and Ssp,1 and Ssp,2 were estimated as two parame-
ters. Similarly, length and shell condition compositions of summer trawl
survey abundance were estimated with selectivity Sst,l = 1 when l ≥ 3, and
Sst,1 and Sst,2 were two parameters. Because some trawl surveys occurred
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during the molting period, we combined the length compositions of new-
shell and oldshell crabs as one single shell condition, Pst,l,t.

Parameter Estimation
We used tagging data to estimate mean growth increment per molt and
standard deviation for each premolt length class (Table 2). The growth
matrix was derived from normal distributions generated with estimated
mean growth increments per molt and standard deviations (Table 2). Ob-
served growth increments per molt are approximately normally distributed.

A maximum likelihood approach was used to estimate 41 parameters,
which include catchability, parameters for selectivities of survey and fish-
ing gears and for molting probabilities, recruits each year except the last,
and total abundance in the first year. Under assumptions that measure-
ment errors of annual total survey abundance and summer commercial
fishing effort estimates follow lognormal distributions and length and
shell composition estimates from each data set have a multinomial error
structure (Fournier and Archibald 1982, Methot 1989), the log-likelihood
function is
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where i stands for a data set (1 for summer trawl survey, 2 for summer pot
survey, 3 for winter pot survey, 4 for summer preseason survey, 5 for
summer fishery, and 6 for observer data during the summer fishery); j
represents shell condition (1 for newshell and 2 for oldshell); ni is the
number of years in which data set i is available; k = 1 stands for legal crabs
and k = 2 for non-legal crabs; Ki,t is the effective sample size of length and
shell compositions for data set i in year t;     

ˆ
, , ,Pi j l t  and Pi,j,l,t are observed and

estimated length compositions for data set i, shell condition j, length class
l, and year t; κ is a constant equal to 0.001; Wi is the weighting factor of
annual total survey abundance for data set i;     

ˆ
, ,Bi kt  and Bi,k,t are observed

and estimated annual total abundances for data set i and year t; Wf is the
weighting factor of the summer fishing effort;     f̂t  and ft are observed and
estimated summer fishing efforts; and WR is the weighting factor of re-
cruitment. We did not impose measurement error on total annual catch.
Variances for total survey abundance and summer fishing effort estimates
were not estimated; rather, we used weighting factors to reflect these vari-
ances.
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Crabs usually aggregate and, thus, are not completely independently
sampled. To reduce the non-independent effect, annual total sample sizes
of length and shell compositions for all data sets were reduced by 50%. In
addition, annual effective sample sizes were capped at 400 to avoid over-
weighting the data with a large sample size (Fournier and Archibald 1982).
Weighting factors represent prior assumptions about the accuracy or the
variances of the observed data or random variables. Wi was set as 200 for
all survey abundances, Wf was set to be 100, or 50% of Wi, and WR was set to
be 0.01. According to the fishery manager (C. Lean, ADFG, personal com-
munication), the CPUE in 1992 was not as reliable as in the other years.
Therefore, we weighted the effort in 1992 half as much as in the other
years. Sensitivity of estimated legal abundance to changes in Wi, Wf, and
maximum effective sample size was investigated.

Because of confounding effects among natural mortality, catchability,
and recruitment, we did not estimate M in the model. Based on Low (1991)
and Kruse et al. (1996), M was assumed to be 0.3. We examined sensitivity
of estimated legal abundance to different assumptions about M.

We estimated parameters with AD Model Builder (Otter Research Ltd.
1994) using the quasi-Newton method to minimize –1 times likelihood
values. To reduce the number of parameters, we assumed that length and
shell compositions, from the first year (1976) summer trawl survey data,
approximate true compositions. Abundances by length and shell condi-
tion in all other years were computed recursively from abundances by
length and shell condition in the first year and by annual recruitment,
catch, and model parameters. Initial parameter estimates were an educat-
ed guess based on observation and current knowledge. The results were
quite robust in terms of sensitivity to the initial parameter values; the
final estimates are the same with the initial parameter values within ±30%
of the educated guess.

Results
The model fit well to observed total and legal male trawl abundances ex-
cept in 1979 when the trawl survey greatly underestimated the crab abun-
dance (Fig. 1). Observed pot survey abundances were not fit as well as
observed trawl survey abundances, especially for the first two surveys.
Estimated fishing effort for the summer commercial fishery was very sim-
ilar to, but smoother than, observed fishing effort in most years (Fig. 1).
This close fit between the observed effort and the model effort, which is
calculated from catch and abundance data, indicates that the CPUE of the
summer commercial fishery is closely associated with the estimated legal
abundance.

The residuals of length and shell compositions were generally large,
except for the summer pot survey (Fig. 2, 3). The large residuals for the
trawl survey are probably due to small sample sizes; all trawl surveys
except in 1976 caught fewer than 200 legal crabs. The large residuals for
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Figure 1. Comparison of observed and estimated Norton Sound red king crab abun-
dances (legal and total males) by summer trawl and pot surveys (upper
plot) and observed and estimated summer fishing efforts (lower plot).
“Survey Tot Est” and “Survey Leg Est” are total and legal catchable male
abundances estimated by the model, respectively. Catchable abundance
is equal to population abundance times survey selectivities.
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Figure 2. Residuals of length and shell compositions by year for summer trawl and
pot surveys and observer data for Norton Sound red king crab. Numbers
in the legend represent length classes. All plots have the same legend.
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Figure 3. Residuals of length and shell compositions by year for winter pot surveys
and summer fishery for Norton Sound red king crab. Numbers in the
legend represent length classes. All plots have the same legend.
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the winter pot surveys and observer data also occurred in those years
with a small sample size. The likelihood function placed less weight to
those data with a small sample size. The sample sizes for the summer
commercial fishery were large for most years; the large residuals may
indicate a large sampling error. Residuals were generally uncorrelated
among years, length class, and shell condition with two exceptions: (1)
residuals of newshell length classes for the winter pot surveys were gen-
erally negative for large length classes and positive for small length class-
es from 1981 to 1986, and (2) residuals of newshell length class 5 for the
summer commercial fishery were mostly positive. These patterns could
be modeled by increasing selectivity parameters. However, because the
population abundance estimates are unaffected, we chose not to increase
the number of model parameters to account for them.

Selectivities for both summer trawl and pot surveys were essentially
identical; both were higher than for the summer commercial pot fishery
(Table 3). The winter pot surveys caught a small number of crabs in the
first and last length classes. A small proportion of crabs belonged to legal
crabs in length class 3, and almost all crabs in the last three length classes
were legal crabs (Table 3). Here the proportion of legal crabs was only
used to separate retained catch in the observer data. For the purpose of
this study, legal crab abundance was the sum of abundances in the last
three length classes. Molting probabilities were the highest during 1982
to 1990 and lowest during 1976 to 1981 (Table 3), but the differences
were small.

Population abundances were very high in the late 1970s and low in
the early 1980s and mid-1990s (Fig. 4). Recruitment fluctuated greatly
during the past two decades. An exceptionally strong recruitment in 1976
was followed by three years of very weak ones, and then recruitment in-
creased to 1982 with a slightly downward trend from 1983 to 1993. After
failing in 1993, recruitment increased during the last three years. High
harvest rates (>25%) from the summer fishery occurred from 1979 to 1981,
and since then harvest rates have been below 22% (Fig. 4).

Standard deviations of estimated parameters and abundances were
artificially small except for those of recruitment estimates. Coefficients of
variation for recruitment estimates were from 14% to 72% for 16 out of 21
years, whereas coefficients of variation for other parameter and legal crab
abundance estimates were below 11%. Such small standard deviations may
partially be caused by the assumptions made in the model and a small
number of survey abundances available to estimate catchabilities of the
commercial fishing gear. AD Model Builder may also underestimate the
standard deviations.

Estimates of parameters and legal crab abundance were not very sen-
sitive to weighting factors for survey abundances and fishing effort, and
maximum effective sample size (Table 4; Fig. 5). Increasing weight for
fishing effort resulted in decreasing estimated legal abundance from 1976
to 1979 and from 1989 to 1997, whereas increasing weight for survey
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Table 3. Estimated selectivities, molting probabilities, and proportions
of legal crabs by length (mm CL) class for Norton Sound male
red king crab.

Selectivities Molting probabilities

Length Length Proportion  Summer  Summer Winter  Summer 1976- 1982- 1991-
class range of legals   trawl  pot surv  pot surv  fishery 1981 1990 1996

1 74-83 0.00 0.60 0.60 0.31 0.22 1.00 1.00 1.00

2 84-93 0.00 0.65 0.65 0.61 0.42 1.00 1.00 1.00

3 94-103 0.15 1.00 1.00 1.00 0.66 0.83 0.89 0.88

4 104-113 0.92 1.00 1.00 1.00 0.87 0.61 0.74 0.70

5 114-123 1.00 1.00 1.00 1.00 1.00 0.40 0.57 0.49

6 >123 1.00 1.00 1.00 0.31 1.00 0.24 0.41 0.30

abundances increased estimated abundances. Without survey abundance
data, estimated legal crab abundances would be much smaller. Maximum
effective sample sizes ranging from 100 to 1,500 hardly affected estimat-
ed legal abundances except during the first three years. Assumed natural
mortality influenced recruitment estimates but had limited impact on es-
timates of legal abundances (Fig. 5; Table 4). Higher natural mortality re-
sulted in higher recruitment estimates for all years and higher estimated
legal crab abundances during the 1970s and lower abundances after 1988.

Discussion
The advantage of a length-based approach to estimate crab population
abundance is that it synthesizes survey, fisheries, and tagging data, and
links abundances from multiple years together. Thus, the random compo-
nent of measurement errors in abundances estimated directly from sur-
vey or fisheries data can be filtered out, and the abundance can be projected
in years without survey data. The length-based synthesis model is partic-
ularly useful for Norton Sound red king crab, for which multiple types of
survey data are sporadically available, but none individually provides
enough information to estimate abundances each year. The model fit the
survey and fisheries data well, and population abundance estimates from
the model were much smoother than those estimated by survey data di-
rectly.

Weights for different types of data sets that are contradictory can
affect the population estimates substantially (Hilborn and Walters 1992;
Schnute and Hilborn 1993). Although our data sets contradicted each other
in some years (e.g., the catch was higher than the legal population abun-
dance estimated by the trawl survey in 1979, and proportions of oldshell
crabs were much higher from the winter surveys than from the commercial
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Figure 4. Estimated total and legal male abundances and recruits (upper plot), and
total summer catches and harvest rates (lower plot) of Norton Sound red
king crab from July 1, 1976, to June 30, 1996.
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Figure 5. Comparison of estimated legal crab abundances (millions of crabs) un-
der different weighting factors applied to summer fishing effort and sur-
vey abundances and under different natural mortalities and maximum
effective sample sizes.
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Table 4. Summary of parameter estimates for a length-based stock syn-
thesis population model of Norton Sound red king crab.

Parameter Base Wf = 50 Wf = 200 Wi = 100 Wi = 500 M = 0.25 M = 0.35 K∞ = 200 K∞ = 800

N76 5.69 5.76 5.56 5.15 6.45 5.44 5.94 6.11 5.21

R76 2.75 2.57 3.05 3.13 1.92 2.05 4.00 2.30 3.02

R77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R78 0.02 0.02 0.01 0.06 0.00 0.01 0.02 0.00 0.06

R79 0.34 0.34 0.34 0.29 0.38 0.30 0.38 0.37 0.29

R80 1.10 1.09 1.12 1.07 1.25 0.95 1.21 1.22 1.04

R81 0.90 0.89 0.92 0.91 0.86 0.72 1.05 0.92 0.89

R82 1.06 1.07 1.04 1.07 1.01 0.89 1.26 1.00 1.11

R83 1.71 1.69 1.74 1.76 1.67 1.39 1.92 1.71 1.71

R84 0.93 0.94 0.89 0.91 0.94 0.71 1.12 0.92 0.93

R85 1.01 1.02 1.00 1.07 0.85 0.81 1.20 0.93 0.95

R86 1.22 1.26 1.17 1.10 1.41 0.94 1.46 1.25 1.18

R87 0.49 0.51 0.45 0.43 0.61 0.38 0.59 0.65 0.47

R88 0.96 1.03 0.86 0.95 0.98 0.78 1.15 0.91 1.00

R89 0.92 0.98 0.82 0.88 0.96 0.71 1.11 0.89 0.95

R90 0.53 0.52 0.53 0.53 0.53 0.43 0.58 0.56 0.56

R91 0.82 0.87 0.75 0.83 0.77 0.68 1.00 0.73 0.92

R92 0.66 0.70 0.61 0.66 0.64 0.54 0.76 0.54 0.70

R93 0.01 0.01 0.02 0.01 0.02 0.01 0.05 0.08 0.00

R94 0.53 0.55 0.49 0.53 0.53 0.45 0.57 0.55 0.58

R95 0.94 0.96 0.90 0.89 1.04 0.76 0.99 0.98 0.94

r 0.60 0.61 0.59 0.64 0.58 0.64 0.55 0.59 0.61

q1 1.85e–5 1.85e–5 1.84e–5 1.88e–5 1.81e–5 1.86e–5 1.89e–5 1.81e–5 1.88e–5

q2 1.52e–5 1.44e–5 1.66e–5 1.56e–5 1.49e–5 1.42e–5 1.66e–5 1.57e–5 1.43e–5

α1 0.08 0.08 0.08 0.08 0.07 0.07 0.09 0.08 0.08

β1 137.08 137.04 137.07 136.92 137.43 138.53 136.10 137.91 135.54

α2 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07

β2 117.84 117.65 118.21 118.05 117.47 117.48 118.29 117.60 120.49

α3 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.08 0.07

β3 115.45 115.68 115.04 115.79 114.73 114.86 115.92 114.79 116.38

Sst,1 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Sst,2 0.65 0.61 0.70 0.60 0.60 1.00 0.60 0.60 0.60

Ssp,1 0.60 0.60 0.60 0.57 0.60 0.60 0.58 0.60 0.60

Ssp,2 0.65 0.65 0.65 0.68 0.60 0.81 0.60 0.61 0.67

Sw,1 0.31 0.30 0.31 0.28 0.32 0.31 0.32 0.34 0.28

Sw,2 0.61 0.61 0.60 0.62 0.61 0.68 0.60 0.61 0.61

Sw,6 0.31 0.31 0.30 0.30 0.31 0.26 0.36 0.31 0.29

m 1.43 1.43 1.42 1.45 1.40 1.30 1.62 1.51 1.59

φ 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07
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Table 4. (Continued.)

Parameter Base Wf = 50 Wf = 200 Wi = 100 Wi = 500 M = 0.25 M = 0.35 K∞ = 200 K∞ = 800

ω 108.22 107.65 109.34 106.53 109.49 99.63 115.72 110.63 107.18

ν6 0.50 0.50 0.50 0.50 0.50 0.50 0.57 0.50 0.50

Log- –28,691 –28,524 –29,007 –28,257 –29,784 –28,737 –28,717 –16,871 –43,957
likelihood

Recruits R are in millions of crabs. Unless indicated, the weighting factors are 200 for survey abun-
dances (Wi) and 100 for summer fishing effort (Wf ), the maximum effective sample size (K∞ ) is 400, and
natural mortality (M ) is 0.3.

catches in 1986 and 1992), the overall trends of all data sets are basically
consistent. Therefore, our results are not very sensitive to different weight-
ing factors. Because the commercial harvest is limited to legal crabs and
the surveys are designed to estimate the legal component of the popula-
tion, weighting legal and non-legal crab abundances separately improves
estimates of catchability parameters of the commercial fishing gear and
helps stabilize population estimates. Estimates of legal crab abundances
are more sensitive to the weighting factors if legal and non-legal abun-
dances are not weighted separately.

Different data sets for Norton Sound red king crab complement each
other. Winter surveys are inexpensive to conduct and provide length and
shell condition information to gauge relative recruitment strength before
the coming summer fishery. Currently, winter surveys are the only sur-
veys that are economically feasible to conduct each year. However, be-
cause winter conditions vary each year and limit the area sampled, winter
surveys do not provide reliable information on absolute or relative abun-
dance indices. Summer surveys extensively cover crab habitats and, com-
bined with tagging studies, provide crucial information on absolute
population abundances. But high cost of the surveys in this remote region
of Alaska makes them infeasible each year. The preseason survey during
summer, which was voluntarily sponsored by the fishermen, is rarely con-
ducted. For most years, summer fishery data provide information only on
legal crabs because of lack of observer data on small vessels. The synthe-
sis of all data sets provides information each year to estimate population
abundance and dynamics.

In our case, fitting fishing effort is equivalent to fitting CPUE because
catches are fairly accurately estimated. The model fit summer fishing ef-
fort quite well, and the trend of fishery CPUE basically agreed with survey
data. Wide fluctuation of CPUE over time was partially caused by alterna-
tion of high and low fishing effort on an annual basis. The changes in size
of fishing vessels, pot limit, and fishing patterns in 1993 and 1994 prob-
ably caused change in catchability. Small vessels tend to fish in shallower
waters than large vessels. Our results indicate that catchability after 1992
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was lower than that in the earlier years. However, there is only one sum-
mer survey that can be used to scale catchability of summer fishing effort
after 1992. More summer surveys are needed to derive a reliable estimate
of recent catchability.

Natural mortality is one of the most important parameters affecting
population abundance estimates by a length-based stock synthesis mod-
el. Unfortunately, little information is available to estimate M for Norton
Sound red king crab. Following Low (1991) and Kruse et al. (1996), we
assumed M as 0.3, and in addition, the natural mortality for the last length
class was assumed as 1.6M based on the interactive analysis of residuals.
It is intuitive that large-sized, slow-growing old crabs suffer a higher nat-
ural mortality caused by senescence. Likewise, because molting probabil-
ity declines with increasing size, oldshell crabs tend to be older than
newshell crabs and may also suffer a higher natural mortality. However,
data are not available to estimate natural mortality for oldshell and new-
shell male crabs separately, and residual patterns do not suggest different
natural mortalities. Overall, the robustness of legal abundance estimates
to M suggests that uncertainty about natural mortality is not a concern as
long as it ranges from 0.25 to 0.35.

Our results suggest that molting probabilities were variable over time,
but the difference was small for most years except 1993. Variable molting
probabilities over time are reported for red king crabs in Bristol Bay and
off Kodiak Island (Balsiger 1974; Zheng et al. 1995, 1996). The extremely
low molting probability in 1993 was probably caused by colder than nor-
mal temperatures associated with a protracted period of ice cover. Length
frequency data from the summer fishery and winter survey confirmed
this low molting probability. Variable molting probabilities over time will
create uncertainty affecting future population projections. Fortunately,
winter surveys are conducted after molting is completed, so they provide
information to assess unusually high or low molting probabilities for 1-
year-ahead projections.

Our model results can be used to improve the management of the
Norton Sound red king crab fisheries. The current constant harvest rate
strategy requires estimates of legal crab abundance before the summer
fishery. The current practice is to directly use the most-current survey
estimate, regardless of measurement errors and how long ago the survey
was conducted. This approach could result in much higher or lower har-
vest rates than expected; for example, estimated harvest rates were con-
sistently lower from 1988 to 1992 and much higher from 1994 to 1996
than the targeted rate of 10%. With the length-based synthesis model, le-
gal abundance can be projected before the summer fishery each year re-
gardless of whether a survey is conducted. In addition, the model filters
out random measurement errors and thus provides more reliable abun-
dance estimates than observed abundances. Therefore, the model approach
reduces not only the uncertainty on legal abundance estimates but also
annual variation in catch. With improved abundance estimates and the
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current conservative management strategy, risks of overfishing the stock
will be greatly reduced.
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Abstract
Southern bluefin tuna (SBT) is a highly migratory pelagic species with rea-
sonably complete catch and effort time series data for the entire history
of its exploitation. The information base for assessing its status is rich
compared to that available for most large pelagic fisheries. The current
SBT stock assessment is based on information from catch per unit effort
(CPUE), qualitative fishery indicators, and virtual population analyses (VPA)
tuned to CPUE and tagging data using the ADAPT framework (Gavaris 1988).
Within this framework conflicting results about the most recent trends
and future projections occur, depending on hypotheses used regarding
natural mortality rates, selectivity, and methods for modeling the older
aged fish. A full cross of the parameter space representing hypotheses for
the major uncertainties results in thousands of VPAs, which can no longer
be individually assessed. Instead, a sample of the parameter space is tak-
en and a weighted mean estimate of the status of the stock is produced.
The approaches and methods for identifying, weighting, sampling, and
incorporating uncertainties into the assessment process for SBT are de-
scribed and discussed. The VPA estimates of the current status of the SBT
spawning stock relative to historical levels exhibit a remarkable degree of
robustness to the range of hypotheses while the estimates of absolute
stock size exhibit a much wider range of variability. Not all hypotheses for
the major uncertainties were equally compatible with the data and we
explore the effects on the results of weighting them by an objective lack
of fit index. We also look at the effects on the results of different prior
weightings. The results emphasize the need for an integrated and bal-
anced research strategy if substantial improvements to the assessment
are to be achieved.
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Overall, this paper outlines one approach for integrating and evaluat-
ing the large number of hypotheses across a number of dimensions repre-
senting some of the major sources of uncertainty in the SBT assessment.
The method has provided a useful approach for synthesizing results, de-
termining the sensitivity and importance of uncertainties to different in-
puts and model structures, comparing the results across different user
specified input prior weights, and examining the compatibility of the data
with various hypotheses in terms of lack of fit.

Introduction
In this paper we present a method for addressing multidimensional un-
certainty in the assessment of the southern bluefin tuna (SBT) stock. We
explore a large parameter space that incorporates alternative hypotheses
used to address these uncertainties. We look at the robustness of the re-
sults, and the effects on the results of different prior weightings for the
different hypotheses. We also explore the effects on the results of weight-
ing them by an objective lack of fit index.

Southern bluefin tuna is a highly migratory pelagic species for which
the information base for assessing the status of the stock is rich com-
pared to that available for fisheries on most large pelagic species. There is
relatively complete catch and effort data for almost the entire history of
exploitation as well as extensive auxiliary biological and tagging data.

Advice on the status and recovery of the SBT stock is based on infor-
mation from catch per unit effort (CPUE), qualitative fishery indicators
(e.g., presence or absence of fish in areas where they were abundant his-
torically) and virtual population analyses (VPA) using the ADAPT frame-
work (Gavaris 1988). Within this framework conflicting results about the
most recent trends and future projections occur, depending upon hypoth-
eses used regarding natural mortality rates, selectivity, and methods for
modeling the older aged fish (Polacheck et al. 1992, 1996, 1997b; Ishizuka
and Tsuji 1990; Tsuji and Takeuchi 1997; Klaer et al. 1996, 1997).

To address these conflicts there has been increased research effort
into many biological and modeling assumptions, which has yielded im-
proved information on changing growth rates, direct aging, longevity, age
of maturity, and age-specific mortality. Many plausible hypotheses for the
observed data and underlying stock and fishery dynamics have been de-
veloped.

The VPA tuning process is based on a user-defined objective function,
which allows for integration and evaluation of these hypotheses and data.
Differential weighting of parts of the objective function allows us to ex-
amine and evaluate the consistency, sensitivities, residuals, and sources
of lack of fit and areas of uncertainty in the overall assessment results.
Examination of the compatibility of the data and various hypotheses in
terms of lack of fit, has led to the development of a lack of fit index which
can be used to weight model results (Polacheck et al. 1997c, 1998).
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In the past a small number of VPAs was examined and the results
synthesized by simple visual analysis. The increased research effort of
recent years has resulted in consideration of a larger number of dimen-
sions of uncertainty and range of hypotheses within each dimension as a
basis for the stock assessment and management advice. A full cross of the
parameter space results in thousands of VPAs, which no longer can be
individually assessed. Instead, a sample of the parameter space is taken
and a weighted mean estimate of the status of the stock is produced. In
addition, the stock assessment procedure includes weighting of the dif-
ferent hypotheses by the three national delegations of scientists involved
in the Commission for the Conservation of SBT (CCSBT). The model re-
sults can then be combined to give a mean weighted estimate of the status
of the stock for each delegation.

The specification and application of the delegation weights is ad hoc.
The procedure is meant to incorporate each delegation’s judgment of the
prior likelihood of the different hypotheses plus an update of these priors
based on their assessment of the consistency of the VPA results with the
basic available data (i.e., in a very informal and subjective sense mimick-
ing a Bayesian process). It is recognized by all the scientists involved in
the assessment process that there is a need to develop a more objective
and statistically based procedure for weighting the different VPA results
(see Polacheck et al. [this volume] for a discussion of the problems in-
volved). The results discussed in this paper reveal the value of integrating
all available data into a single assessment framework that can be used to
test for consistency of the information. They also demonstrate the power
of the ADAPT framework to perform this integration within the VPA con-
text and the importance of examining the implication of unresolved
inconsistencies and uncertainties for both the assessment and the man-
agement of the stock. The approaches and methods for identifying, weight-
ing, sampling, and incorporating uncertainties into the assessment process
for SBT are described and discussed.

Material and Methods
The basic catch and age data used in the analyses are documented in
Polacheck et al. (1997e) and the details of the VPA model structure and
inputs are documented in Polacheck et al. (1997a).

In the analyses presented here, uncertainties in the following dimen-
sions were initially identified as important for evaluation:

1. Estimates of the total catch by age and year.

2. Interpretation of catch rates as indices of abundance.

3. The age-specific natural mortality rates.

4. Parameters to estimate.
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Table 1. The range of hypotheses considered for the different uncer-
tainties.

Uncertainty Options

1. Catch at age 1. Standard transition model

2. Standard plus recent additional catches

2. CPUE interpretation 1. geoa: spatially correlated errors; area and
latitude fixed effects (Thomas and Tosca
1997)

2. geoc: spatially correlated errors; no fixed
effects (Thomas and Tosca 1997)

3. Variable square: aus1var (Hearn and
Polacheck 1997)

4. Constant square: aus5con (Hearn and
Polacheck 1997)

5. Quasi variable: jpnqv (Nishida and Tsuji
1997)

3. Natural mortality Mortality rate vectors 1-10 (see Table 3)

4. Parameters estimated 1. All terminal age Fs (i.e., F11,1969 to F11,1996)
and F4,1996, F5,1996, F7,1996

2. Every 5th year terminal age Fs with linear
interpolation between them (i.e., F11,1969,
F11,1974, F11,1979, F11,1984, F11,1989, F11,1994,
F11,1996), and F4,1996, F5,1996, F7,1996

5. Validity of effort tuning 1. weight = 0
index 2. Weight = 1

6. Validity of 1990s tagging 1. Weight = 0
data for providing estimates 2. Weight = 1.0; reporting rate model 1
of fishing mortality rates 3. Weight = 1.0; reporting rate model 5
(see Polacheck 1997d for 4. Weight = 1.0; reporting rate model 8
description of tagging data
and reporting rate models)
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5. The validity of the effort tuning index.

6. The validity of the 1990s tagging data to provide information on fish-
ing mortality rates and the uncertainty in the reporting rates.

7. Method of estimating the plus group.

a. The estimator for the initial size of the plus group.

b. The terminal age class (i.e., the final age class before the plus group)
used in the assessment.

c. Structural assumptions regarding selectivity.

d. Validity of the plus group CPUE as an index of abundance.

Table 1 provides a list of the main alternative models or hypotheses
that have been developed to represent the identified uncertainties. Po-
lacheck et al. (1997a) and references therein provide details on the basis
for the various alternative models. A large number of different models
and hypotheses have been proposed for estimating the size of the plus
group. These involve the hypotheses under uncertainty 7 in Table 1. They
result from different assumptions and hypotheses about selectivity and

Table 1. (Continued.)

Uncertainty Options

7. PLUS group options

a. Estimator for the initial 1. λ = 1.00
size of the plus groupa 2. λ = 0.75

3. λ = 1.50

4. λ = estimable parameter

5. Alpha method (Restrepo and Legault 1995)

b. Terminal age class 1. Terminal age = 11

2. Terminal age = 7

c. Validity of Fcontinuity 11-12+ 1. Weight = 0
term (Tsuji and Takeuchi 2. Weight = 1
1997)b

d. Validity of plus group 1. Weight = 0
CPUE index 2. Weight = 1.0

a For some plus group estimation procedures the initial size of the plus group (in numbers) is estimat-
ed as a scaler of the stable age distribution given the estimated natural and fishing mortality rates
for the terminal age class (see Polacheck et al. 1997a). λs the parameter specifying the scaler.

b Fcontinuity 11-12+ is a term added to the objective function which attempts to maintain to the extent
possible a proportional relationship for selectivity within each year between ages 11 and the plus
group.  It has the form ∑[(lnF10,y – lnF11,y) – (lnF11,y – lnF12+,y)]2.
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the reliability with which the age of the larger fish can be estimated from
their lengths (see Polacheck et al. 1996, 1997a). At the 1997 CCSBT scien-
tific committee meeting, these plus group estimation methods and struc-
tural hypotheses were condensed into a single, combined “plus group”
uncertainty dimension. This was because some combinations of models
and hypotheses within uncertainty 7 in Table 1 cannot be crossed (al-
though a conditional approach could also have been used). At the meet-
ing, the options within this plus group uncertainty were arbitrarily limited
to the 10 listed in Table 2 due to time and computing resource constraints.
The 10 options chosen were based on the national delegations’ assess-
ment of the most critical ones to consider. Only these 10 options are con-
sidered here. Ten age-specific natural mortality vectors were used (Table 3).

The number of individual VPA estimates required to produce a full
cross of all the options listed in Table 1 for the first six uncertainties plus
the 10 plus group options in Table 2 is extremely large (16,000). It is not
feasible to perform all of these analyses within the time frame of the “nor-
mal” assessment process, or to examine in detail a reasonable proportion
of them. Instead a large random sample (1,000) of VPA estimates was gen-
erated across all of the dimensions and the results summarized. The se-
lection of hypotheses/models across the parameter space for each
individual run is made at random such that within each of the dimensions
for the first six uncertainties in Table 1 and for the 10 plus group options
in Table 2 all individual hypotheses/models are considered and have equal
probability of being selected. The randomization process is done with
replacement.

In this sampling of the parameter space, weights are assigned to all of
the VPA estimates and then summary statistics are calculated as a weight-
ed mean across all of the VPAs run in the sample set. Four individual
weights are assigned to each VPA and then a total weight for a VPA is
calculated based on the product of these four weights. The four weights
are

1. An input user specified prior weight.

2. A convergence weight.

3. A lack of fit output calculated weight.

4. A surplus yield weight.

The input user specified weights are meant to be selected taking into
account information that supports the different hypotheses within each
of the dimensions and taking into account the consistency of the VPA
results with the basic available data (i.e., an examination of the VPA re-
sults is undertaken prior to the assignment of the weights). Only marginal
weights for each dimension are specified. Weightings assigned by three
delegations of scientists at the most recent scientific committee meeting



Symposium on Fishery Stock Assessment Models 619

Table 3. Natural mortality vectors.

Age v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

0 0.500 0.500 0.500 0.500 0.400 0.400 0.400 0.300 0.300 0.200

1 0.483 0.450 0.417 0.400 0.383 0.350 0.333 0.283 0.267 0.200

2 0.467 0.400 0.333 0.300 0.367 0.300 0.267 0.267 0.233 0.200

3 0.450 0.350 0.250 0.200 0.350 0.250 0.200 0.250 0.200 0.200

4 0.367 0.300 0.233 0.200 0.300 0.233 0.200 0.233 0.200 0.200

5 0.283 0.250 0.217 0.200 0.250 0.217 0.200 0.217 0.200 0.200

6 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200

7 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175

8 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150

9 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

11 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

12 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

Table 2. Plus group options.

1 2 3 4 5 6 7 8 9 10

Terminal age 11 7 11 11 11 11 11 11 11 11

CPUE 12+ index On On On Off On Off Off On Off On

Fcont 11-12+ On Off Alpha Off Off Alpha Off Off Off Off
or Alphaa

λ Est Est Est 1 1 1 0.75 0.75 1.5 1.5
a Alpha refers to the method of estimating the plus group that has been adopted by ICCAT for assess-

ing Atlantic bluefin tuna (Restrepo and Legault 1995).
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of the Commission for the Conservation of SBT are considered (Table 4;
CCSBT 1997), plus an option in which all hypotheses are assigned the
same weight (referred to as the equal weighting option).

The convergence weight is set to one if the quasi-Newton procedure
used for estimating the VPA parameters satisfactorily met all of the con-
vergence criteria, otherwise zero. Zero convergence occurs where the best
estimate is at a constraint. Two constraints are imposed; all estimates of N
need to be positive and terminal Fs need to be less than 2.0. Zero conver-
gence also occurs for runs in which the minimization procedure failed to
converge (i.e., the number of iterations exceeded the maximum allowed
within the computer code). The maximum number of iterations were ex-
ceeded in cases where there was a sharp gradient in the objective function
at a constraint and/or a tradeoff among which parameters to set at a con-
straint value. In an automated procedure, the best way to handle uncon-
verged results and results which converge at a constraint is not clear. The
approach adopted here of assigning these zero weights was based partial-
ly on pragmatic considerations that it does not make sense to include
nonconverged estimates, while recognizing that additional effort ideally
should be expended on finding the converged results. With respect to
results that converge at a constraint, there is no clear best approach. On
the one hand the results are “real” estimates for the specified model given
that one considers that the constraints as part of the model. On the other
hand, the constraints are there because values in excess of them are con-
sidered to be “unrealistic.” As such, the estimate which includes an esti-
mated value for a constraint is at the limit of being “realistic” and as such
highly unlikely. This would suggest that such results should be down-
weighted, if not completely discounted. On balance, the decision was made
to discount such results.

The lack of fit output weights is calculated using the procedure devel-
oped in Polacheck et al. (1997c, 1998). This lack of fit weight is based on
results of diagnostic tests on regression residuals, i.e., the difference be-
tween the tuning indices and the VPA estimate of stock size (assuming a
lognormal error structure). It is designed to downweight VPA runs in which
there is very substantial and significant lack of fit among the residuals in
terms of either temporal trends or nonlinearity. The lack of fit weight was
introduced to provide an approach for addressing the question of model
misspecification. Note that it does not contain any measure of likelihood
or overall general fit to the data. Also, in the current procedure there is no
updating of the delegation weights based on the basic fit to the data as
measured by the objective function.

Surplus yield, in this context, is defined as the proportional differ-
ence between the spawning stock biomass (SSB) that produced a particu-
lar recruitment and the cumulative SSB that would result from that
recruitment over its life span in the absence of fishing. The total surplus
yield for a particular VPA run is the sum of the surplus yield for each year
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Table 4. Delegation weightings for each hypothesis.

Delegation Delegation Delegation
Uncertainty Options 1 weights 2 weights 3 weights

Catch at age Standard 0.35 1 0.4

Recent additional 0.65 0 0.6
catches

CPUE interpretation geoa 0.3 0.35 0.05

geoc 0.175 0.1 0.05

Variable square 0.25 0.05 0.6

Constant square 0.1 0.3 0.2

Quasi variable 0.175 0.1 0.1

Natural mortality v1 0.05 0.08 0.15

v2 0.12 0.08 0.15

v3 0.12 0.08 0.15

v4 0.12 0.08 0.15

v5 0.15 0.12 0.1

v6 0.15 0.12 0.1

v7 0.1 0.12 0.1

v8 0.08 0.12 0.05

v9 0.08 0.12 0.05

v10 0.03 0.08 0

Tuning parameters All terminal age Fs 0.7 0.5 0.5

Every 5th year Fs 0.3 0.5 0.5

Effort tuning Off 0.35 0.95 0.5

On, weight = 1 0.65 0.05 0.5

1990 tagging data Tagging index off 0.2 0.6 0.2

Reporting rate 1 0.15 0.1 0.2

Reporting rate 5 0.25 0.1 0.2

Reporting rate 8 0.4 0.2 0.4

Plus group options 1 0.03 0.2 0

2 0.27 0.05 0

3 0 0.1 0

4 0.2 0.1 0.25

5 0.06 0.1 0

6 0 0.05 0.25

7 0.15 0.1 0.25

8 0.04 0.15 0

9 0.2 0.05 0.25

10 0.05 0.1 0
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in the VPA. The surplus yield weight is defined to be zero or one such that
if the VPA results predict surplus production less than one, then the sur-
plus yield weight is set to zero, otherwise one. This surplus yield weight
eliminates VPA runs in which the net productivity for stock has on average
been negative for the past 27 years. It ensures that the stock and recruit-
ment rates conform to the basic requirements of a viable population and
is based on the assumption that on average the recruitment to the popula-
tion must be sufficient to at least replace the loss in parental stock due to
natural mortality.

The surplus yield weight is a form of a prior assumption, which as-
sumes that the SBT stock would be self-sustaining in the absence of a
fishery. As a prior it acts indirectly as a constraint which eliminates esti-
mates with very high initial spawning biomass. There is always some dan-
ger in assuming a prior which eliminates possibilities which are not
“physically” or ”logically” impossible. However, in the current situation,
this prior was considered appropriate for a number of reasons besides the
long-term biological one for the stock to be ecologically and evolutionari-
ly viable. The SBT fishery started in the 1950s on the spawning grounds
off Indonesia and grew rapidly. The largest catches ever taken from the
stock occurred over a period of a few years in the early 1960s on the
spawning grounds. These catches were accompanied by very rapid and
steep declines in catch rates. Lack of adequate size data and tuning indi-
ces have prevented the current VPA assessment from extending back an
additional nine years to cover this initial period of heavy exploitation.
However, extremely high initial spawning biomass would be incompatible
with a stock that had been greatly reduced nine years earlier as a result of
removals on the spawning ground. (Note that recruitment in the interven-
ing period is not a likely explanation as it takes eight years for fish to
enter the spawning stock. Moreover, an indication of the levels of recruit-
ment in the 1958-1968 period can be had by extending backward the VPA
estimates for incompletely exploited cohorts in 1969. There is no indica-
tion of any extremely large year classes [see Polacheck et al. 1997a,b].)
Moreover, within the period covered by the VPA, recruitment trends in all
cases are relatively constant for the period up to 1978-1980 indicating a
high level of compensation over what would have been a period of very
rapidly declining spawning biomass. This would not seem consistent with
model results predicting no surplus productivity over the same period.

In order to get the combined mean weighted estimate for the output
statistics from individual VPAs, a weighted mean is calculated as follows:

    
X X W Ww i ij ij

jiji
= ∏∑∏∑ /

  Xw
= combined mean weighted estimate for a statistic of interest

(e.g., spawning stock biomass [SSB] in 1996);
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Xi = the estimate from the i th VPA model;
Wij = the individual possible j weightings being considered in the

analysis (i.e., weightings 1 to 4 above).

This paper focuses on how the defined uncertainties translate into
uncertainty in the estimates of current stock sizes, historical stock sizes,
and the ratio of current stock sizes to historical levels. Stock size is de-
fined in terms of SSB, which is the total weight of the sexually mature
individuals. SSB in several key years for the fishery are used to assess the
status of the stock. These include SSB in 1960 which is the earliest year for
which the SSB is estimated (1960 is near the beginning of exploitation on
this stock, and it is also the year when the largest catches were taken), SSB
in 1962 (the earliest year for which an SSB estimate is available for all
models, estimates of SSB prior to 1962 are not possible within the current
model framework for models in which the terminal age is 7), SSB in 1980
which is the current target level identified by the CCSBT for recovery of
the stock, and SSB in 1996 which is the latest year in the models. Relative
measures of the status of the stock are also examined (e.g., SSB96/62 ra-
tio, SSB96/80 ratio, SSB96/95 ratio, SSB95/94 ratio) to provide a measure
of depletion and recent relative changes in SSB.

Results
The shape of the histograms for absolute stock size estimates in 1996
show a long tail of outlying estimates (Fig. 1). Note that in all the figures,
results for the equal weighting option are used together with the conver-
gence and surplus yield weights, and the lack of fit weight has not been
included. In Fig. 2 a similar wide range in model results for the absolute
SSB values for 1962 are evident. The factors that give the higher SSB val-
ues are the terminal age 7 plus group model 2 and the variable squares
CPUE series especially in combination with use of the tagging tuning data.

The relative stock status is examined via the ratio of SSB in 96 to SSB
in 62 (Fig. 3). The general trends in the VPA results are remarkably similar
across most of the ranges of uncertainty examined. It is the absolute mag-
nitude of the estimates which varies (this is a scaling issue within the
VPAs). The current status of the stock is consistently estimated to be around
10-20% of historical stock size. The importance of the early years in as-
sessing the current status of the stock can be seen in the comparison of
the ratio of SSB96/SSB62 and SSB96/SSB60 in Fig. 3. The comparisons in-
dicate that across these VPAs the mean of the 1996 SSB is 10% of the 1960
level and 14% compared with the 1962 SSB. The recovery target for the
stock is the 1980 SSB. The mean estimate of the current status of the stock
relative to the 1980 level is 39% (Fig. 4).

To examine the effects of the different weightings, the mean and coef-
ficient of variation of the estimates are presented in Table 5. In all cases,
the results have been weighted by the convergence weight and surplus
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Figure 1. A histogram of VPA estimates of SSB in 1996.

Figure 2. A histogram of VPA estimates of SSB in 1962.
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Figure 3. A comparison of the SSB in 1996 relative to SSB in 1962 and
relative to SSB in 1960.

Figure 4. A histogram of the VPA estimates of the 1996 status of the stock rela-
tive to the target level SSB, i.e., the ratio of SSB in 1996 to SSB in 1980.
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yield weight which effectively excludes 161 of the 1,000 VPAs. Estimates
are presented for each of the four input weighting schemes (each delega-
tion’s weights plus the equal weighting option) with and without applying
the output lack of fit weight. The lack of fit weight for all of the input
weighting schemes has only a slight effect on the estimate of the current
status of the stock and increases the estimate of the absolute stock size
for all but the delegation 3 weighting scheme. The mean estimates of the
current status of the stock relative to 1962 when the lack of fit weight is
ignored is 14% for delegation 1, 13.3% for delegation 2, 11.6% for delega-
tion 3, and 14% for the equal weighting option.

For each of the delegations the mean lack of fit weight and mean sur-
plus yield are presented in Table 6. Delegation 1 had the highest lack of fit
and delegation 2 had the lowest.

Table 7 shows the mean lack of fit weight for the main factors affect-
ing the VPA results. (Note that the equal weighting option is used in Tables
7-9.) The plus group models 1, 3, 5, 6, 8, and 10 had low lack of fit weights
(<0.15) which indicates that these models do not fit the data adequately.
Plus group model 2 had the highest mean lack of fit weight and model 4
also had a reasonable overall lack of fit weight. Plus group model 2 exam-
ines the hypothesis that the terminal age should be set to 7. Plus group
model 4 excludes the CPUE for age 12+ index based on hypotheses that
there have been major changes in selectivity for older fish due to changes
in targeting and fishing practices. The mean lack of fit results for the
different CPUE series show that the VPAs were best able to fit the variable
squares and geoa CPUE series.

Mean estimates of SSB, depletion levels, surplus yield and fit weights
highlight the differences in the results that the plus group models can
produce (Table 8). Table 9 shows the range of mean depletion level esti-
mates for the set of hypotheses considered for each of the main uncer-
tainties.

The range of the mean estimates of the current stock size relative to
1962 for each of the individual hypotheses within any of the main uncer-

Table 6. The mean lack of fit weight and aver-
age surplus yield for each of the three
delegations.

Mean lack Average
Delegation of fit weight surplus yield

1 0.455 289

2 0.167 565

3 0.380 245
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tainties ranged from 0.11 to 0.18 (Table 9). Overall, across all combina-
tions of hypotheses, 80% of the estimates of this ratio were between 0.10
and 0.20 and only 0.4% were below 0.05 and another 0.65% were above
0.25 (Fig. 3). Estimates of the mean of this ratio were relatively insensitive
to the disparate individual delegation weightings and were similar to the
mean unweighted by delegation (Table 5).

The estimates of absolute stock size exhibited a much wider range of
variability and the absolute magnitude of the estimates were scaled up or
down depending on combinations of hypotheses. The scale of the bio-
mass estimates, however, is not unbounded. The data and the model
(through the magnitude of the catches in combination with the CPUE trends)
constrain the estimates of the absolute range in two ways: (1) by requiring
that the more recent stock size estimates are sufficient to have sustained
the recent catches without unrealistically high Fs, and (2) by requiring
that the historical population levels were not so great as to result in a long

Table 7. Average lack of fit weight for the
plus group models and CPUE
series.

Plus group Average lack of
option fit weight N

1 0.039 98

2 0.886 69

3 0.137 34

4 0.483 88

5 0.100 109

6 0.135 78

7 0.398 84

8 0.088 93

9 0.443 101

10 0.075 86

Average lack of
CPUE fit weight N

Variable squares 0.359 164

Constant squares 0.111 166

geoa 0.377 163

geoc 0.243 172

Quasi variable 0.259 175
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Table 8. Mean estimates of SSB, depletion levels and lack of fit weights
for the different plus group models.

Plus Mean Mean
group Mean Mean Mean Mean surplus lack of fit
model SSB62 SSB96 SSB96/62 SSB96/80 yield weight

1 370 42 0.11 0.42 666 0.04

2 1419 239 0.18 0.41 78 0.89

3 731 110 0.15 0.36 145 0.14

4 450 57 0.12 0.33 350 0.48

5 533 81 0.15 0.43 411 0.10

6 588 95 0.16 0.39 240 0.14

7 488 81 0.14 0.33 361 0.40

8 533 82 0.15 0.43 406 0.09

9 491 58 0.12 0.32 299 0.44

10 523 79 0.15 0.44 452 0.07

Table 9. The range of mean depletion level estimates for the range of
individual hypotheses considered for each of the main uncer-
tainties within the SBT assessment.

Uncertainty SSB96/62 SSB96/80

Plus group model 0.113-0.177 0.320-0.439

CPUE interpretation 0.122-0.147 0.288-0.441

Natural mortality rate 0.118-0.170 0.364-0.410

Effort index 0.139-0.141 0.386-0.387

Tagging estimates 0.127-0.157 0.371-0.398

Tuning parameters 0.131-0.152 0.379-0.397

Catch at age 0.140-0.140 0.374-0.040
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time trend of historical stock sizes with negative surplus productivity.
These two requirements resulted in 16% of the VPA results being given
zero weight and indicate that some combination of hypotheses for the
range of uncertainties are inconsistent with the basic data being used in
the assessment. These tended to be the plus group model 3 and the vari-
able squares CPUE series. However, within any of the individual uncertain-
ties considered, none of the hypotheses could be considered to be
completely inconsistent on these grounds (i.e., for any given hypothesis
within any one of the uncertainties, there were always some VPAs which
gave realistic results).

Plus group model 2 tended to yield substantially higher estimates of
absolute spawning stock levels than the other methods (e.g., its mean for
the 1962 SSB level was nearly twice that of any of the other models [Table
8]). Model 2 attempts to reconcile the inconsistency noted above with the
plus group CPUE by assuming that the source of the problem is in the
aging of older fish, and thus it sets the terminal age in the VPA at 7. In
pooling all of the ages past age 7, model 2 assumes that selectivities past
age 7 are equal when interpreting the CPUE tuning series. However, the
models with a terminal age of 11 suggested that selectivities between
ages 7 and 11 have not been equal and that there has been large changes
over time. Model 2 resulted in the highest mean lack of fit weight (Table
7), which is perhaps not surprising given that it does not have to deal with
either the inconsistencies in the CPUE time series or these selectivity chang-
es. However, a relatively high proportion of the estimates it provides sug-
gest negative net productivity for the stock. These factors combined with
the fact that the estimates of the spawning biomass is composed entirely
of the plus group raises questions about the reliability of the results from
this model.

In contrast, model 1 tends to yield the lowest absolute estimates. Model
1 is based on a terminal age of 11 and tries to minimize differences in
selectivity between ages 10 and 11 and the plus group. These differences
highlight the uncertainty and importance in the SBT assessments of the
different models for the plus group and related selectivity assumptions
(see Polacheck et al. 1997b for further discussion).

It is important to note that the different plus group models are not
equally compatible with the input data. In particular, models 1, 3, 5, and 6
always yielded VPA results in which there was significant lack of fit to at
least one of the tuning indices based on the diagnostic tests and these
models also tended to have low mean fit weights (i.e., less than 0.15) as
did model 8 and 11 (Table 7). Model 1, especially, appears to be incompat-
ible with the basic data, as the fit weight for any of its VPA results never
exceeded 0.17. For the other uncertainty dimensions, similar incompati-
bility was not apparent for any of individual hypotheses (i.e., there was
always some VPA results for which the fit weight equaled 1). However,
some combinations of hypotheses for these other uncertainties also appear
to be incompatible with the input data. For example, some combinations
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of natural mortality rates and CPUE hypotheses always yielded relatively
low fit weights.

Of the random sample of 1,000 VPAs, 161 VPAs did not meet the con-
vergence and surplus yield criteria (see above) and were given a weight of
zero. An analysis of the factors which led to VPAs having a convergence or
surplus yield weight of zero show that the variable squares and geoa CPUE
series and plus group model 3 were the main uncertainties involved (see
Table 10).

Discussion
The VPA estimates of the current status of the SBT spawning stock relative
to historical levels exhibited a remarkable degree of robustness to the
wide range of hypotheses that have been developed for the main uncer-
tainties. For example, the mean estimates of the current stock size rela-
tive to almost pre-exploitation levels (1962) ranged from 0.11 to 0.18 (Table

Table 10. The total number of VPAs given
zero convergence weight for each
of the plus group models and for
the CPUE series.

Plus group Number of VPAs with
option zero convergence weight

1 0

2 32

3 69

4 12

5 3

6 18

7 12

8 3

9 6

10 3

Number of VPAs with
CPUE zero convergence weight

Variable squares 48

Constant squares 26

geoa 38

geoc 19

Quasi variable 27
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9). A similar robustness was also exhibited in the estimates of the current
level of depletion relative to the CCSBT management defined rebuilding
target of the 1980 SSB for this stock (Fig. 4, Table 5).

As noted in the results, the estimates of absolute stock size exhibited
a much wider range of variability. For many of the hypotheses the abso-
lute magnitude of the estimates are scaled up or down without having
substantial effects on the relative trends in the VPA time series of esti-
mates (see Polacheck et al. 1997b for more detail). This appears to stem
from the fact that most of the tuning information only provides relative
indices and does not directly relate to absolute abundances or actual fish-
ing mortality rates. The CPUE and effort indices, being relative indices, are
reasonably compatible with a wide range of absolute stock size. The catch-
at-age matrix in itself is not sufficient to determine the absolute scale, i.e.,
the least square fit to these indices is flat relative to the absolute stock
size (see Polacheck et al. 1997b). In the absence of adequate other data,
some form of a structural assumption in terms of selectivity appears to be
required and these are the source of the various models for the plus group
(see Polacheck et al. 1997b).

The different hypotheses for modeling the plus group are the major
source of the large variability in the absolute estimates of spawning stock
biomass. The prominent role of the plus group estimates in this assess-
ment is of concern since the plus group estimates utilize no age and co-
hort information from the catch. This is the dominant source of information
within the VPA and catch at age estimation approaches. Thus, the mean of
the 1962 spawning stock biomass estimates vary by a factor of nearly 4
over the range of different plus group hypotheses. In some respects, this
is not surprising as the plus group comprises a substantial fraction of the
spawning age fish (i.e., in these assessments, SBT are assumed to mature
on average at age 8 and the plus group is composed of fish aged 8-40 for
plus group model 2 and 12 to 40 for the remaining plus group models).
The modeling of the plus group is problematic in the SBT assessment
because of the need for a selectivity assumption to help establish a scale
for the VPAs and because the estimated catch-at-age and CPUE series ap-
pear to be inconsistent (CCSBT 1996). The latter reflects the fact that the
CPUE series for the plus group when set at age 12 tends to be relatively
flat over an extended time period which is inconsistent with the large and
continuous decline observed for the other age classes (see CCSBT 1996;
Polacheck et al. 1996, 1997b).

The large differences in the fit weights across the range of plus group
models demonstrate a major potential pitfall in attempting to do auto-
mated analyses of uncertainty in a high dimensional space across a wide
range of hypotheses. In such cases, it is not possible to examine individu-
ally each result to ensure that the input data are compatible with the com-
bination of hypotheses used to generate a particular result. In such
automated analyses, there clearly needs to be a mechanism for screening
or weighting the outputs in terms of lack of fit.
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It is also important to note that while there is a large amount of ro-
bustness in the estimates of current relative stock sizes or depletion lev-
els that this does not necessarily translate into a similar degree of
robustness when estimating the probability of recovery under constant
catch scenarios (CCSBT 1996; Klaer et al. 1996, 1997). The latter is the
current basis for the management advice within the CCSBT. Both the abso-
lute estimates of absolute stock size and relative depletion levels affect
the projection results. Perhaps somewhat paradoxically, VPA results in
which the current stock sizes are less depleted relative to historical levels,
tend to have lower probabilities of recovery. This is because VPA results
for which the estimated depletion level is low tend to result in higher
levels of compensation in estimates of the stock recruitment relationship
(i.e., greater steepness at the origin). This can be seen in the relationship
between the estimated mean surplus yield and the relative depletion lev-
els (Fig. 5). There is even a stronger relationship between surplus yield
and estimated spawning stock size in 1962 (Fig. 6). High initial stock sizes
are incompatible with SBT being a highly productive stock.

The delegation-specified input weightings had little effect on the mean
estimates of the relative measures of stock size. This is not surprising
given the robustness noted above in the relative measures. However, the
differences in the delegation weighting had substantial effects on the mean
estimates of absolute stock sizes with the means between delegations
varying by a factor of 1.9 for the SSB in 1962. Given the general relation-
ship between the estimates of absolute stock size and surplus yield, there
are also large differences in the estimates of the mean surplus yield. There
were also substantial differences in the mean fit across the different dele-
gations (Table 6). These large differences in both the mean absolute abun-
dance estimates, surplus yield and fit weight statistics largely reflects the
differential weighting that the delegations placed on the models for the
plus group (Tables 4 and 8). Thus, delegation 2 placed a high weight on
plus group model 1, which as noted above always had low value for the fit
weight while delegation 1 placed a relatively high weight on model 2 which
tended to have high fit weight values. However, additionally weighting
the delegation weighted results by the fit weights did not markedly re-
duce the discrepancy between the delegation-weighted estimates (Table
5). This is because the input weights from the delegations were highly
divergent for the plus group models. (i.e., models weighted relatively high
by one delegation were given low or zero weights by another, Table 4).

A major focus of the discussions of the uncertainty in the SBT stock
assessments has been the differences in the interpretations of the CPUE
time series (Hearn and Polacheck 1997). However, the results presented
here clearly demonstrate that the uncertainty in the CPUE is only one of
the large sources of uncertainty in the current SBT assessment (Table 9).
The uncertainty associated with modeling the plus group and natural
mortality rates induce similar or greater levels of uncertainty than the
different interpretation of CPUE in terms of estimates of absolute stock
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Figure 5. Surplus yield versus relative depletion levels.

Figure 6. Surplus yield versus SSB in 1962.
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size, depletion levels, and mean productivity. Even if the interpretation of
CPUE could be narrowed to a single hypothesis, the overall range of uncer-
tainties in the current assessments would not be substantially reduced.
This emphasizes the need for an integrated and balanced research strate-
gy if substantial improvements to the assessment are to be achieved.

It must be noted that some important areas of uncertainty have not
been included in the current analyses and for some dimensions that the
range of alternative hypotheses was limited. These included:

1. Changes in catchability or effective effort over time due to gear and
other technological improvements (e.g., Whitelaw and Barron 1995).

2. The reliability and representativeness of the size distributional data
and their conversion to age.

3. Levels of total catch (including discards) both within and outside of
the CCSBT fisheries, particularly in recent years when the official fish-
eries have been limited by restrictive quotas.

4. The mean age of maturity which recent results suggest may be sub-
stantially older than the currently used value of 8 (Gunn et al. 1996).

While the above areas are recognized as large areas of uncertainty
with potentially important consequences, development and/or implemen-
tation of meaningful alternative hypotheses is difficult because of a pau-
city of data from which to parameterize and evaluate them. There are
clearly large uncertainties that exist both within and outside of the VPA
models as currently structured. These are making it difficult both to pro-
vide assessment advice on short-term changes in stock sizes and to mea-
sure the uncertainty in the actual assessments (Polacheck et al. 1997b).
However, the VPA results appear to be providing reasonably robust con-
clusions about the current status of the stock relative to their historical
and pre-exploitation sizes.

Overall, this paper outlines one approach for integrating and evaluat-
ing the large number of hypotheses across a number of dimensions repre-
senting some of the major sources of uncertainty in the SBT assessment.
The method has provided a useful approach for synthesizing the overall
results, determining the sensitivity and importance of uncertainties to
different inputs and model structures, comparing the results across dif-
ferent user-specified input prior weights, and examining the compatibili-
ty of the data with various hypotheses in terms of lack of fit. The results
also demonstrate the importance of developing automated measures for
evaluating the lack of fit with any such approach.
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Abstract
In this paper we investigate an adjoint data assimilation technique for
fisheries data analysis. This technique is described for general models
and applied to the model underlying the well-known Virtual Population
Analysis. It provides a systematic and efficient procedure to obtain stock
parameters from a time series of catch-by-age and effort data that can be
extended in several directions as desired. The procedure has been imple-
mented in a C++ program which performs well on data from the Pacific
halibut fishery (Hippoglossus stenolepis). Attention is also paid to the sen-
sitivity of the estimated parameters to various sources of error.

Introduction
In this paper we investigate an adjoint data assimilation technique with
the purpose of using it in a fisheries data analysis context. In particular we
will focus our attention on age-structured stock assessment methods.
Currently there is a large number of these age-structured methods avail-
able and we show how the adjoint technique can be used for these meth-
ods. For a review of age-structured stock assessment methods we refer to
Megrey (1989).

We have applied the adjoint technique to the model underlying Virtu-
al Population Analysis (VPA). This age-structured method for estimating
stock sizes and fishing mortalities uses a model that describes the cohort
size dynamics backward in time.

Adjoint data assimilation provides a systematic and efficient proce-
dure for the estimation of parameters in complex models by comparing
predictions from the model to real world observations.

In the section “Data Assimilation Using the Adjoint Method” we present
a general introduction to the adjoint method and include some thoughts
on how to perform a sensitivity analysis.
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Next, in the section “Virtual Population Analysis,” we apply the adjoint
method to the model underlying VPA. We have implemented the method
in a C++ program which requires a time series of catch-by-age and effort
data as input and returns an estimation of stock sizes and a number of
other fishery and stock parameters as output. This program is applied to
data from the well-documented Pacific halibut (Hippoglossus stenolepis)
fishery in the “Results” section. In “Concluding Remarks” we discuss a
number of possible extensions and ideas for future work.

Data Assimilation Using the Adjoint Method
Introduction
The aim of data assimilation is to combine models and data as efficiently
as possible. The most prominent areas of application are meteorology
and oceanography, where data assimilation is used to combine numerical
models and large data sets (from multiple sources) to improve the fore-
casts that can be obtained by these models. For reviews see for instance
Ghil and Malanotte-Rizzoli (1991) and Lorenc (1986).

Data assimilation methods can roughly be divided into sequential and
variational methods. Sequential methods, such as Successive Correction,
Optimal Interpolation and Kalman Filtering, update the state of a model
sequentially, i.e., for every new observation that becomes available. Vari-
ational methods, which include the adjoint method, achieve their aim of
assimilating data by fitting the model as closely as possible to the obser-
vational data by variation of the model parameters. This is usually done
by minimization of a function, called the cost or penalty function. This
cost function quantifies the misfit between model and observations.

A cost function can be constructed in several ways. One could, for
instance, use Bayesian analysis to derive a function proportional to the
likelihood of certain parameters given the observational data. In this pa-
per we directly compare observations and their corresponding model pre-
dictions by using a least-squares approach.

The adjoint method is specifically aimed at efficiently computing the
gradient of the cost function for large models. Using this gradient, the
parameters corresponding to the best fit can be found by a first derivative
unconstrained minimization method, e.g., a Quasi-Newton or Conjugated
Gradient method.

To compute the gradient a so-called adjoint system for the model is
derived. This can be done at several stages of the modeling process; see
for instance Giering and Kaminski (1998) for a discussion. We will follow
the approach described in Lawson et al. (1995) where the adjoint system
is constructed from a model description that is close to computer code.
The adjoint system is composed in reverse order compared to the system
for the model itself. The computation of the gradient then basically is
equivalent to solving the adjoint system. This has two advantages com-
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pared to approximations using finite differences. First of all it saves a
considerable amount of run-time. It was shown in Baur and Strassen (1983)
and Griewank (1989) that evaluation of the adjoint model takes only 2-5
times the computation of the cost function. Approximation of the gradi-
ent by finite differences takes at least n + 1 computations of the cost func-
tion, where n is the dimension of the control space, i.e., the number of
parameters being estimated. Second, the computed gradient is exact. A
final advantage of using an adjoint method for data assimilation is that it
makes no assumptions regarding linearity of the model. All that is required
is differentiability of the cost function in its arguments and a model that
can be represented as a sequence of computations using differentiable
functions. The entire data assimilation process is summarized in the
scheme of Fig. 1.

Adjoint Systems
Let us consider a data vector d from some space D. It is assumed that each
element of this vector corresponds to an observation of a certain quantity.
Our aim is to estimate a vector of parameters c (from some control space
C with dimension Nc ) for a model represented by a system that iteratively
produces a vector x(c). We assume that this vector x(c) can be used to
compute predictions for the observed quantities in d.

In order to find the most suitable values for the parameter vector we
assume that we have a cost function J [d,x(c ),c] mapping into R0

+ of which
the values are smaller for parameters corresponding to predictions in bet-
ter agreement with the observations.

Given the data variables we want to minimize J with respect to the
model parameters, i.e., our problem will be

    
min , ( ), ,

c C
J d x c c

∈
[ ] (1)

where d is provided by the observational data. Since x(c) depends on the
parameter vector through an entire system, it is difficult to obtain the
derivative of this cost function. An approach based on Lagrange multipli-
ers is used to tackle this problem.

As mentioned we use a general model structure that is close to com-
puter code. It is assumed that the model can be represented by the system

xn = fn (x1, ..., xn–1, c), n = 1, ..., N, (2)

i.e., the model is represented as a sequence of calculations where at each
step a new scalar quantity is computed which may depend upon all previ-
ously calculated quantities and the parameter vector c. The calculations
can be considered as corresponding to assignment statements in a com-
puter program.
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Figure 1. Data assimilation using the adjoint method.

Now define the Lagrangian function

    
L x c c J x c c x f x x cn

n

N

n n n( ), , ( ), ( ,..., , ) ,λ λ[ ] = [ ] − ∑ −[ ]
=

−
1

1 1 (3)

where λ1, ..., λN are the adjoint variables and we have dropped the depen-
dency of J on d from our notation since d is assumed to be constant. If
x1, ..., xN are chosen according to the equations (2) it follows that

DcL [x(c), c, λ] = DcJ [x(c),c] (4)

The operator Dc denotes the total derivative with respect to c. This relation
holds for all λ, since the functions are in fact the same for all λ. Notice that
this is the case even if we choose the adjoint variables dependent on the
parameter vector. This is exactly what we will do, i.e., we use λ = λ(c). Since
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we are only interested in DcJ [c,x(c)] we now are free to choose the adjoint
variables in such a way that it becomes easier to calculate DcL which is the
same as DcJ. Observe that

    
( )D L

L
c

L
x

x
c

L
cc k

k n

n

k n

n

kn

N
= + +







∑
=

∂
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∂
∂

∂
∂

∂
∂λ

∂λ
∂1

(5)

for k = 1, ..., Nc and that ∂L/∂λn = 0 if and only if the system equations (2)
are satisfied. It follows that if we choose the adjoint variables such that
∂L/∂xn = 0 for n = 1, ..., N, we then obtain

    
( ) ( ) .D J D L

L
cc k c k

k

= = ∂
∂

(6)

We have
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and
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So it follows that ∂L/∂xn = 0 if and only if we choose λ1,…, λN according to
the following adjoint equations

    
λ ∂

∂N
N

J
x

= , (9)
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∂
∂
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n N= + ∑ = −
= +1

1 1, ( ),..., , (10)

that constitute the adjoint system. Notice that these adjoint variables de-
pend on the parameters since all partial derivatives are evaluated at the
parameter vector c for which the derivative is being computed. Using equa-
tion (6) we find the following expression for the derivative of the cost
function

    
( ) , ,..., ,D J

J
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f
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k Nc k
k
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kn
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=

∂
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1 (11)



644 Huiskes — VPA with the Adjoint Method

which can be evaluated when we have computed the adjoint variables by
means of the adjoint equations.

Implementation
We now present a construction procedure for the cost function gradient
that implicitly uses the adjoint system described above. Its description
allows an easy translation into computer code.

For every model variable xn we have an adjoint variable λn. We also
introduce for every parameter ck a corresponding variable γk. These vari-
ables γk should contain the corresponding components of the cost func-
tion gradient at the end of the procedure, i.e., we want

    
γ ∂

∂
∂
∂

λk c k
k

n

kn

N

n cD J
J
c

f
c

k N= = + ∑ =
=

( ) , ,..., .
1

1 (12)

We first initialize λn and γk by setting

    
λ ∂

∂n
n

J
x

n N: , ,...,= = 1 (13)

and

    
γ ∂

∂k
k

C

J
c

n N: , ,..., .= = 1 (14)

We now consider equations (2) one by one in reverse direction, updating
the variables at each step. When finished, λn and γk will satisfy adjoint
equations (9), (10), and (12), respectively. First notice that λN already satis-
fies equation (9). Furthermore it can be seen that each λn depends only on
model equations and adjoint variables with a larger index. Thus, when
arriving at equation n we use the following construction rules:

If ∂fn/∂xi is not equal to zero, then introduce an update statement that
adds ∂fn/∂xi λn to λi , i.e.

    
λ λ ∂

∂
λi i

n

i
n

f
x

i n: , ,..., ,= + = −1 1 (15)

where the := assignment operator is used to indicate that a variable is
being updated, in this case using its own previous value.

If ∂fn/∂ck is not equal to zero, then introduce an update statement that
adds ∂fn/∂ckλn to γk, i.e.
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γ γ ∂

∂
λk k

n

k
n C

f
c

i N: , ,..., .= + = 1 (16)

Notice the similarity in form of these two construction rules. After pro-
ceeding in this manner for N steps, λn and γk will satisfy equations (9), (10),
and (12) as required.

To summarize, each model assignment will correspond to a number
of assignments that update adjoint variables of smaller index and vari-
ables γk. Usually a model assignment depends on only a few of the system
variables and parameters, thereby reducing the number of update assign-
ments required. The sequence of initialization and update statements to-
gether constitute the procedure to obtain the cost function gradient.

Sensitivity Analysis
To investigate the sensitivity of the resulting parameters to the input data,
we adopt a novel approach in fisheries analysis based on the implicit func-
tion theorem.

The optimal parameters     ̃c  for some data vector     ̃d  satisfy

    
D J d x c cc ,̃ ( )̃,˜ .[ ] = 0 (17)

By the implicit function theorem there exists a function c = g(d) in the
neighborhood of     ̃d  which satisfies     ̃ ( )̃c g d=  and for which

    
D g d D J d x c c D J d x c cd c dc( )̃ ,̃ ( )̃,˜ ,̃ ( )̃,˜ .= − [ ] [ ]−

2
1

2 (18)

Using this linear mapping one can approximate how changes δd in the data
vector influence the parameter vector corresponding to the optimal fit

    δ δc D g d dd= ( )̃ . (19)

To find the directions in the data space D which are particularly important
in their effect on the control variables a singular value decomposition of

    D g dd ( )̃ should be made. Notice that to obtain     D g dd ( )̃ the inverse of the
Hessian of J, i.e.     D J d x c cc

2 1[ ,̃ ( )̃, ]̃− , with respect to c must be computed.

Virtual Population Analysis
Standard VPA
The model to which we apply the adjoint method is the model underlying
the well-known VPA (Gulland 1965). We will first give a short overview of
this model and the way in which this model is used in VPA to obtain esti-
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mates for fishing mortalities and population sizes. It is assumed that the
dynamics of the size of a single cohort, a subpopulation of fish born in the
same year, is described by

N(y + 1, a + 1) = N(y,a) – C(y,a) – D(y,a). (20)

This equation states that the number of fish in a cohort at the beginning
of year y + 1 is equal to the number of fish at the beginning of year y
minus the number of fish caught during that year, C(y,a), and minus the
number of fish that died from natural causes, D(y,a).

Fishing mortality during a year is modeled by assuming for each fish
a fixed probability of being caught per unit of time depending on its age.
Natural mortality is modeled in the same way with a fixed probability of
dying from natural causes. These probabilities are denoted by F(y,a) and
M(y,a), respectively. Usually it is assumed that natural mortality has a
fixed known value M independent of year and age. We then have

    

dC
dt

F y a N t
dD
dt

MN t= =( , ) ( ) and ( ) (21)

and consequently,

    

dN
dt

F y a M N t= − +[ ]( , ) ( ), (22)

where t is time during year y with N(0) = N(y,a) and N(1) = N(y +1, a +1). We
obtain

    N t N e F y a M t( ) ( ) ,[ ( , ) ]= − +0 (23)

so

    N y a e N y aF y a M( , ) ( , ).[ ( , ) ]= + ++ 1 1 (24)

From equations (21) and (23) it follows that catch during year y for a cer-
tain age group satisfies

    

dC
dt

F y a e N y aF y a M t= − +( , ) ( , )[ ( , ) ] (25)

with C(0) = 0 giving

    
C t

F y a
F y a M

e N y aF y a M t( )
( , )

( , )
( ) ( , ).[ ( , ) ]=

+
− − +1 (26)
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Using C(1) = C(y,a) and assuming that relation (24) holds, we obtain the
catch equation:

    
C y a

F y a
F y a M

e N y aF y a M( , )
( , )

( , )
( ) ( , ).[ ( , ) ]=

+
− + ++ 1 1 1 (27)

It is assumed that data for the catch C(y,a) are available in a catch-at-age
table, i.e., for years between ymin and ymax and ages between amin and amax. If
we have an estimate for N(y +1, a +1) then we can use the catch equation
to obtain the fishing mortality F(y,a). Once F(y,a) is computed, the popu-
lation size N(y,a) follows from equation (24). Virtual Population Analysis
consists of a sequence of such computations that ends when no more
catch data are available for the cohort under consideration. This happens
when the defined age of recruitment amin or the minimum year ymin is
reached. To obtain a starting estimate for the cohort size at the maximum
age or maximum year for which catch C(y,a) is available, one usually as-
sumes that the terminal fishing mortality Fterm, i.e., the fishing mortality
for that maximum age or year, is known. The final cohort size is then
given by

    
N y a

F M C y a

F e
N y a

F M C y a

F emax
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term
F M max

max max
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F Mterm term

( , )
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( ,

( ) ( , )
( ) ( )1 1 (28)

depending on whether the cohort under consideration is limited by a
maximum age or a maximum year, respectively. Notice that in general
population sizes for the maximum year ymax are especially interesting, since
they correspond to estimates for the most recent stock size. However, as
we see here, in standard VPA the estimates for these stock sizes are based
on only one catch observation C(ymax,a) and a terminal fishing mortality
Fterm, so they cannot be considered to be very reliable.

Adjoint VPA
In our approach, which for convenience we shall call adjoint VPA, we will
also use equation (24) to describe the cohort size dynamics. However,
parameters are now obtained by minimization of a cost function instead
of by a sequential procedure. In fact, the method is quite similar to statis-
tical catch-at-age methods that maximize likelihood functions as described
in for instance Deriso et al. (1985) and Megrey (1989). We assume that
besides catch-at-age data for years ymin to ymax and age groups amin to amax,
an indicator of fishing effort is also available for every year. We make the
common assumption that the fishing mortality is a product of an age-
dependent term and a year-dependent term:

F(y,a) = q(a)E(y), (29)
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where E(y) is the indicator of fishing effort during year y and q(a) is an
age-dependent catchability coefficient. This catchability coefficient deter-
mines the relation between the effort and the actual fishing mortality of
the different age groups. The product of equation (29) is well-defined if
we assume that the effort indicator has a fixed value, say 100, for ymin and
that values for subsequent years are expressed in an index relative to the
first year. Instead of using a fixed terminal fishing mortality as in VPA we
now introduce the final cohort sizes as additional parameters Nfin(y,amax)
and Nfin(ymax,a). Thus, we try to estimate parameters

q(a), for a = amin, ..., amax,

E(q), for y = ymin + 1, ..., ymax,

Nfin(y, amax), for y = ymin, ..., ymax,

Nfin(ymax, a), for a = amin, ..., amax – 1,

such that the difference between model predictions and available obser-
vations is as small as possible. This is achieved by minimizing the cost
function

    
J C y a C y a E y E ydata model data model

yy a
= −[ ] + −[ ]∑∑








1
2

2 2
( , ) ( , ) ( ) ( ) ,

,
κ (30)

where κ is a weighting factor that indicates the relative weight attributed
to effort observations compared to catch observations. Based on the ideas
presented in the section “Data Assimilation Using the Adjoint Method” we
proceed with the following algorithm:

1. Take an initial guess of the parameters to be estimated.

2. Apply the cohort dynamics model represented by equation (24).

3. Compare the observations to the model predictions using the cost
function equation (30). Model predictions for C(y, a) are obtained from
equation (26).

4. Compute the gradient of the cost function for the chosen set of pa-
rameter values using the adjoint method.

5. Use this derivative information to find a direction in which to mini-
mize the cost function.

6. Use a line minimization routine to find a new set of parameters corre-
sponding to a better fit to the observations.

7. Repeat step 2 through 6 until the best has been found.

We have implemented this algorithm in C++ code using the procedure
described in the “Implementation” section to compute the gradient of the
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cost function. To find a direction in parameter space in which to perform
a line minimization of the cost function the Polak-Ribiere conjugated gra-
dient model is used, see Polak and Ribiere (1969). Line minimization is
achieved by means of Brent’s method (Brent 1973). The program com-
putes the optimal parameters q(a), E(y), Nfin(y,amax) and Nfin(ymax,a) for all
years and ages under consideration. It also computes the matrices re-
quired to perform the sensitivity analysis described in the “Sensitivity
analysis” section.

Results for the Pacific Halibut Fishery
We apply our program for adjoint VPA to data from the Pacific halibut
(Hippoglossus stenolepis) fishery and compare the results to those from
standard VPA. We use catch-at-age data of both the setline and the trawl
fishery in International Pacific Halibut Commission regulatory Area 2 from
1935 to 1976 and age classes 8 to 20 as reported in Hoag and McNaughton
(1978). Effort data for these years is taken from Hoag et al. (1983). As
natural mortality, M = 0.2 is chosen for all classes. It is not chosen as a
parameter to be varied. In general this parameter is hard to estimate, as
our study will confirm.

Figure 2. Cost versus iteration number. In 100 iterations 108 vari-
ables are estimated. The cost function value for the opti-
mal parameters is about 15% of the cost for the initial
parameters.
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Figure 3. Fit to catch observations for κ = 0. The average absolute difference rela-
tive to the observed catch is 18%.

Performance of Adjoint VPA
The optimization procedure performs well as can be seen in Fig. 2. The
procedure converges to the optimal parameter vector in about 100 iterations.
The cost function is reduced to approximately 15% of its value for the ini-
tial parameters. The fit of the model predictions to the catch observations
depends on the value of the weighting factor κ. For small values of κ the
effort parameters E(y) can freely be chosen without substantially affecting
the cost function. This results in a good fit to the catch data. The average
absolute error of the catch predictions compared to the observations is
18%. Figure 3 shows the fit to the catch data for κ = 0. Since the effort
observations are not used in this analysis, it can be expected that the effort
values found for the optimal fit differ substantially from the observed val-
ues for the effort indicators. This is shown in Fig. 4. Choosing larger values
of κ will make the optimal effort variables come closer to the observed
values, see again Fig. 4. For very large values of κ the effort variables are
forced to correspond to their observed values, leaving less freedom to fit to
the catch data. This is shown in Fig. 5. The average absolute error of the
catch predictions compared to the observations is now 20%.
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Comparison to Standard VPA
Estimated population sizes are close to those obtained by standard VPA.
Due to separation of fishing mortality into effort and catchability coeffi-
cients, adjoint VPA cannot predict observed catches exactly. To get some
idea of the performance of the catch fitting procedure, we compare our
results to those obtained for standard VPA which is also submitted to a
separability assumption equation (29). First standard VPA is performed.
To obtain catchability coefficients every fishing mortality F(y,a) is divided
by its corresponding effort indicator E(y). The resulting catchability coef-
ficients depend on both year and age. To obtain catchability coefficients
which depend on age only, they are averaged over time. These coeffi-
cients can be used to obtain new fishing mortalities using equation (29).
The catches corresponding to these fishing mortalities are no longer the
same as the observed catches.

It turns out that the cost function for this set of parameters is about
six times as large as the value obtained by adjoint VPA. The average abso-
lute error between predicted catches and observations is now 35% which
is about twice as large as the average absolute error relative to the ob-
served catch for adjoint VPA.

Figure 4. Effort comparison between observations and model pre-
dictions. For κ = 0 deviation from observations is largest.
For larger values of κ predictions and observations are in
better agreement. For κ = 1.0 × 1010 predictions and obser-
vations are the same.
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In Fig. 6 stock size estimates for a typical cohort are compared for
standard VPA, adjoint VPA, and the approach described above using aver-
aged catchability coefficients.

Sensitivity Considerations
We have repeated our procedure for various values of the natural mortal-
ity parameter and found no significant change in the minimum value of
the cost function; see Table 1. We conclude that additional information is
needed to estimate this parameter or that it should be estimated by other
means.

We have also performed the sensitivity analysis described in the “Sen-
sitivity Analysis” section. To test which catch-at-age table entries are par-
ticularly important in their effect on the optimal parameters, all parameters
are first scaled to the same order of magnitude. Next we use the linear
mapping from equation (18) to investigate the change in the parameters
resulting from a change in the catch data. For each catch-at-age table entry
the norm of the difference in the optimal parameters as a consequence of
a unit change in that entry is plotted. See Figs. 7 and 8 for κ = 0 and κ =
1.0 × 1010, respectively.

Figure 5. Fit to catch observations for κ = 1.0 × 1010. The average absolute differ-
ence relative to the observed catch is 20%.
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Figure 6. Comparison between restricted VPA and adjoint VPA. Large
relative errors in predicted catches for restricted VPA also
result in large deviations in predicted population sizes from
those obtained by standard and adjoint VPA.

Table 1. Optimal cost function val-
ues for various natural mor-
tality coefficients.

M Minimum cost

0.05 341,582

0.1 339,790

0.15 340,219

0.2 341,172

0.25 342,215

0.3 343,020

Relative changes in the optimal cost function values
are small for variations of the natural mortality co-
efficient in the value region of interest.
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Figure 7. Sensitivities for κ = 0. For each observation the norm of the vector change,
in the scaled optimal parameters due to a unit change in the observation
value, is plotted. The entries in the catch-at-age table corresponding to
incomplete cohorts have the largest impact on the optimal parameters.
For κ = 0 changes in the effort observations have no effect.

Notice that catch measurement errors for table entries corresponding
to incomplete cohorts cause the largest change in optimal parameter val-
ues. A similar analysis is performed for the effort time series. Measure-
ment errors in effort observations have a negligible effect on the optimal
parameters for κ = 0. They do, however, become important for large val-
ues of κ. See Fig. 8. The optimal parameter that is mainly affected by a
change in an effort observation is the effort system variable correspond-
ing to this observation.

Next, as another test, all catch observations are increased by 1%. We
can compute the resulting relative change in the optimal parameter vec-
tor. It turns out that most parameters change approximately 1%. Some of
the final cohort sizes change up to 3%. For κ = 1.0 × 1010 the changes are
somewhat smaller.

Using a singular value decomposition of the linear mapping of equa-
tion (18) we can find the directions in data space that result in the largest
change of the parameters. If we use an observation error vector of length
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Figure 8. Sensitivities for κ = 1.0 × 1010. Impact of a unit change in the catch entries
is now smaller than for κ = 0. Especially the system effort variables are
now hardly affected by changes in catch observations, since they are
determined by the effort observations. Changes in effort variables now
have a substantial effect.

equal to the vector corresponding to a 1% increase in catches, the changes
in the parameters are very large. This is as expected, however, since this
error observation vector corresponds to large relative changes in some of
the catch observations.

Changing the effort observations by 1% has no effect for κ = 0 and
results in a change of exactly 1% for κ = 1.0 × 1010.

Concluding Remarks
We have implemented a procedure for estimating fishery parameters us-
ing the same hindcasting model as in VPA. Our procedure is similar to a
number of statistical age-structured methods that are currently employed
for stock assessment. For these methods the adjoint method can be a
useful technique for the estimation of the parameters. The main advan-
tage of the adjoint method is its efficient and reliable computation of the
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cost function gradient which allows the simultaneous estimation of a large
number of parameters.

This paper describes how to implement the adjoint method for rela-
tively simple models. For more complex models it is more practical to use
software packages for reverse automatic differentiation, such as ADOL-C
for C++. Also for Fortran several packages are available. For an overview
see Griewank (1989).

Adjoint VPA performed well on data from the Pacific halibut fishery.
For these data a total of 108 parameters are estimated in about 100 itera-
tions. The results are used in Grasman and Huiskes (1997) for a stochastic
model of halibut recruitment. We would like to mention again that adjoint
VPA is implemented as an example and the approach can be used for esti-
mating parameters in any model that is based on a differentiable algo-
rithm.

The procedure can be extended in a number of ways. Additional ob-
servational data, e.g., from recruitment studies, can be easily incorporated
into the cost function. Also cost functions based on different assumptions
regarding the error structure of the observations can be used.

Another interesting possibility lies in the fact that the code for mini-
mizing a cost function can be adapted to find extremes of arbitrary func-
tions depending on the system and model parameters. One could for
instance define a function which describes total catch and maximize this
function in the effort variables. This would only require a change in the
initialization part of the adjoint method code.

In future work we intend to apply a similar procedure to physiologi-
cally structured population models. In these models knowledge about
mechanisms at the individual level is translated to effects on the popula-
tion level. For example, this knowledge can be used to model the effects
of food availability, length structure of the population, and fecundity. Al-
though this approach requires data from a large number of sources, such
a study may provide more realistic estimates of fishery parameters and
may even lead to reliable natural mortality and recruitment estimates.
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Virtual population analysis (VPA) and cohort analysis are widely used for
estimating fish population size from catch-at-age data. Generally age de-
termination is so laborious that catch-at-age is often determined from
catch-at-length data. Errors in this conversion, however, can be signifi-
cant.

Fishery managers often control the selectivity of fishing gear. To man-
age fish stocks, the managers need population-at-length estimates instead
of population-at-age. Another conversion is needed to estimate popula-
tion-at-length from population-at-age, which is calculated from catch-at-
age using VPA. Estimation errors in this conversion can also be significant.

If population at length can be estimated directly from catch-at-length,
these two conversions can be omitted, and thus the estimation accuracy
will be improved.

In this study, I utilize a method of population estimation based on
catch-at-length called Length-based Population Analysis or LPA. LPA esti-
mates population-at-length from the largest to the smallest length class,
by avoiding the estimation errors of recruitment. I also examine the valid-
ity and accuracy of LPA using computer simulation, and present the result
of two applications.

Data
Data required to estimate the population-at-length by LPA are natural
mortality M, catch-at-length Cij for length class j at year i, and matrix P.

Matrix P is a matrix in which the ( j, k) component is the probability
that the individual at year t+1 in length class k belonged to the length
class j. If the history of growth is available, this probability is estimated
directly from growth data (method 1). In the population analysis of abalone
mentioned later, growth history can be determined from shell rings.

If growth history is not available, this probability is estimated from
the average and variance of length at each age (method 2). In the popula-
tion analysis of Walleye pollock, also described later, this method was
used.
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Procedure
The LPA procedure is as follows. First, give initial values for yearly fishing
mortality,     f̃j  and for selectivity     ̃si . Selectivity is assumed to be constant
and independent from the year. Fishing mortality     ,̃Fi j  is given as the prod-
uct of     f̃j  and     ̃si . Total mortality     

˜
,Zi j  is given as the sum of     ,̃Fi j  and natural

mortality M.
Calculate the population of all length classes for the most recent year

data was collected, and for the largest length class for every year data was
collected from observed catch-at-length Ci,j, fishing mortality     ,̃Fi j, and to-
tal mortality     

˜
,Zi j . Then calculate the population-at-length     

˜
,Ni j  for the pre-

vious year using matrix P and     
˜

,Zi j  sequentially. From     
˜

,Ni j ,     ,̃Fi j, and     
˜

,Zi j,
calculate the expected catch-at-length for each year     C̃i j, . To compare esti-
mates with the observed catch, calculate the sum of square residual SS
and minimize SS using a nonlinear optimization method, such as the sim-
plex search method. When SS is minimized, the parameters     f̂j ,     ̂si , and     ,̂Fi j ,

    
ˆ

,Ni j  are the final estimators.

Validation of LPA Using the Simulation Method
Factors such as natural mortality and growth will fluctuate in relation to
biological and physical conditions. Fishing pressure and fishing-gear se-
lectivity will also fluctuate. To examine the effect of these fluctuations on
the estimators, I developed a data generator to generate sham catch-at-
length data with various fluctuations. I examined the validity by estimat-
ing population-at-length from the sham data using LPA, and compared the
original population set to the generator and estimators from LPA.

First, I generated sham catch data without any fluctuation, and esti-
mated population-at-length by LPA. The estimate of population-at-length
was very close to the estimate of the original population. When fluctua-
tions are added to yearly fishing mortality and selectivity, the estimators
are not largely biased. For fluctuations in natural mortality, the estimators
are robust.

These results suggest that LPA is robust for various fluctuations that
will occur in real catch data.

Comparison with the Former Methods
Formerly, to estimate catch-at-age from catch-at-length, age length key
(ALK) or length frequency analysis (LFA) has been used. From the estimat-
ed catch-at-age, population-at-age has been estimated using VPA. Then,
population-at-length has been estimated by converting the population-at-
age to population-at-length.

To compare these two former methods with LPA, populations at length
were estimated from sham catch-at-length data using ALK and VPA, LFA
and VPA, and LPA.
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From the sham data that included a CV 5% fluctuation in all parame-
ters, the 50% point of the relative error in the estimate of the population
for the fifth length class in the sixth year was smallest for LPA (0.0095)
followed by LFA and VPA (–0.0987), and ALK and VPA (0.142).

These results suggest that LPA performs equally well or better than
the former methods.

Application to Abalone Fishery in
Akita Prefecture
To examine the validity and effectiveness of LPA for an actual population,
I applied LPA to the abalone diving fishery in Konoura, Akita prefecture.

Annual rings of 356 shells of abalone caught in this area were mea-
sured and matrix P was calculated using method 1. I also calculated the
matrix using method 2. Catch-at-length data was generated from the length
composition data recorded by the Institute for Fisheries and Fisheries
Management in Akita Prefecture and catch numbers in 1986 to 1993. Nat-
ural mortality was set at 0.102, as estimated by the Institute for Fisheries
and Fisheries Management.

Using method 2, the estimated annual number of abalone with a shell
length greater than 10 cm ranged from 44,000 (1987) to 68,000 (1990).

The population dynamics are quite similar to the estimates of Zhao et
al. (1993), who used ALK and VPA in the same area.

The results of retrospective analysis indicate the estimates were stable.

Application to Walleye Pollock Fishery in
Funka Bay
I next examined the gillnet and trawl fishery of walleye pollock, Theragra
chalcogramma, whose spawning ground is in Funka Bay in the southwest-
ern part of Hokkaido. I used the length composition data recorded by the
Muroran branch of the Hokkaido Hakodate Fisheries Experimental Station
from 1971 to 1986. Matrix P was calculated using method 2 from the age
and length data of 4,460 individuals measured in 1984. Natural mortality
was set to 0.3, the value calculated by VPA for the walleye pollock in this
area.

The estimated annual population size ranged from 195,000,000 (1978)
to 513,000,000 (1971). The estimated parameter of the gear selectivity
increased rapidly at 35 cm, which agrees to the real selectivity of the
fishing gear used this area.

For a population with an unknown growth history, it is suggested that
LPA is applicable.
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Conclusion
From the results of both simulation and application, it is suggested the
LPA is LPA is a valid and effective method to estimate population-at-length
from catch-at-length data. For populations that are difficult to age, it is
possible to estimate population size using LPA.
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Abstract
The effect of predation by adult walleye pollock (Theragra chalcogram-
ma), Pacific cod (Gadus macrocephalus), and northern fur seals (Callorhi-
nus ursinus) was incorporated into a stock assessment model of walleye
pollock in the eastern Bering Sea. Previous studies showed these three
species are the primary predators of young walleye pollock. The stock
synthesis model was used to incorporate the three predators as sources
of mortality in a single-species catch-at-age analysis. Predators were en-
tered into the model by defining (1) a time series of predator abundance
(i.e., effort) over the entire modeled period, (2) a series of pollock con-
sumption data (i.e., catch per unit effort) for each predator for each year
when food habits data were available, and (3) the age composition of pol-
lock consumed for each year where food habits data were available. The
instantaneous annual predation mortality rates estimated from cod and
fur seal predation were small, ranging from about 0.02 to 0.04. However,
mortality rates of age-1 pollock due to cannibalism were high.

Adding cannibalism on age-1 fish increased model estimates of the
number of age-1 pollock in recent years, which changed the apparent stock-
recruitment relationship at age 1 from one with declining recruitment at
high spawning stock sizes to one where recruitment is more asymptotic
at high spawning stock sizes. Our analysis suggests that mortality due to
cannibalism on pollock may be an important factor in determining
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recruitment into the fishery at age 3. Adding predation, and particularly
cannibalism, to the model improved the fit of the stock recruitment rela-
tionship at age 1. The largest outliers from the estimated relationship
were years with generally warmer temperatures and higher inshore trans-
port of surface waters. Oceanographic conditions and predation both ap-
pear to play an important role in pollock year-class success. Simultaneously
accounting for both these factors in future models of pollock population
dynamics may improve our understanding of the relative importance of
those factors in determining pollock recruitment.

Introduction
Predation is considered to be an important source of mortality influencing
the dynamics of some groundfish populations. However, in most tradi-
tional stock assessment models, predation in the form of natural mortal-
ity is entered as a constant rate across time. Multispecies methods that
include predation, such as multispecies virtual population analysis (MSVPA),
are being explored by stock assessment biologists. However, these mod-
els are not yet widely used to provide management advice because of the
large number of species interactions that are included and the difficulty
in validating model estimates of these interactions (Sissenwine and Daan
1991, Brugge and Holden 1991). The stock synthesis model (Methot 1989,
1990) offers a framework to incorporate predators as sources of mortality
in a single-species catch-at-age analysis and to simultaneously examine
the model fit to predation data sources along with other more traditional
data sources used to assess population size. This approach provides not
only a more objective basis to evaluate model estimates related to preda-
tion but it also provides a way to examine predation in a standard single-
species stock assessment that may be more acceptable to stock assessment
scientists and managers eager to move toward ecosystem-based manage-
ment but in an incremental fashion. Walleye pollock (Theragra chalco-
gramma) is an important groundfish species in the eastern Bering Sea
which supports a large commercial fishery and also serves as an impor-
tant prey of other groundfish, marine mammals, and birds (Kajimura and
Fowler 1984; Livingston 1989a, 1991, 1993). Here we investigate the ef-
fect of including predation by adult walleye pollock, Pacific cod (Gadus
macrocephalus), and northern fur seals (Callorhinus ursinus) into a popu-
lation model of walleye pollock in the eastern Bering Sea. These predators
are the primary sources of predation mortality for young walleye pollock
(Livingston 1993).

Methods
Population Model
The stock synthesis model was used for this study of population dynamics
of walleye pollock. This model simulates the dynamics of an age-structured
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exploited population and the processes by which the fisheries and surveys
affect and observe this population. The model estimates parameters (such
as annual recruitment, fishing mortality, selectivity patterns) to simulta-
neously fit various kinds of data (survey biomass, fishery effort or catch
per unit effort (CPUE), fishery and survey size and age composition) by
maximizing a log-likelihood function which includes components for each
type of data. In practice, the various types of available data may indicate
patterns that are inconsistent with each other. Here the model is perhaps
even more useful by providing a framework for identifying and exploring
these discrepancies.

The age-structured version of stock synthesis can be briefly described
by the following parameters and equations:

Nya = population numbers in year y and age a (Note that multiple
periods within year can be defined.)

M = instantaneous rate of natural mortality (may be age-specific)

Wyat = body weight at age observed for fishery (or predator) of type t

Sat = fishery (or predator) and age-specific selectivity (Selectivity pat-
terns can change over time.)

Eyt = fishing mortality rate in year y, fishery (predator) t for fully avail-
able ages (e.g., ages for which Sat = 1.0)

Fyat = EytSat = fishing mortality rate by year, fishery (or predator), and
age

  Z M Fya yatt
= + ∑  = total mortality rate
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−1  = catch at age for fishery (predator) t

  C c Wyt yat yata
= ∑  = catch biomass for fishery (predator) t

    N N ey a ya
Zya

+ +
−=1 1,  = (with accumulation in the terminal age)

Usually, the model is given a time series of catch biomasses, Cyt, which are
assumed to be known with high precision, and the model estimates the Eyt

which will exactly match these observed catch biomasses. If effort data
are available for a particular fishery, these data are assumed proportional
to the Eyt by a catchability coefficient Qt. Equivalently, if CPUE data are
available for a fishery, these data are assumed proportional to the mean
available biomass. The model estimates Q t as a nuisance parameter; it
simply scales the estimated Eyt to the units of the observed fishing effort.

Incorporating predators as additional, independent sources of removals
similar to a fishery is a logical extension of the stock synthesis model. The
abundance of a predator is analogous to the amount of fishing effort ex-
pended by a fishery. An individual predator’s consumption of pollock at
different pollock densities is analogous to the CPUE and allows the esti-
mation of the predator’s functional feeding response curve. The age com-
position of the pollock in the guts of the predators is the catch age
composition, and the model’s comparison of this age composition to the
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estimated age composition of the pollock population enables calculation
of the predator’s selectivity curve for pollock of different ages.

The procedure for estimating the predators’ Eyt was modified because
the total removals (e.g., amount eaten) by each predator is not known over
the whole time series being modeled. Instead, the model was provided
with estimates of predator abundance, Pyt, over the whole time series be-
cause these estimates are usually available. Observations of each preda-
tor’s consumption rate of pollock, Ryt, (prey consumed per predator) are
entered for years in which food habits data for that predator are available.
The model then estimates the Q t for each predator as the constant of
proportionality that maximizes the log-likelihood for the deviations be-
tween the pollock biomass available to the predator (i.e., the pollock bio-
mass obtained after accounting for the age-specific selectivity of pollock
by the predator) and the predator’s Ryt. The estimate of predation mortal-
ity rate, Eyt, is then equal to PytQ t.

This process models each predator’s feeding response to changes in
pollock density as a linear function with a slope of Q, analogous to Holling’s
(1959) Type I predator functional feeding response curve without an up-
per asymptote. This means that one must check model outputs to deter-
mine that the prey biomass above which a predator would be satiated has
not been attained over the period modeled. An extra parameter, which
modifies Q as a power function of prey biomass, is also available if there
is enough contrast in the data for its estimation. This extra parameter
would produce a functional feeding response curve similar to a Type II
curve. The software does not yet have the ability to fit a Type III sigmoi-
dal-shape response curve, although it may be modified in the future to
accommodate this function. Also, the effects of alternate prey abundance
on feeding response is not presently considered. Predators are presently
entered as a single biomass value in each year, which has been standard-
ized to account for predator age-dependent factors in consumption effi-
ciency of pollock. Explicitly including age-specific predator information
would be a further improvement to explore in future versions of this type
of model.

Model Parameterization and Data Sources
The modeled period is from 1964 to 1995 and explicitly includes pollock
ages 1 through 14, with a plus group for ages 15 and older.

The fisheries data sources used were total annual catch biomass from
all nations and vessel classes, age composition of the catch biomass, and
effort data from the Japanese trawl fishery during 1964 to 1973 (Table 1).
Auxiliary sources of information from surveys included estimates of the
biomass and age composition of age 3+ pollock from the combined bot-
tom trawl-hydroacoustic surveys conducted on a triennial basis since 1979
and an index of age-1 pollock numbers from the bottom trawl surveys
conducted each summer.
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Fishery and predator selectivity-at-age was modeled as the product of
an ascending logistic curve for young pollock and a descending logistic
curve for older pollock (Methot 1990). For the fishery, the descending
curve was allowed to have different parameters between two periods: 1964
to 1972 when the fishery was developing, and 1973 to 1991 when pollock
was the main fishery target. The inflection age for the fishery ascending
curve was allowed to have a year-specific value to track changes in the
fishery’s impact on young pollock. For the predator selectivity curves,
only the descending curve was used, i.e., young pollock were defined to
have a selectivity of 1.0 for the predators. Aging error was incorporated
using percent agreement between readers from Kimura and Lyons (1991).

Predation data included an estimate of predator abundance over the
modeled period (1964 to 1995) (Fig. 1), predator consumption of pollock
(per unit predator) for years where food habits data were available (Table
2), age composition of pollock consumed during years where food habits
data were available, and the mean weight at age of pollock consumed by
each predator. Predator abundance for cod and fur seal was input to the
model, while abundance on cannibalistic age 5+ pollock is generated with-
in the model.

Cannibalism data were obtained from Livingston (1991) and Livingston
et al. (1993). These data indicate that only age-5 and older fish were signif-
icantly cannibalistic on young pollock. Cannibalism on age-2 and older
pollock occurs but at such a low level that it was not included in this
analysis. Because cannibalism estimates included consumption of age-0
and age-1 fish, the estimates were revised downward to include cannibal-
ism on age-1 fish only. Further, biomass of age-1 pollock consumed per
1,000 metric tons of adult pollock for 1985 to 1989 (Table 2) was convert-
ed to the number of age-1 pollock consumed per unit weight of cannibals.
This strategy was employed for implementing cannibalism because it al-
lowed for interannual differences in mean weight at age of cannibalized
pollock. Stock synthesis uses inputs of pollock weight at age in each data
source (e.g., fishery, survey, cod, fur seal, cannibals), which are typically
kept constant across all modeled years, to convert from biomass to num-
ber. Therefore, the mean weight of age-1 pollock consumed by cannibals
was set equal to one kilogram to keep pollock consumption per unit can-
nibal estimates in terms of numbers .

Northern fur seal abundance (Fig. 1) for the modeled time period was
considered to be the biomass of age-4 and older females (standardized for
differences in energy consumption of lactating versus non-lactating ani-
mals per Perez and Mooney, 1986) derived from annual estimates of pups
born on St. Paul and St. George Islands in the Bering Sea (Antonelis et al.
1996, Lander and Kajimura 1982). For the period from 1975 to 1995, pup
abundance was estimated in years without counts by taking the average
of the survey counts from the years before and after the missing count.
Pup counts on St. George Island from 1964 to 1974 were estimated as 0.25
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times the count on St. Paul Island for each year, as advised by York (1987).
Biomass of pollock consumed per unit mass of fur seals (corrected for
consumption of age-0 pollock) (Table 2) and the age composition of pol-
lock in fur seals were estimated for 1973, 1974, 1982, and 1985 because
these were years where fur seal food habits and pollock prey age compo-
sition data were available (AFSC 1974, 1975; McAlister and Perez 1976;
Sinclair 1988).

Pacific cod abundance estimates (Fig. 1) were derived from mid-year
biomass estimates at age from stock synthesis (Thompson 1996). Because
cod exhibit size-related changes in their consumption of pollock, total
cod biomass was standardized for size differences by deriving relative

Table 1. Data sources, coefficients of variation (CV) and assumed error
distributions used in the population models of walleye pollock
in the eastern Bering Sea.

Error
Data source Years CV distribution

Annual catch biomass 1964-1995 0.03 Lognormal

Age composition of the catch 1964-1995 0.15 Multinomial

Japanese trawl fishery effort 1964-1973 0.30 Lognormal

Age 3+ biomass from 1979, 1982, 0.20 Lognormal
combined bottom trawl and 1985, 1988,
hydroacoustic surveys 1991, 1994

Age 3 + age composition 1979, 1982, 0.15 Multinomial
from combined bottom trawl 1985, 1988,
and hydroacoustic surveys 1991, 1994

Index of age 1 number from 1979-1996 0.50 Lognormal
bottom trawl survey

Pacific cod biomass 1976-1995 0.03 Lognormal

N. fur seal biomass  (age 4+ females) 1964-1995 0.03 Lognormal

Pacific cod consumption of pollock 1984-1989 0.60 Lognormal

N. fur seal consumption of pollock 1973-1974, 0.60 Lognormal
1982, 1985

Pollock consumption of age-1 1985-1989 0.60 Lognormal
pollock

Age composition of pollock 1984-1989 0.15 Multivariate
consumed by cod

Age composition of pollock 1973-1974, 0.15 Multivariate
consumed by fur seals 1982, 1985
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consumption efficiency factors for each size group relative to the largest
size group using analysis of variance. Biomass of pollock consumed per
unit mass of cod (corrected for consumption of age-0 pollock) (Table 2)
and the size composition of pollock consumed by cod were modeled us-
ing data from Livingston (1991) and Livingston et al. (1993).

Error levels for each type of data are necessary in order to calculate
the log-likelihood function, but these error levels are not known for the
predator data. Presumably, the levels of variability for the predator data
are greater than for the fishery and survey data. We set error levels for the

Figure 1. Pacific cod, female northern fur seal (top) and pollock cannibal
(bottom) biomass estimates in the eastern Bering Sea used in
the pollock population model with predation.
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predator data by examining the residual error in preliminary model runs
with nominal levels of error for these data. This resulted in the nominal
sample size for fishery age composition data to be set at 200, 130 for
survey age composition, and 10 for predator age composition data. Error
levels in predator catch per unit data were explored, with the coefficient
of variation ranging from 0.15 to 0.75. A level of 0.6 was chosen to best
reflect the uncertainty in this data source. Error levels and assumed error
structure for each data source are shown in Table 1. Preliminary sensitiv-
ity analyses were previously performed on the predator data sources, ex-
amining the effects of different emphasis levels on predator data sources
to model fits of other model data sources (Livingston and Methot 1996).
These runs showed that cannibalism data were compatible with other data
sources because increasing the emphasis level of cannibalism data up to 5
did not substantially change model fits and outputs. In fact, increasing
emphasis on cannibalism data sources enhanced model fits to some other
data sources. However, increasing emphasis on cod or fur seal data inputs
degraded model fits to other more certain data sources. This indicates
that further improvements in cod and fur seal predation estimates may be
required through additional sampling.

In the baseline model without predation, natural mortality was 0.6
yr–1 for age-1 pollock, 0.45 yr–1 for age-2 and 0.3 yr–1 for age-3 and older
pollock (Wespestad 1996). After exploring levels of baseline natural mor-
tality ranging from 0.1 to 0.6 yr–1 in the model with predation, the level of
residual natural mortality was set at 0.3 for all ages, with the assumption
that the remaining natural mortality consists of predation mortality from
the predators included in the model.

Results
The predator model improved the fit to the fishery data and slightly de-
graded the fit to the survey information (Table 3). Estimated numbers of
pollock at age 1 were much higher in the model with predators than in the
standard (no predator) model, particularly for 1979 to 1995 (Fig. 2). Esti-
mates of number at age 3, however, were similar between the two models.
This is not unexpected because both models were tuned to the same age
3+ survey data. Exploitable biomass estimates (Fig. 2) were slightly higher
in the model including predation.

As mentioned previously, availability of pollock to cannibals was fixed
at 1 for age-1 pollock and 0 for older pollock. The model estimates of
pollock availability to Pacific cod and northern fur seals were similar be-
tween the two predators with availability declining from 1.0 for age-1 pol-
lock to less than 0.1 for age 15+ pollock. Pollock availability with increasing
pollock age declined somewhat faster for fur seals than for cod.

The combined predation mortality of age-1 pollock due to cannibals,
cod, and fur seals ranged from 0.1 to over 1.4 yr–1 (Fig. 3), with the major-
ity of age-1 predation mortality consisting of cannibalism. Mortality of
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Table 2. Rates of walleye pollock consumption per
unit predator (1,000 t pollock per 1,000 t
predator) used as input to the model con-
taining predators

Year N. fur seal Pacific cod Walleye pollock

1973  8.25

1974 13.90

1982  7.61

1984 0.20

1985  7.97 0.15 0.013

1986 0.40 0.020

1987 0.29 0.004

1988 0.44 0.007

1989 0.41 0.007

Table 3. Log-likelihood and change in log-likelihood of major likelihood
components between two population models of walleye pollock
in the eastern Bering Sea.

Likelihood component Log-likelihood

No predator Predator
 model model Change

Fishery age composition (1964-1976) –156.2 –155.3 +0.9

Fishery age composition (1977-1991)  –53.2 –52.7 +0.5

Survey biomass (age 3+) 7.4 5.7 –1.7

Survey age composition –32.3 –33.3 –1.0

Age 1 number (survey index) 0.49 –0.45 –0.9

Total –2.2
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this age group increased substantially in 1983 when the large 1978 year
class became cannibalistic at age 5, and the time trend in age-1 predation
mortality mirrors the trend in cannibal biomass (Fig. 1). Predation mortal-
ity at age 2 was relatively low over the modeled period, ranging from
0.04 yr–1 to 0.09 yr–1 (Fig. 2). Mortality at this age was due to predation by
cod and fur seals. Fur seals were the dominant source of mortality in the
early part of the modeled period up to 1978 while cod was the dominant
predator of age-2 pollock in the subsequent period .

The relationship between age-1 recruits and female spawning biomass
for the standard model without predators shows a downward-bending
Ricker curve (r2 = 0.08) (Fig. 4) with declining recruits with increasing spawn-

Figure 2. Estimates of number of age 1 (top) and exploitable
biomass (bottom) of walleye pollock from the pollock
population models with and without predators.



Symposium on Fishery Stock Assessment Models 673

ing biomass. However, the shape of the relationship when predators are
added shows a more asymptotic relationship between spawners and re-
cruits at age 1 (r2 = 0.12).

Discussion
The model was able to fit predator data inputs without substantially de-
grading the fit to the fishery and survey data. The exploitable biomass of
pollock in the predation model was very similar to that in the model with-
out predators. This is different from some previous efforts by Honkalehto
(1989) and Mito (1990), which incorporated cannibalism into cohort anal-
ysis models. In those efforts, estimated biomass was much higher and

Figure 3. Predation mortality of age 1 (top) and age 2 (bottom)
walleye pollock from 1963 to 1995 estimated by the east-
ern Bering Sea pollock population model with predation
by adult pollock, Pacific cod, and northern fur seals.
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Figure 4. Estimates of age-1 recruitment of pollock recruits versus pol-
lock spawning biomass from the pollock population models
without (top) and with (bottom) predators and the fitted Ricker
stock recruitment curves.
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there was no attempt to fit model results to abundance estimates from
surveys as was done in the present study. Also, Mito (1990) estimated
very high amounts of cannibalism on age-2 pollock, a phenomenon which
has not been observed in pollock stomach samples taken annually from
the eastern Bering Sea shelf since 1985 (Livingston et al. 1993). Mito’s
report indicates differences in estimated size-at-age for young pollock
relative to the sizes-at-age from U.S. data collections used in this model-
ing exercise, which possibly explain some of this difference. Honkalehto’s
model used fixed estimates of pollock consumption per unit cannibal over
the whole modeled period using consumption rates derived from a study
performed in the early 1970s which showed very high rates of cannibal-
ism relative to rates presently observed (Livingston and Lang 1996). The
combination of fixed, high consumption rates in that study likely pro-
duced the large biomass estimates, which are not supported by present-
day survey estimates.

Estimates of total natural mortality of age-1 pollock obtained from
this study are comparable to estimates from other studies. Livingston
(1993) obtained estimates ranging from 1.1 to 1.9 in the mid-1980s using
groundfish and marine mammal predation estimates. A multispecies vir-
tual population analysis model of the eastern Bering Sea, which contains
many more predators than considered in the present study, produced av-
erage rates of age-1 mortality in recent years of 1.85 (Livingston and Jurado-
Molina, in press). Mito (1990) estimated age-1 predation mortality for the
shelf pollock stock at around 1.0 yr–1 for the period 1970-1985. Total nat-
ural mortality at age 2 from the present study, which ranged from 0.34 to
0.38 yr–1, was lower than the annual rate of 0.45 used in the standard
population model and was much lower than estimates of Mito (1990), which
ranged from 2.0 to over 4.0. Other groundfish, such as arrowtooth floun-
der which has been increasing in abundance in recent years, are predators
of age-2 pollock and should possibly be incorporated into future popula-
tion models of pollock with predation.

The asymptotic relationship between age-1 recruits and spawning bio-
mass implies that mortality rates at age 0 are density-dependent. A simi-
lar conclusion was reached by Livingston (1989b, 1993). The change in
the shape of the recruitment curve from an asymptotic relationship for
age-1 recruits to a curve with an even steeper decline in number of age-3
recruits at high spawning stock sizes highlights the importance of canni-
balism on age-1 fish in reducing even further the number that recruit to
the fishery. Adding cannibalism to the model explained some of the vari-
ation in the spawner-recruit relationship. However, the largest outliers
from the estimated stock-recruitment curve were years of above-average
recruitment (1978, 1982, 1984, and 1989). Physical environmental data in
Niebauer and Day (1989) showed that in 1978 and 1982 there was above-
average first quarter sea surface temperatures and below-average first
quarter northerly wind speeds. Possibly, these physical factors produced
an environment during these years that enhanced normal survival rates



676 Livingston & Methot — Predation in a Population Assessment Model

of pollock larvae. Quinn and Niebauer (1995) have also linked variation in
pollock recruitment with physical factors, with the strongest relationships
observed between age-2 recruitment and air temperature and ice cover
variables with a lag of 1, indicating mechanisms influencing recruitment
beyond the larval stage . Wespestad et al. (submitted) presented an analy-
sis suggesting that physical factors influencing transport of larvae into
areas away from cannibalistic adults may be important. Echeverria (1995)
hypothesized that sea–ice cover provides a mechanism to separate juve-
nile pollock from cannibalistic adults, thus influencing juvenile pollock
survival rates between cold and warm years. Apparently, there are several
mechanisms that may influence recruitment, each operating at different
life history stages and possibly changing in importance depending on the
climatic factors operating in a certain year.

Including predation mortality into a single-species stock synthesis
model of walleye pollock appears to produce results that are consistent
with existing data sources on population levels and fishing removals. This
is a first step in improving our predictive capabilities in a multispecies
system with a changing physical environment. It appears for pollock that
the debate is not about which factor, physical environment or predation,
determines the amount of recruitment into the fishery. Both factors play
an important role, and defining the conditions under which each factor
dominates should be the focus. Development of spatially explicit models
that include both climate and predation may be needed to improve under-
standing of recruitment variability in walleye pollock.
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Abstract
This paper summarizes the different methods used to incorporate annual
recruitment variation into the assessment of a New Zealand snapper stock
and presents the implications of these methods. Recruitment in the Hau-
raki Gulf snapper stock has been related to water temperature and rela-
tionships with temperature are used to determine year-class strengths
used in stock assessment models. Using a recruitment series derived from
environmental factors has two major problems. (1) Environmental factors
are used to predict recruitment from outside of the period that the rela-
tionship was derived and small changes in the relationship can influence
the estimates of current biomass, its relative position to optimal biomass,
and the age-structure. (2) Assumptions about the period of historic re-
cruitment used to estimate future recruitment influences forward projec-
tions and yield calculations. The most defensible approach is to limit the
time-frame of the model to recent history and assume that recruitment in
the near future is similar to recent history. The problem with limiting the
time-frame of the model is that the analysis becomes less model-depen-
dent and more data-dependent, increasing the uncertainty and providing
little management guidance. Catch-at-age data have been used as an alter-
native method to estimate recruitment and have also indicated other prob-
lems such as incomplete recruitment due to annual variation in growth
rates.
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Introduction
Snapper is the most researched inshore species in New Zealand due to its
importance commercially, recreationally, and traditionally. Despite the large
amount of research, a number of unresolved problems remain. As a re-
sult, a number of different methods have been used to assess this stock.
One controversial set of data is a recruitment index calculated from a
correlation between abundance of juveniles in prerecruit trawl surveys
and temperature (Francis 1993). This index is used to represent year-class
strengths and scale average recruitment to give annual absolute recruit-
ment levels used in stock assessment models. Incorporation of this index
into the assessment and modeling procedure has highlighted many inad-
equacies and these are discussed in this paper. First I describe the fishery
and the methods used to assess its status; then I describe the temperature
recruitment relationship and how it is used in the assessment models.
Next I discuss three areas related to the use of the recruitment index: (1)
the time frame of the stock assessment model and which years of the
recruitment index are used, (2) the time frame of historic recruitment es-
timates used in predicting future recruitment and yield, and (3) the alter-
native use of catch-at-age data to determine year-class strength and what
it tells us about the recruitment index.

Introduction to the Fishery
Snapper (Pagrus auratus) is the most valuable commercial inshore finfish
in New Zealand. The total population of snapper surrounding New Zealand
is divided into six management areas. Only two areas are of any “signifi-
cant” commercial value, SNA1 on the east coast of the North Island (Fig. 1)
and SNA8 on the west coast of the North Island. The total commercial
catch of snapper in the 1995-96 fishing year (October 1, 1995 to Septem-
ber 31, 1996) was 6,937 t; 4,959 t in SNA1 and 1,558 t in SNA8 (Annala and
Sullivan 1997). The fishery has been exploited since the mid 1800s and
catches were greatest from the mid 1960s to the mid 1980s, averaging
around 8,000 t. The quota management system was introduced in 1986
and the TACC (Total Allowable Commercial Catch) for SNA1 was set at
4,710 t for the 1986-87 fishing year. The reduced catch was implemented
to allow for stock rebuilding. Decisions from the Quota Appeal Authority
allowed the TACC to increase over time to 6,010 t in the 1991-92 fishing
year. For the 1992-93 fishing year the TACC was reduced to 4,900 t and
the TACC was again cut in the 1995-96 fishing year, but an appeal to the
high court by commercial fishers reversed the decision.

SNA1 is the most popular recreational fishery in New Zealand due to
its proximity to Auckland, the largest city in New Zealand, and the high
abundance of snapper in this area. “The 1987 National Marine Recreation-
al Survey showed that snapper was the most important finfish species
sought by recreational fishers” (Annala 1995). Recreational catch in SNA1
was estimated to be 1,600 t in 1984-85, 2,794 t in 1993-94, and 2,052 t in
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1995-96 (Annala and Sullivan 1997). There was an increase in the mini-
mum legal size for recreational-caught fish from 25 cm to 27 cm in 1994
and a reduction in the bag limit from 15 to 9 in 1995. The commercial
minimum legal size has remained at 25cm.

For assessment purposes, the SNA1 fishery has historically been bro-
ken up into three substocks based on biological considerations (Fig. 1);
East Northland (EN), Hauraki Gulf (HG), and Bay of Plenty (BoP). The bio-
logical considerations included limited movement of individuals between
populations, different size structures of the populations, and identifiable
spawning areas (Annala and Sullivan 1997). Of these three substocks HG
is the largest and the most heavily researched. The current assessments
combine the HG and BoP substocks into one stock and assess EN as a
separate stock. The combination of the HG and BoP substocks is based on
movement between these two populations and the limited data for BoP.
These assessments indicate that the HG-BoP stock is well below the level
that will support maximum sustainable yield (BMSY) but current removals
are probably sustainable and the EN stock is at BMSY but will decline under
current removals (Annala 1995, Annala and Sullivan 1997).

Figure 1. A map of the northern third of New Zealand’s North
Island showing the SNA1 snapper stock and its three
substocks.
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The SNA1 fishery has a high political profile because of its value to
both recreational and commercial sectors. In addition to conflicts between
recreational and commercial fishers there are also conflicts with environ-
mental groups, charter operators, and between different sectors within
the commercial fishery (gear conflicts). This conflict causes political pres-
sure directing a high proportion of government research into this fishery
making snapper the most researched New Zealand fish species. The fish-
ing industry (through the New Zealand Fishing Industry Board, NZFIB, which
has recently been reorganized into the New Zealand Seafood Industry Coun-
cil) also invests a significant amount of research into this fishery. Despite
this research, there is still uncertainty in current assessments.

Assessments
There have been four recent model-based assessments of the SNA1 fish-
ery. All four assessments use an age-structured model and two tagging
biomass estimates (1984 and 1993). The first two models have been pre-
sented by government scientists and incorporate a recruitment index that
depends on prerecruit trawl surveys and a correlation with temperature.
The two models differ in the period over which they model the popula-
tion. The third model was presented by industry scientists (NZFIB) and
uses catch-at-age data to estimate recruitment rather than the recruitment
index. The fourth, most recent model, combines the total catch history
and catch-at-age models and is a collaboration of government and indus-
try scientists. The models are as follows:

1. Total catch history model (Gilbert 1994). This method models the fish-
ery from its virgin (unexploited) equilibrium state in 1850. The only
parameter estimated is the average recruitment. Annual recruitment
strength is determined by the recruitment index, and the model is fit
to the two biomass estimates.

2. Short-term model (Gilbert and Sullivan 1994). This method models
the fishery starting at a known (or assumed) biomass size and age-
structure in 1985. The only parameter estimated is the average re-
cruitment. Annual recruitment strength is determined by the
recruitment index and the model is fit to the 1993 biomass estimate.

3. Short-term catch-at-age model (Maunder and Starr 1998). This model
is similar to the short-term model (2), but differs by using catch-at-
age data to estimate annual recruitment strength and a limited num-
ber of annual selectivity parameters for the youngest age-classes.

4. Long-term catch-at-age model (reported in Annala and Sullivan 1997).
This model combines the catch-at-age model (3) with the total catch
history model (1). In addition to average recruitment, annual recruit-
ment residuals and selectivity parameters are estimated. The model
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is fit to catch-at-age data, the recruitment index, and the two biomass
estimates.

Temperature Recruitment Relationship
Recruitment to the Hauraki Gulf snapper stock is correlated with water
temperature and relationships between abundance estimates of juveniles
from prerecruit trawl surveys, water temperature, and air temperature
have been generated. This relationship carries through to recruitment into
the fishery at around age 4. Abundance estimates of 1+ snapper in Hauraki
Gulf trawl surveys have a positive relationship with sea surface tempera-
tures recorded at the Leigh Marine Laboratory (Francis 1993, Francis et al.
1997). A similar relationship has been made between the trawl surveys
and air temperatures recorded at Albert Park and Owairaka (Gilbert 1994).
Catch-at-age analysis shows that the strong and weak year classes seen in
the prerecruit trawl surveys show up in the commercial catch data and
can be seen for a number of years (Maunder and Starr 1998).

The temperature recruitment relationship is used to derive a recruit-
ment index that is used in stock assessment models (Gilbert 1994, Gilbert
and Sullivan 1994). The index is used as a relative measure of the strength
of the year class recruiting to the fishery at age 4. The recruitment index is
multiplied by an estimated average recruitment to give annual absolute
recruitments. The recruitment index uses the observed data from the pre-
recruit trawl survey for years where the data is available (1983 to 1989
and 1991 to 1993). Missing years are estimated using the relationship
between recruitment and sea surface temperature where sea surface tem-
peratures are available (1967-1982, 1990, 1994-present), otherwise the
relationship between recruitment and air temperature is used (1910-1966).
Because no temperature data is available before 1910, recruitment for this
period is assumed to be constant and equal to the average recruitment.

Time Frame of the Stock Assessment Model
and Recruitment Index
The time frame of models used to assess the SNA1 stock have been influ-
enced by scientists’ faith in the temperature recruitment relationship used
to generate the recruitment index. As the time frame of the estimation
model increases, stronger assumptions about the applicability of the tem-
perature recruitment relationship have to be made. An alternative to us-
ing the full recruitment index is to assume constant recruitment for the
earliest years of the model time frame. Using constant average recruit-
ment also includes strong assumptions in the possibility of regime shifts,
global warming, and habitat degradation. Short-term models have been
used to reduce the assumptions about historic levels of recruitment. The
following section describes the benefits and inadequacies of the short-
and long-term models.
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Total Catch History Model
Total catch history models have been used to assess the SNA1 stock (Gil-
bert 1994, Gilbert et al. 1996). These models project the population for-
ward in time from an unexploited population size. This requires the
knowledge of the total catch history of the fishery. The SNA1 fishery is
one of New Zealand’s earliest and the current assessment uses a catch
history reconstructed back to 1850 (Annala and Sullivan 1997). Catch from
1983 onward is based on area of capture while the catch from 1931 to
1982 is based on port of landing. Catch history before 1931 is unknown
and has been assumed to follow a gradually increasing trend, totaling
150,000 t from 1850 to 1930 (Gilbert 1994). Fortunately, the total catch
history model is insensitive to this historical catch (Gilbert 1994). This
insensitivity is due to fish during this period dying of natural mortality
before reaching the time when the model predictions are fit to data (Gil-
bert 1994) and the lack of a stock recruitment relationship in the model.
The model is more sensitive to assumptions about unrecorded Japanese
catch in the 1960s and 1970s (Annala and Sullivan 1997).

A total catch history model relies highly on the assumptions of the
model rather than on the data used to fit the model. Generally the method
assumes that the model structure and most parameters are known, and
the parameter values are constant over the full history of the fishery. These
assumptions make the assessment model dependent rather than data de-
pendent. If parameter uncertainty and uncertainty in the model structure
are ignored, then very precise estimates of the average recruitment (Fig.
2, top) and consequently maximum sustainable yield (MSY) and its associ-
ated biomass (BMSY) are produced. The precision is a consequence of small
changes in estimated average recruitment accumulating over a number of
years transferring into large changes in current biomass. Confidence in-
tervals calculated for these parameters give an unreliable estimate of un-
certainty. In an attempt to describe uncertainty some researches present
alternative models. A base case model or the average of all models is used
to determine point estimates, and individual models with extreme results
are used as bounds. The differences between alternative models can be in
parameter values (i.e. rate of natural mortality) or structural differences
(i.e. the functional form of the stock recruitment relationship). Presenta-
tion of alternative models is very informative if results are similar for all
models. If results differ between models, the information is only useful if
the models can be assigned relative probabilities.

A problem with using the total catch history model is that it requires
a recruitment index over a time outside the range of the observed recruit-
ments. In the SNA1 assessment this involves using recruitment relation-
ships with both sea surface and air temperature. These relationships have
to predict recruitment from temperatures outside the range of those used
in forming the relationships. Recruitment has been observed to vary by a
factor of 8.2 times in the trawl surveys and 27.6 times as predicted from
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Figure 2. Posterior distributions of virgin recruitment (R0) from a simple
age-structured model using only two biomass estimates as data.
Top is the posterior from a total catch history model with a uni-
form prior on R0. Middle is the posterior from a total catch history
model with a uniform prior on R0 and a uniform prior on the
stock-recruitment steepness (h, the proportion of the virgin re-
cruitment that is realized at a spawning biomass level 20% of the
virgin spawning biomass) from 0.5 to 1. Bottom is the posterior
from a short-term model with a uniform prior on R0 and a nor-
mal distributed prior for the starting biomass based on the bio-
mass estimate. Note none of these models incorporate recruitment
variability or a recruitment index.
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the temperature recruitment relationship (Francis et al. 1995). The recruit-
ment index calculated from air temperatures shows an increasing trend
from 1910 to the present (Gilbert 1994) which may be caused by an urban-
ization effect around the temperature recording stations or global warm-
ing. This increase in the air temperature readings has an influence on the
estimation of model parameters.

To avoid assumptions about the temperature recruitment relation-
ship the recruitment was assumed to be constant before 1971 in the cur-
rent assessment (Annala and Sullivan 1997). This is an alternative to
reducing the time frame of the estimation model. The time frame of the
recruitment index used is reduced by making the assumption that in an
early part of the estimation models time frame, recruitment was constant
at some average level. Unfortunately, this also involves strong assump-
tions about historic recruitment.

Density dependent effects are important in total catch history models
because the population can go through large changes in population size.
When the population is modeled from its virgin state, its size will vary
considerably and the stock recruitment relationship will play a major role
in determining MSY and in particular the biomass at MSY in relation to the
virgin biomass (BMSY/B0). New Zealand fishery management requires that a
stock should move to a biomass level that will support MSY, therefore
BMSY/B0 is an important management parameter. The current assumption
for the SNA1 stock is that recruitment is independent of stock size (Annala
and Sullivan 1997). This is based on the evidence that environmental fac-
tors play a much larger role in determining year-class strength than stock
size and is a consequence of discovering the correlation between temper-
ature and recruitment. Other density-dependent factors (i.e. density-de-
pendent growth and natural mortality) may also have a large influence on
estimates of management parameters.

Bayesian analysis (Punt and Hilborn 1997) is a method that provides a
framework for incorporating model or parameter uncertainty in the as-
sessment. The dependence of total catch history models on model or pa-
rameter assumptions makes it important to use Bayesian or similar
techniques to capture the uncertainty in estimation of management pa-
rameters. For example, uncertainty in the stock recruitment steepness
(the proportion of the virgin recruitment that is realized at a spawning
biomass level 20% of the virgin spawning biomass) increases the variance
of the posterior distribution for the virgin recruitment parameter (com-
pare Fig. 2 top and middle). This will allow decisions to be made that can
incorporate the uncertainty. Bayesian analysis has been used in the as-
sessments of the SNA1 fishery to give researches an idea of the uncertain-
ty in the assessments, but has yet to be presented to management.

Short-Term Model
Due to the problems of the total catch history model, a more defensible
approach may be to limit the time frame of the model to recent history
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ignoring historical trends in recruitment. The problem with limiting the
time frame of the model is that the analysis becomes less model-depen-
dent and more data-dependent, increasing the uncertainty and providing
little management guidance. For the SNA1 stock a short-term model (start-
ing in 1985) has been used to project the population between two biomass
estimates. The estimates of average recruitment from this model are very
uncertain with large confidence bounds (Fig. 2, bottom).

Assumptions about recruitment used in the estimation model are re-
duced for the short-term model because most estimates are taken from
the trawl survey data, and values estimated from the temperature rela-
tionship are within the temperature range used to generate the relation-
ship. Also in a short-term model there is very little change in stock size
over the period modeled and density-dependent assumptions about re-
cruitment and other process do not need to be made in the estimation
model.

Yield Estimates with a Recruitment Index
Yield estimates for snapper in SNA1 are sensitive to the choice of years
over which the assessment is made and to the choice of years used to
represent average future recruitment. This sensitivity is due to recruit-
ment of snapper being highly influenced by sea-surface temperatures in
the first summer-fall of the birth year and the use of the temperature
recruitment index in the models. Therefore, the yields will be a function
of whether the chosen years are particularly warm or cold. For example
the mean recruitment index between 1910 and 1930 is 0.40 (the average
from 1931 to 1994 is one) and there has been a trend of increasing tem-
peratures over time (Gilbert 1994).

The approach taken for SNA1 in previous assessments (Annala 1995)
has been to use as long a period as possible, for both the estimation period
and calculation of future average recruitment, to avoid introducing short-
term biases into the yield estimates. However, there are insufficient prere-
cruit trawl survey data available to do more than a few years of high quality
assessment for snapper. Therefore, a time series of temperature data have
been used to standardize the period over which snapper recruitment is
estimated. The period chosen was from 1931 to 1994 and all recruitments
have been scaled so that the average of the recruitment index in this peri-
od is one. The approach assumes that this period represents the long
term average of SNA1 snapper recruitment. Due to factors introduced in
the preceding section, this may not be the best approach.

Two important management parameters are maximum sustainable
yield (MSY) and current surplus production (CSP). These two parameters
are at the extremes of management planning horizons; MSY is a long-term
objective, while CSP is a short-term indicator. These two parameters have
different requirements for the calculation of recruitment, MSY requires a
long term average and CSP requires the best estimate of the recruiting
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cohort. Gilbert (1994) showed that using different periods to calculate
average recruitment had a large influence on CSP, MSY and Bcur/BMSY (Table
1). Gilbert (1994) calculated the average recruitment over the period 1931
to 1991 for his base case which implies that the initial virgin biomass,
recruitment before 1910, projections and yield estimates are calculated
from this average.

Maximum Sustainable Yield (MSY)
Calculations for MSY are dependent only upon the estimate of average
recruitment when assuming no stock recruitment relationship. This will
depend on what years are used to take as an average. It can be argued that
the average should be taken over the longest possible period. It is also
possible, due to a degraded or changing environment, that the carrying
capacity, and therefore MSY, may have changed and that recent recruit-
ment should be used for determining MSY. Also, current evidence for re-
gime shifts (Francis and Hare 1994) means that there is likely to be different
MSY values for different regimes, and MSY for the current regime can be
determined more accurately from current recruitment.

MSY is dependent on assumptions about density dependence. This is
true independent of the estimation model being short or long term. Re-
cruitment to the population will be less when the population is at a size
that supports MSY (BMSY) compared to the unexploited population if there
is a Beverton-Holt type stock recruitment relationship.

Current Surplus Production (CSP)
Current surplus production is the amount of the stock’s production that
can be removed allowing the population to remain at its current level.
Therefore, CSP relies on an estimate of the recruiting cohort. Prediction of
future recruitment is important when recruitment variation is large and
the recruiting cohort represents a high proportion of the total available
population or there is strong autocorrelation in recruitment. These re-
cruitment estimates require information on both the average recruitment
and the recruitment strength.

Table 1. Results using different periods to calculate average
recruitment (R0) from Gilbert (1994).

Period of average R0 (106) Bcur/BMSY CSP (kt) MSY (kt)

1910-1991 8.7 0.74 6.4 6.6

1931-1991 10.1 0.62 7.3 7.6

1967-1991 13.0 0.46 8.8 9.8

R0 = average recruitment in numbers, Bcur = current biomass, BMSY = biomass at maxi-
mum sustainable yield, CSP = current surplus production, MSY = maximum sustainable
yield, and kt = kilotons.
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As with MSY, estimation of average recruitment for CSP depends on
the time frame of the estimation model and the time frame used to deter-
mine average future recruitment. Density dependent processes will also
influence CSP in the same manner as MSY.

Calculation of the recruiting cohort also requires an estimate of re-
cruitment strength. The prerecruit trawl surveys in SNA1 allow prediction
of recruitment to the fishery three years in advance and the temperature
recruitment relationship four years in advance. The Southern Oscillation
Index may also be used to predict high or low years classes before they
are spawned giving an even longer lead time (Francis et al. 1995). How-
ever, when making these types of recruitment predictions precaution has
to be taken because, as in snapper, variations in growth rate may mean
that a recruiting cohort may not reach the legal size when expected, af-
fecting yields available to the fishery (Maunder and Starr 1998). Also, the
above estimates of recruitment strength are not without error. This error
should be acknowledged by introducing a distribution for the recruitment
strength allowing the estimation of uncertainty in CSP.

If there is no model independent estimate of recruitment strength for
the recruiting cohort then a distribution of possible values should be used.
If estimates of historic recruitment strength are available then the distri-
bution of possible recruitment strengths can either be a parametric fit to
these recruitment estimates or from nonparametric sampling of these es-
timates. If no historic estimates of recruitment strength are available then
some assumptions about their distribution needs to be made. Recruit-
ment strength is often assumed to be lognormally distributed with a vari-
ance taken from examining data from similar species.

Catch-at-Age Data or Environmental Index
An alternative to the recruitment index is estimation of annual recruit-
ment from catch-at-age data. The relative abundance of an age-class in the
catch gives information of cohort strength. Each year the age-class ap-
pears in the catch, more information is gained about its relative size. There-
fore, catch-at-age analysis allows for the estimation of recruitment for
cohorts that have been observed in the catch data only. Maunder and Starr
(1998) showed that there is a high correlation between the recruitment
index and recruitment strengths estimated from catch-at-age data (corre-
lation coefficient = 0.88). Despite this high correlation there are still dif-
ferences in recruitment strengths from the two methods.

There are advantages for using the recruitment index and also for
using estimates from catch-at-age data. For most cohorts there is more
than one catch-at-age data point but only one reliable trawl survey data
point (age 1+). Estimation of recruitment strength for cohorts that have
been seen in the catch-at-age data multiple times will have less bias due to
random sampling errors. The catch-at-age data measures recruitment to
the fishery at age 4, whereas the trawl surveys measure relative abundance
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of age 1+ juveniles. There are several factors that may change the relative
abundance of a cohort before they recruit to the fishery, weakening the
correlation between the prerecruit trawl surveys and recruitment to the
fishery. In the SNA1 fishery the prerecruit trawl surveys are only available
for the HG stock, but catch-at-age data are available for all stocks and
indicate differences in the recruitment patterns between HG and EN (An-
nala and Sullivan 1997).

A disadvantage of using catch-at-age data is that estimates will be
dependent on selectivity parameters. Maunder and Starr (1998) showed
that there was incomplete recruitment to the fishery at age 4 and this
varied annually. Estimates of recruitment for the last year of their model
were the proportion of recruits vulnerable to the gear and not the size of
the cohort. On the other hand, using a recruitment index alone may over-
estimate the numbers vulnerable to the gear if annual selectivity is not
estimated. Catch-at-age data can only reliably estimate recruitment once
the cohort has been in the fishery a number of years, but in contrast an
environmental index can give future projections.

The observed annual variation in growth rates suggests it is impor-
tant to estimate annual selectivity, particularly for the younger age class-
es. Catch-at-age data can be used to estimate selectivity. Recruitment and
selectivity parameters are confounded and often, as is the case for the
current SNA1 assessment, optimization routines fail. In these cases it is
necessary to fix either recruitment or selectivity. If fixing recruitment gives
similar results to fixing selectivity for the desired management parame-
ters, scientists are usually happy. Otherwise, more analysis or data collec-
tion is needed. The current assessment of the SNA1 stock investigated
fixing either recruitment (based on the recruitment index) or selectivities
(based on tagging data) and a stepwise process that estimated both. Fortu-
nately, the results from all models were very similar (Annala and Sullivan
1997).

Discussion
The evolution of the SNA1 stock assessment has developed around esti-
mating historic recruitment. Incorporation of a recruitment index based
on a correlation with temperature introduced concerns that a total catch
history model may produce biased yield estimates due to decadal scale
auto-correlated temperatures. The bias is due to assumptions regarding
historic recruitment in the model-fitting process and the choice of years
to use in the calculation of average recruitment when determining yield
estimates. An alternative short term model avoided the problems of the
total catch history model but produced imprecise estimates providing lit-
tle management guidance.

Neither a short- or long-term model seems appropriate to model the
SNA1 stock. It is possible that an estimation model with a time frame
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between the short- and long-term models will provide better management
advice. The time frame should be chosen to avoid using the recruitment
index based on air temperature (1910-1966) and the unknown quantity of
Japanese longline catch in the 1960s and 1970s. This mid-term model will
require at least one addition parameter to be estimated: the starting bio-
mass. Both the recruitment index and catch-at-age data should be includ-
ed in the estimation procedure, with appropriate error structure, to provide
information on recruitment and selectivity. Methods should be investigat-
ed to enable simultaneous estimation of recruitment strengths and selec-
tivity and the associated uncertainty.

Bayesian analysis provides a formal way to include uncertainty in the
assumptions made about an assessment model and posterior distribu-
tions can be used to present information about uncertainty to decision
makers. These methods can incorporate the uncertainty in all data, in-
cluding the recruitment index, and include additional prior information
from other sources. Bayesian methods may also be more appropriate be-
cause they can cope with confounding between recruitment strengths and
selectivity parameters.

In New Zealand the management goal is to move the population to a
size that will support MSY. In the context of decadal shifts in temperature
and possible degraded environments, this seems to be an inadequate goal.
In addition, the yield vs. biomass curve is flat with a high proportion of
MSY available over a wide range of biomass levels. Therefore, manage-
ment should focus on conserving the stock and providing a stable local
economy rather than trying to squeeze the last fish out of the system.
This ideology follows the trend of moving away from optimization toward
non-optimal conservative goals. Current surplus production is one possi-
ble guide for total catch allocation. Estimation of the current surplus pro-
duction needs the incorporation of uncertainty in average conditions and
interannual variability. A prerecruit trawl survey or temperature correla-
tion can help reduce uncertainty due to interannual variability, but many
factors such as incomplete recruitment due to variation in growth need to
be addressed in order to prevent incorrect decisions being economically
costly. Due to recruitment variation, estimation of CSP will cause variation
in annual catch allocation which may not be desirable. Recruitment in
SNA1 is not a high proportion of the biomass and annual recruitment
variation is not as much a concern as it might be for species like salmon.
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Abstract
Trophic mass-balance models of ecosystems constructed using the Eco-
path approach and software include the diet composition of functional
groups as model inputs, and trophic level estimates for these same groups
as a model outputs. The well-documented 0.34% enrichment of 15N/14N
that occurs at each feeding step in food webs can be used to determine
trophic level as well. This contribution is the first to ever examine the
relation between trophic levels estimated by these two independent meth-
ods. This was achieved by using a published Ecopath model of Prince
William Sound (PWS) as reference, i.e., estimating 15N/14N ratios for each of
the model’s functional groups. Re-expression of theses ratios as absolute
estimate of trophic levels (TL) was done following calibration using the
herbivorous copepod Neocalanus cristatus, for which TL = 2. The correla-
tion between both sets of TL values (n = 7) was extremely high (r = 0.986),
with the points evenly distributed about the 1:1 line. Also, the magnitude
of the standard errors of the TL estimates based on 15N/14N data was sim-
ilar to those of the Ecopath estimates.

Applying 15N/14N data from PWS to an Ecopath model of the Alaska
Gyre System resulted in a reduced correlation (r = 0.755, for n = 16), sug-
gesting that TL estimates may be transferred between ecosystems, though
at the cost of reduced precision. These encouraging results warrant fur-
ther exploration.
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Introduction
While the trophic level concept existed since the beginning of ecosystem
research (Golley 1993), controversy has raged as to its operational validi-
ty. Particularly, some ecologists could not reconcile this concept, articu-
lated in form of integers (primary producers = 1; first order consumers =
2, etc.), with the observation that many organisms derive their food from
widely different parts of food webs (e.g., Rigler 1975). This problem was
overcome by the introduction, through Odum and Heald (1975), of frac-
tional trophic levels (TLs). These are computed as weighted means from
disparate diet compositions, and their variance can be interpreted as an
omnivory index (OI ), in agreement with Pimm (1982), who defined om-
nivory as “feeding on more than one trophic level” ( Pauly et al. 1993,
Pauly and Christensen 1995). Until the late 1980s, however, estimation of
trophic levels continued to be largely definitional for lower levels (see
above), or based on crude, and often grossly erroneous guesses for higher
levels. (See Pauly 1996 for the a discussion of such guesses by Ryther
1972 and other authors.)

In recent years, two methods have emerged that are capable of reliably
estimating TL and related statistics: (1) the 15N/14N method (DeNiro and
Epstein 1981, Fry 1988, Wada et al. 1991, and see below), and (2) the con-
struction of mass-balance trophic models of ecosystems (Christensen and
Pauly 1992, and see below). The former estimates are identified as TLN,
the latter as TLE. In this study, we present a first comparison of results
obtained by these two approaches, using a preliminary mass balance model
of the Prince William Sound (PWS) ecosystem (Dalsgaard and Pauly 1997)
as a starting point. Another model, describing the Alaska Gyre System
(AGS; Pauly and Christensen 1996) is then used to test whether estimates
of TL and OI may be transferred from one ecosystem to the other.

Materials and Methods
The trophic mass-balance model of PWS used here was constructed using
the Ecopath approach of Polovina (1984) and Christensen and Pauly (1992);
this is based on the system of linear equations

Bi × (P/B)i × EEi = Yi × ∑Bj × (Q/B)j × DCij (1)

where, for any conventional period without massive change of system
structure:

Bi is the mean biomass of functional group i (e.g., a group of species
with similar vital statistics, diet compositions and consumers); Bj is the
mean biomass of the consumers of i; (P/B)i is the production/biomass
ratio of i (equivalent to its instantaneous rate of mortality; Allen 1971); EEi

is the fraction of production {Pi = Bi × (P/B)i} that is consumed within the
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system; Yi is the catch of i by the fishery, if any; (Q/B)j the consumption
per unit biomass of j; and DCij is the contribution of i to the diet of j.

The Ecopath software (Christensen and Pauly 1992) was used to solve
this system of equations, after estimation of values of B, P/B, etc, from the
literature on PWS and related systems. The assumptions made when esti-
mating the inputs, and for their subsequent adjustment when establish-
ing mass-balance, are documented in Dalsgaard and Pauly (1997). The
other trophic mass-balance model used here, representing the Alaska Gyre
system, was constructed in similar fashion and is documented in Pauly
and Christensen (1996).

For both models, estimation of the TL values was performed by Eco-
path, based on

TLEi = (1+ mean trophic level of prey) (2)

Omnivory indices (OIEi) were computed as the variance of the TLEi es-
timates (Christensen and Pauly 1992); the square root of the OIEi values
was then treated as standard error of the TLEi estimates (S.E.Ei).

Further details on Ecopath, including its ability to account for uncer-
tainty in input values through a Monte Carlo resampling scheme inter-
preted in a Bayesian context, are provided in Walters (1996) and other
contributions in Pauly and Christensen (1996).

Stable isotope measurements are unique in that they trace assimilat-
ed material. Nitrogen stable isotope ratios provide excellent definition of
relative trophic level (Fry 1988, Wada et al. 1991, Hobson and Welch 1992,
Kiriluk et al. 1995). The heavy isotope of nitrogen, 15N, is enriched by
about 0.34 % (or 3.4 ‰ in conventional delta units) with each trophic level
(DeNiro and Epstein 1981, Minagawa and Wada 1984) and has been shown
to accurately indicate the “realized” trophic level of species within an eco-
system (Kling et al. 1992, Cabana and Rasmussen 1994). Thus, the set of
TLN values used for comparison was derived from samples collected in
1994-1995 in PWS (Kline 1997), and based upon the trophic bioconcentra-
tion of 15N.

The conventional delta notation used to express a stable isotope ratio
is reported relative to international standards (air for N) and defined by
the following expression:

δ15N = (Rsample / Rstandard – 1 ) × 1000‰ (3)

where R = 15N/14N. The isotope standard has a delta value of zero by defi-
nition, i.e., δ15N = 0 for atmospheric N2. Naturally occurring δ15N values
observed in biota range from ~0 to ~ +20.

TLN is estimated by relating observed δ15N values to a reference value
(TLref), and to the trophic enrichment factor, 3.4 (Minagawa and Wada 1984,
Kline 1997), via:
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TLNi = 1 + (δ15Ni – δ15Nref)/3.4 (4)

Where TLNi is the trophic level of functional group i, δ15Ni is the mean δ15N
of functional group i, and δ15Nref is the mean δ15N value of the herbivorous
copepod (with TL = 2, by definition) used as reference, here Neocalanus
cristatus (Kline 1997). The standard deviations of the δ15Ni, S.D.Ni were
multiplied by the trophic enrichment factor, 3.4 (Minagawa and Wada 1984,
Kline 1997), to estimate δ15N-based omnivory indices, OINi. Given their
relative magnitudes, we compared the OINi estimates with the S.E.Ei, rather
than with the OIEi.

Isotope sampling and data acquisition procedures were described
elsewhere (Kline et al. 1993, Kline 1997). To account for the different def-
initions of the functional groups in the two ecosystem models (PWS and
AGS), the available isotopic databases were arranged differently for each
comparison. For example, in the PWS model, herring are considered sepa-
rately (Table 1), while they are included in the small pelagics group of the
AGS (Table 2).

Results and Discussion
Table 1 presents our results for PWS, i.e., the estimates of TL and omni-
vory index (OI) derived by the two methods under comparison. As might
be seen, the fit between the estimates of TLE and TLN is very tight, even if
one omits the reference data point, pertaining to Neocalanus, and for which
TLE = TLN = 2 by definition (see arrow in Fig. 1A). Moreover, the data points
are close to the 1:1 line, as they should if TLE and TLN measure the same
underlying quantity. Figure 1B shows that the magnitude of the omnivory
index estimates are similar for both methods compared here, except for
the reference group (see arrow), which cannot, by definition, take a value
of S.E.E other that zero, while the estimate of OIN can be quite large. This
feature precludes correlation analysis.

The good match between the two types of TL estimates for functional
groups in the PWS model is due, we believe, to the taxonomic correspon-
dence between the Ecopath groups and the groups for which δ15N were
available. Another factor is scope of the sampling for stable isotope data,
which involved numerous samples (Table 1) and which was very broad for
all groups except birds. (Bird isotopic data were collected within a limited
spatial and temporal range and included few of the common duck-like
shorebirds; pers. comm., M.A. Bishop, U.S. Forest Service).

The Ecopath model of PWS was based almost exclusively on data col-
lected prior to the 1989 Exxon Valdez oil spill, while the δ15N data were
collected after the spill. The good match between the two data sets im-
plies that the basic structure of the food web has not been modified by the
spill, at least as far as can be detected within the scope of this compari-
son. On the other hand, δ15N data are not available for marine mammals
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Table 1. Comparison of trophic level (TL) and omnivory index (S.E.E and
OIN) estimates for seven functional groups in the Prince William
Sound ecosystem.

Ecopath Corresponding taxa Data
groupa with δ15N data sourceb  Nc TLE

d TLN S.E.E
e OIN

Mesozooplankton Neocalanus cristatus f 1 938 2 2 0 0.54

Macrozooplankton Euphausiids, 1,2 329 2.8 2.81 0.43 0.49
amphipods,
chaetognaths, etc.

Salmon fry Young-of-the-year 3 285 3.2 3.18 0.32 0.31
chum, sockeye and
pink salmon

Herring Clupea pallasi 1,3 385 3.3 3.33 0.37 0.21
(Pacific herring)

Small  pelagics Smelts, juvenile 3 273 3.3 3.08 0.34 0.32
gadids

Demersal fishes Flatfish, rockfishes, 3 459 3.9 3.88 0.53 0.40
greenlings, gadids,
cottids

Birds Seabirds 4 191 4.1 3.81 0.45 0.44

a Model is described in Dalsgaard and Pauly (1997), including details of species included in each func-
tional group.

b Numbers in this column indicate sources of δ15N data, viz. 1 = Kline (in press); 2 = Kline (unpub-
lished data) ; 3 = Kline (1997); 4 = M.A. Bishop (U.S.F.S., Cordova, unpublished data).

c Number of δ15N measurements.
d As given on Table 23 of Dalsgaard and Pauly (1997).
e From Ecopath file of PWS, available from second author.
f Reference group for 15N/14N as discussed in text.

and many bird species that experienced large mortalities, and this conclu-
sion may thus change when the issue is revisited.

Table 2 and Fig. 1C show that using δ15N data from one system (PWS)
to estimate trophic levels in another, adjacent system (AGS), leads to pre-
dictions that are less precise than when inferences are drawn within the
same system. Moreover, the omnivory index values become completely
uncorrelated (Fig. 1D), partly because of overaggregation of functional
prey groups, which leads to predators that appear to feed at only one
trophic level.

A likely reason for the differences between TLE in AGS and TLN esti-
mates from PWS is the shoe-horning of taxa with δ15N data into the “boxes”
of the AGS model. For example, the TLN estimate for demersal fish in PWS
is compared with a TLE estimate for “large fish” in the AGS, though these
consist of large pelagic fish (Pauly and Christensen 1996).
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Table 2. Comparison of estimates of TLE and S.E.E for functional groups
in the Alaska Gyre system with TLN and OIN estimates derived
from  Prince William Sound organisms.

Ecopath Corresponding taxa Data
groupa with δ15N data sourceb  Nc TLE

d TLN S.E.E OIN

Small herb. zoopl. Neocalanus cristatus 
e 1 938 2 2 0 0.54

Microzooplankton Bulk net samples 1 195 2 2.17 0 0.34

Carnivorous zoopl. Amphipods, 1,2 159 3 2.89 0 0.52
chaetognaths, decapod
larvae, etc.

Jelliesf Gelatinous zooplankton 2 4 3 2.35 0 0.35

Krill Euphausids 1 170 2.05 2.74 0.22 0.45

Squids Squids 3 104 3.15 3.44 0.37 0.25

Small pelagics Herring, smelts, 1,3 545 3.16 3.24 0.36 0.27
juvenile gadids

Sockeye salmon Sockeye salmon 4 118 3.91 2.88 0.45 0.13

Chum salmon Chum salmon 2 1 4 3.05 0

Pink salmon Pink salmon 2 4 3.99 2.94 0.38 0.18

Steelhead Dolly Vardeng 2 6 4.12 3.46 0.20 0.31

Mesopelagics Myctophids, 3 73 3.04 3.12 0.05 0.39
smoothtongue, glass
shrimp, snailfish

Large fish Flatfishes, rockfishes, 2 459 4.04 3.88 0.30 0.40
greenlings, gadids, etc.

Sharks Dogfish, salmon shark 2 5 4.49 3.66 0.45 0.40

Pinnipeds Copper R. Delta Harbor 5 22 4.33 4.92 0.36 0.08
seals & Steller sea lions

Marine birds Seabirds 6 191 4.08 3.81 0.28 0.44

a Model described in Pauly and Christensen (1996), including details of species included in each func-
tional group.

b Numbers in this column indicate sources of δ15N data, viz. 1 = Kline (in press); 2 = Kline (unpublished
data) ; 3 = Kline (1997); 4 = Kline and Ewald (unpublished data); 5 = Hobson et al. (1997); 6 = M.A.
Bishop (U.S.F.S., Cordova, unpublished data).

c Number of δ15N measurements.
d From Ecopath file of Alaska gyre, available from the second author.
e Reference group for δ15N.
f Diet composition, omitted in Pauly and Christensen (1996), consisted of  88% herbivorous zooplan-

ton, and 12% microzooplanton.
g Presumed analogous to steelhead because both are iteroparous salmonids; see text.
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Figure 1. Relationships between estimates of trophic level derived from δ15N data
(TLN) and Ecopath modeling (TLE), and between the corresponding stan-
dard errors, for functional groups in Prince William Sound (PWS) and the
Alaska Gyre System (AGS). (Arrows indicate reference group [Neocalanus
cristatus]; see Tables 1 and 2 for details.) (A) Correlation between TLN and
TLE estimates from PWS; (B) Relationship between OEN and S.E.E estimates
from PWS; (C) Correlation between TLN estimates from PWS and TLE esti-
mates from AGS; (D) Lack of relationship between OIN estimates from
PWS and S.E.E estimates from AGS.
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The δ15N data on salmonids in Table 2 refer to adult specimens collect-
ed during their return migration through PWS and/or the Copper River, of
which all would have done most of their feeding on the Gulf of Alaska
shelf and/or in the AGS. However, having broadly similar life histories
may not be sufficient for their TL values to be similar: the iteroparous
salmonid, Dolly Varden (Salvelinus malma) had an estimated TLN much
lower than another iteroparous salmonid, steelhead (Oncorhynchus mykiss;
Table 2), but close to the value of TLN = 3.54 ± 0.21 estimated for semel-
parous coho salmon (O. kisutch; n = 12). Thus, caution needs to be used
when selecting “analog” species for cross-validation.

Still, we view the cross-validation exercise presented here as encour-
aging, in that the data we assembled led to coherent results, fully validat-
ing the independent, within-system estimates of TL. We also think that the
lower correlation between the TL values from PWS and AGS were largely
due to the lack of correspondence between the species included in the
functional groups that were compared.

The next step is to refine our analyses, based on ecosystem models
that are more detailed, thus requiring less “shoehorning,” making better
use of the available δ15N data, and reducing the occurrence of misleading-
ly low estimates of S.E.E. Also, an important test will be to verify the high
trophic level (TLE ~ 5; Pauly and Christensen 1996) estimated for transient
killer whales. Future work by both authors will be devoted to these and
related issues, important in view of the recent demonstration (Pauly et al.
1998) that the trophic levels of global fisheries catches have been steadily
declining in recent decades.
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Abstract
BORMICON (BOReal MIgration and CONsumption model) is a simulation
model including multispecies interaction and migrations. In this paper
the model is used to investigate interactions between the Icelandic cod
and capelin stocks. The main emphasis is on the spatial distribution of
consumption of capelin by cod, cod growth, and the ability of the model
to follow available data. The estimated effects of variations of capelin
availability on the growth of cod are also investigated and compared to
results obtained by other authors. Consumption according to model re-
sults is compared to consumption calculated directly from stomach con-
tent data using an evacuation rate model.

Introduction
Pálsson (1983) analyzed the feeding habits of cod, haddock, saithe, cat-
fish, redfish, long rough dab, and plaice based on stomach samples taken
in the period 1976 to 1981. His results showed the dominant role of the
cod stock as a predator, especially with regard to commercially important
prey species. The most important prey stock was capelin with northern
shrimp (Pandalus borealis) second. Further studies on feeding of cod and
on cod-capelin interactions (Magnusson and Pálsson 1989, 1991; Pálsson
1994; Marine Research Institute 1997a) have verified this conclusion. How-
ever, calculating the amount of capelin consumed by the cod stock direct-
ly from stomach samples, gives results that are in conflict with acoustic
measurements of capelin if they are considered to be an absolute measure
of stock size (Magnusson and Pálsson 1989).

Relating the growth of a predator to abundance of a prey species can
help in estimating the amount of prey consumed by the predator. Howev-
er, this only applies if the prey is a major part of the predator’s diet. In the
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case of Icelandic cod, only capelin is important enough to impact growth
significantly (Magnusson and Pálsson 1991, Steinarsson and Stefánsson
1996).

 Since around 1980 the size of the cod stock has decreased with the
lowest catchable biomass in 1992 to 1995 (Marine Research Institute 1997b).
At the same time the stock size and commercial importance of many of its
prey types, including capelin and northern shrimp, has increased (Marine
Research Institute 1997b). This contrast in cod biomass facilitates analy-
sis of feeding characteristics of cod through abundance indices of its prey
types.

Models have been developed to investigate the effect of the cod stock
on capelin and northern shrimp. Some of these models have been used in
attempts to find optimum harvesting policies using economic criteria
(Stefánsson et al. 1994).

It has been pointed out (ICES 1993) that spatial information must be
incorporated to enable estimation of predation on certain prey types. In
the case of Icelandic cod and capelin, the stocks do not occupy the same
areas during large part of the year. When separate, the capelin is located
farther north than the cod but the areas of distribution overlap near the
edge of the continental shelf north of Iceland (Vilhjálmsson 1994). The
same also applies to predation of northern shrimp, since part of the shrimp
stock is distributed further north than the cod stock.

BORMICON (BOReal MIgration and CONsumption model) is a multi-
species simulation model, developed at the Marine Research Institute in
Reykjavík and described in Stefánsson and Pálsson (1997). As the name
indicates, the model is designed to describe boreal ecosystems. It has
been shown (ICES 1994) that boreal ecosystems have many features in
common, among them variability in growth and long spawning migra-
tions. Four features were considered essential in the model:

1. Spatial disaggregation and migrations.

2. Ability to calculate growth from feeding.

3. Ability to use data from many different sources for the estimation of
parameters.

4. Maturation model.

The third requirement infers an ability to use predator growth, prey
abundance indices, and stomach content data simultaneously for param-
eter estimation. A maturation model was considered essential due to dif-
ferences in migrations of the mature and immature part of many stocks
(Jónsson 1996, Vilhjálmsson 1994).

The operations implemented in the model are:

1. Migrations.

2. Consumption by predators (commercial fleets included).
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3. Natural mortality.

4. Growth.

5. Maturation.

6. Spawning.

7. Recruitment to the stock.

The above list reflects the order in which the operations are executed
at each time step. The model is in many ways similar to the Norwegian
MULTSPEC model (Bogstad 1997).

Stefánsson and Pálsson (1997) tested a number of different alterna-
tive cod-capelin relationships, involving different migration patterns of
mature cod and different treatments of stomach content data in the objec-
tive function. The conclusion was that the proportion of capelin in the
diet of cod was on average 27%, varying from 26% to 30%.

Method
In this paper the cod-capelin relationship (Stefánsson and Pálsson 1997)
is investigated with a special emphasis on the consumption of capelin by
cod and on cod growth.

Description of Cod-Capelin Example
The simulation is based on the area division shown in Fig. 1. The areas are
numbered from 1 to 16, but only 13 areas are used. Cod lives in areas 1 to
10, mature capelin in areas 1 to 3, 5 to 12, and 16, and immature capelin
in areas 2, 3, 5, 6, 11, and 12.

The modeled age of cod is 3 to 11 years but 0 to 4 years for capelin.
Recruitment to the cod stock is in March at age-3, using area distribution
and length distributions from the groundfish survey (Pálsson et al. 1989).
Recruitment of capelin is in August at age-0, using area distribution and
length distributions from the 0-group survey.

Consumption is calculated by using the feeding level concept from
Anderson and Ursin (1977) and type II feeding function (Magnússon and
Pálsson 1991). The total consumption by a predator is the feeding level
multiplied by maximum consumption which is both length and tempera-
ture dependent.

Stocks in the model are generally split into substocks. In this example
cod and capelin were split into immature and mature parts. The entities
stored for each substock are the number and mean-weight of each length
and age group in each area. Calculation of growth is based on weight;
growth in length is subsequently calculated from the growth in weight
and the condition of the fish.

Growth of capelin was calculated by von Bertalanffy’s equation (Bev-
erton and Holt 1957), based on the current weight of the fish, and growth
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Figure 1. Area division used in cod-capelin simulation.

of cod was calculated by the equation of Jones and Hislop (1978), based
on the amount of food consumed by the fish.

In the simulation capelin does not feed, while cod consumes two types
of food, capelin and “other food.” “Other food” is a prey which does not
develop in the model but the amount in each area at each time step is
predefined. Ideally, the amount of “other food” should be year-, month-,
and area-dependent. This is of course not practical and in the simulation
“other food” was divided into three spatio-temporal divisions.

1. North area summer.

2. North area winter.

3. South area summer and winter.

The amount of “other food” was abundant and its suitability low so
there was no danger of depletion. Dividing other food in only three parts
as done here may be too restrictive.
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The data used in the objective function to be minimized were:

• Mean length at age of cod in survey and commercial catch.

• Age and area disaggregated survey indices of cod.

• Length and age distribution and age-length keys of cod in survey
and commercial catch.

• Age and area disaggregated indices of capelin based on acoustic
measurements.

• Stomach samples.

• Understocking of cod. (Not enough cod exists in an area to cover the
commercial catch).

• Understocking of capelin.

The total objective function to be minimized is a weighted sum of the
different components.

The estimated variables were:

• Recruitment of cod at age 3 and capelin at age 0.

• Initial number of cod and capelin.

• Parameters describing the suitability of capelin as food for cod.

• Suitability of “other food” as food for cod.

• Migration parameters for capelin.

• Selection pattern of fleets catching cod.

• Parameters describing maturation of cod.

In most of the alternatives of the cod-capelin example of Stefánsson
and Pálsson (1997) abundance indices of age-3 capelin in autumn and age-
4 in January were treated as absolute measures of stock size while indices
of younger capelin were proportional.

Migration is calculated using migration matrices. Element (i,j) in a
migration matrix describes the proportion of fishes in area i that will mi-
grate to area j in next time step. Constructing the migration matrices di-
rectly quickly becomes difficult as the number of areas increases. In the
cod-capelin example, cod lives in 10 areas (1-10) so the number of ele-
ments in each migration matrix is 100, reduced to 36 if migration is only
allowed between adjacent areas.

To simplify the migrations and allow migrations to be estimated the
migration matrices can be calculated from few migration parameters. The
migration patterns used for cod in the cod-capelin example are shown in
Fig. 2 and the migration matrix for mature cod in January-April in Table 1.
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Figure 2. Migration pattern used for cod in the cod-capelin simulation.

Distribution of Capelin Consumption According to
Stomach Data
Figure 3 shows the distribution of the amount of capelin in cod stomachs
as a percentage of body weight. The figure is based on all available stom-
ach content data at the Marine Research Institute (MRI), spanning the years
1979 to 1992. The sampling in March is much more extensive than in
other months. As may be seen from the figure, capelin consumption oc-
curs in all areas in March but is most extensive in area 1 and the southern
part of area 2. The capelin consumed in these areas is about to spawn or
has already spawned (Vilhjálmsson 1994). In July and November most of
the capelin consumption occurs near the edge of the continental shelf
north of Iceland. When considering the proportion of capelin in the diet of
cod it must be borne in mind that some of the best fishing areas in sum-
mer and autumn are near the edge of the continental shelf northwest of
Iceland, where capelin can be found nearby most of the year.
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Table 1. Migration matrices for mature cod in January-April constructed
from the migration parameters in Fig. 2b and 2c.

From

To 1 2 3 4 5 6 7 8 9 10

1 1-p3-2f p2+f 0 0 0 0 0 0 0 f

2 f 1-p2-2f p1+f p1 0 0 0 0 0 0

3 0 f 1-p1-2f f f 0 0 0 0 0

4 0 0 f 1-p1-f 0 0 0 0 0 0

5 0 0 0 0 1-p4-2f f 0 0 0 0

6 0 0 0 0 p4+f 1-p5-2.2f f f 0 0

7 0 0 0 0 0 0.2f+0.2p5 1-0.2f-p5 0 0 0

8 0 0 0 0 0 f+0.8p5 0 1-p5-2f f 0

9 0 0 0 0 0 p5 p5+f 1-2f-p6 f

10 p3+f 0 0 0 0 f+p6 1-2f

Calculating the Capelin Consumption Directly from
Stomach Content Data
Many authors have attempted to use stomach content data to calculate
consumption of various prey types (e.g., Bogstad and Mehl 1992, Magnús-
son and Pálsson 1989). One of the main difficulties with this kind of work
is to know the distribution of the predator. Results obtained from the
BORMICON model provide information on the distribution of the cod stock
which can be used in connection with stomach samples to calculate the
predation of capelin and other preys.

 The consumption will be calculated from stomach samples for March,
July and November 1992. The annual consumption in 1992 is then the
mean of the consumption in these three months multiplied by 12.

The stomach evacuation rate model used is that derived by Magnús-
son and Pálsson (1989)

    C L QT= × −3 09 1 091 15 6. .. (1)

Where Q is the total stomach content , C total consumption, L the length of
the predator and T temperature.

Assuming the same digestion rate of all preys the consumption of
each prey is calculated from

  
C C

Q

Qprey
prey= (2)



710 Bjornsson — Capelin Consumption by Icelandic Cod

Figure 3. Amount of capelin as % body weight in cod stomachs according to
stomach sample.
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Where Cprey is the consumption of prey and Q prey the amount of prey in
each stomach.

Results
In the following sections, results from the model are investigated. The
emphasis is on spatial distribution of capelin consumption, cod growth,
and its relationship to the size of the capelin stock. Results from the mod-
el will be compared to measurements which in this case are mean length
at age and stomach content data.

Consumption of Capelin and Comparison to Stomach
Content Data
Figures 4 and 5 show the total amount and amount of capelin consumed
according to the model, disaggregated by area and month. Proportion of
capelin in the diet of cod exceeds 50% in areas 2, 3, 5, and 6, highest
during the winter or 60 to 80% but lowest in spring and early summer. In
the southern area, capelin are only available during the spawning migra-
tion.

Table 2 compares the proportion of capelin in the diet of cod accord-
ing to model results and stomach content data, showing an underestimate
of capelin consumption in areas 1 and 2 in March by the model. Reason
for the underestimate is that modeled migration of spawning capelin is

Figure 3. (Continued.)
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Figure 4. Annual consumption according to model (1,000 tons).

Figure 5. Annual consumption according to model disaggregated by area and
month.
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too “slow” so too few capelin make it to area 1 in March. In addition, migra-
tion of spawned capelin from area 1 to area 2 is not modeled. In March the
highest capelin consumption per cod is in area 1 and the southern part of
area 2 (Fig. 3).

Table 3 shows consumption calculated from stomach content data for
March, July, and November 1992 as described in “Calculating the Capelin
Consumption Directly from Stomach Content Data.” The results are com-
pared to consumption obtained from the model. Stomach content data
indicate a higher proportion of capelin in March but lower in July and
November. As mentioned above most of the difference in March is due to
problems in modeling the spawning migration of mature capelin.

The difference between stomach content data and model results in
July and November 1992 is due both to problems with stomach samples
and to compensate for the underestimate of capelin consumption in March
caused by problems with the spawning migrations. In this period interac-
tion between cod and capelin occurs in a narrow area near the edge of the
continental shelf. Capelin in these areas are pelagic and stomach samples
taken from cod caught with demersal trawl could lead to underestimation

Table. 2 Proportion of capelin in cod stomachs in 1992 where more than
50 stomachs were sampled.

Area

1 2 3 4 5 6 8 9 10

March 72-21 81-41 44-47 11-0 71-57 64-57 56-31 42-57 28-35

July 0-0 37-43 41-52 1-0 17-56 16-40 5-0 0-0

November 6-0 39-68 54-74 3-0 68-82 48-72 1-0

The first number in each cell is the proportion from cod stomach samples but the second number is
derived from the model. Mean proportion from 30-90 cm cod used.

Table 3. Comparison of the total amount of capelin, and the amount of
capelin consumed by cod, calculated from stomach content data
and according to the model for the year 1992.

Stomach content data Model

Total Capelin % capelin Total Capelin % capelin

March 142 84 59.4 106 39 36.8

July 120 24 20.5 155 48 31

November 123 42 35.1 143 73 51

Total 1,545 604 39.1 1,646 578 35.1



714 Bjornsson — Capelin Consumption by Icelandic Cod

Figure 6. Mean length at age for some selected age groups in 1989 to 1996.

of capelin consumption in the area. Data from commercial fisheries indi-
cate an abundance of cod in these areas but the distribution is patchy so
obtaining a reliable estimate of the distribution is difficult.

Stefánsson (1998) examines a series of model results in which one
component of the total objective function dominates in each estimation.
The results appear reasonable except when emphasis is put on stomach
content data, which is not surprising in view of the results obtained here
where the model does not follow the stomach content data well.

Growth of Cod
Direct measurements of growth are difficult to obtain except from tagging
data. Of the components used in the objective function, mean length at
age is the best measure of growth. Relating growth to mean length at age
is not difficult for the youngest fish but things get more complicated when
maturation of a cohort begins and the mature individuals migrate from
north to south.

In Fig. 6, mean length at age according to the model is compared to
data from the groundfish survey. The model appears to predict the main
features of the data. The most notable discrepancy between model and
survey is age-7 in areas 3 to 6 where mean length according to the model
is higher. Other cases with large discrepancy involve few individuals and
are of little importance.
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Relating cod growth to capelin stock size is of much interest because
a large part of the commercial value of the capelin stock is as food for cod.
Steinarson and Stefánsson (1996) derived a relationship between growth
(in weight) of cod and biomass of capelin using mean weight at age from
commercial catches and acoustic estimates of the capelin stock. Accord-
ing to their results cod growth in the absence of capelin is 75% of the
growth when the capelin stock is large (at 1986 level).

Magnússon and Pálsson (1991) simulated the effect of capelin biom-
ass on cod growth. The growth equation used is the same as used in BOR-
MICON (Jones and Hislop 1978). According to their results the growth in
weight in the absence of capelin is only 60% of the growth with the capelin
stock at the 1986 level.

To investigate the effect of the capelin stock on cod growth three
alternative simulations were run. The period was set from 1982 to 1993.
All the simulations were identical to the cod-capelin example until in April
1992. From April 1992 to March 1993 the alternatives were as follows.

1. No capelin from April 1992 to March 1993. No cod caught in that
period.

2. Normal development of the capelin stock from April 1992 to March
1993. No cod caught in that period.

3. Normal simulation from April 1992 to March 1993.

Table 4 shows the mean weight of cod in March 1996 and March 1997
according to the alternatives. As may be seen the capelin stock has the
largest effect on the growth of younger cod. The mean annual growth of

Table 4. Mean weight in March 1992 and March 1993 with capelin stock
as in the model and no capelin stock from March 1992 to March
1993.

No length dependent mortality of cod All mortality of
from April 1992 to March 1993 cod included

Weight in Weight in Growth Growth Weight in
Weight in March 93 March 93 with with March 1993

Year class March 92 no capelin capelin no capelin capelin with capelin

1989 0.52 0.93 1.21 0.41 0.69 1.15

1988 1.25 1.97 2.43 0.73 1.18 2.23

1987 1.76 2.55 3.01 0.79 1.25 2.8

1986 3.21 4.2 4.78 1 1.58 4.61

1985 4.04 5.16 5.79 1.12 1.75 5.66

1984 5.69 7.12 7.83 1.43 2.14 7.79

1983 8.6 10.61 11.38 2.01 2.78 11.4
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age 4 cod (1988 year class) with no capelin is 0.73 kg or 61% of the growth
with normal development of the capelin stock. This agrees with the re-
sults from Magnússon and Pálsson (1991) which is expected as both stud-
ies use the same growth equation (Jones and Hislop 1978).

The data with highest weight in the objective function is cod data
(mean length at age, length distribution, age length keys, etc.). This data
relates to the feeding of cod through the growth model used. In the cod-
capelin example, growth of cod is probably most important in estimating
capelin consumption by the cod stock. The annual consumption of cape-
lin is set to get the right contrast in cod growth between years. Underesti-
mate of capelin consumption early in the year will therefore be followed
by an overestimate in the latter part of the year as discussed in the section
“Consumption of Capelin and Comparison to Stomach Content Data.”

Selection curves of a fleet (predator) in the model are length based, so
a fleet can affect the mean length (and weight) at age. Comparison of col-
umns 4 and 7 in Table 4 shows the effect of the commercial fleets on the
mean weight at age of cod.

Using length distributions and fixed length-weight relationship as done
here will probably underestimate the contrast in growth in weight be-
tween years with abundant and little capelin, as the condition of fish is
better when more food is available. This problem will probably lead to
underestimation of the importance of capelin in the diet of cod. The mod-
el has the potential to let the reference length-weight curve move with the
feeding level (Stefánsson and Pálsson 1997), improving condition of the
fish when the feeding level is high. Use of that possibility and inclusion of
weighting of cod in the objective function could help in investigating this
problem.

Conclusions
In this paper an attempt has been made to investigate some aspects of a
multi-area simulation involving two species, cod and capelin. The items
investigated are capelin consumption and cod growth, comparing model
results to stomach content data, mean length at age from survey, and
earlier work on the effect of the capelin stock on cod growth.

Results from the investigation indicate that the model results do not
follow stomach content data well but the main features in the growth of
cod are correctly predicted.

The extensive area disaggregation used has some major advantages
especially with respect to the treatment of stomach samples. However,
there are also many problems encountered. Implementing the migrations
becomes more difficult and interannual variability increases.

Is the use of so much spatial disaggregation advantageous? The an-
swer to this question is not obvious. Spatially disaggregated models are
more data demanding and difficult to implement but can provide infor-
mation about the ecosystem which more aggregated models cannot.
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Spatial Analysis of Fish
Distribution and Abundance
Patterns: A GIS Approach
Anthony J. Booth
Rhodes University, Grahamstown, South Africa

Abstract
A heterogeneous Geographical Information System (GIS) was developed to
analyze fish distribution and abundance patterns on the Agulhas Bank,
South Africa. The sparid fish, Pterogymnus laniarius, was chosen as a can-
didate species for analysis because of its commercial importance and high
biomass. The results using Generalized Additive Modeling within the GIS
revealed that there was a nursery area for immature fish on the central
Agulhas Bank. After sexual maturation, approximately 40% of the biomass
migrated eastward, colonizing large areas of the eastern Agulhas Bank.
The use of GIS methodologies in integrated fishery management is dis-
cussed as it appears to be a developing trend in analyzing fish distribu-
tion and abundance data.

Introduction
Data collected from field surveys, be they biological, geological, or socio-
economic, have a spatial component. Depending on the observer and the
purpose of the survey, this component is often ignored or given minor
consideration. These data, abundance estimates in particular, often form
the basis of many forms of fisheries assessments inter alia VPA (Pope and
Shepherd 1985), age-structured production modeling (Booth and Punt
1998), and integrated analysis (Deriso et al. 1985).

Spatial analysis deals with data that is geo-referenced, in that it has a
spatial component. As survey data is geo-referenced with respect to longi-
tude and latitude it is an ideal candidate for spatial analysis. A suitable
approach, which incorporates various qualitative and statistically robust
methods to interpret this georeferenced and multivariate data, uses a Geo-
graphical Information System (GIS). A GIS is an information system-
specifically designed to work with data referenced by spatial or geographic
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coordinates. In other words, a GIS is both a database system with specific
capabilities for spatially referenced data, as well as a platform for analytical
operations for working with the data (Star and Estes 1990). It can allow for
the analysis of both qualitative and quantitative data types, identify asso-
ciations between components, and therefore build a “living database” with
exploratory data analysis, interpretative, and mapping capabilities.

The panga Pterogymnus laniarius (Cuvier 1830), a commercially im-
portant sparid fish species, was chosen to illustrate the development and
application of a marine fish GIS. While aspects of its general biology are
relatively well known (Booth and Buxton 1997), little is known about its
distribution and abundance apart from the general descriptive work by
Uozumi et al. (1981, 1985), Hatanaka et al. (1983), Badenhorst and Smale
(1991) and Smale et al. (1993) There is, therefore, a clear need for a better
understanding of the spatial dynamic of this species as it can highlight
nursery areas, areas of high spawner biomass, and possible movements.

Materials and Methods
Biomass Surveys
Biomass survey data used in the analysis was collected on the South Afri-
can Cape south coast between Cape Agulhas (34°50′S, 20°00′E) and Port
Alfred (33°26′S, 26°54′E) during biannual biomass assessment surveys
between 1988 and 1995 (Fig. 1). The sampling methodology used is de-
scribed by Smale et al. (1993).

Fish Life History Stages
A life history stage classification proposed by Booth and Buxton (1997)
was adopted to disaggregate the biomass of the stock and provide results
on each stanza of its life history. Juvenile fish (<13 cm TL) were character-
ized by immature gonadal development and subadult fish (13-23 cm TL)
were predominantly immature; few fish matured later in the life history
stage and adult fish (>23 cm TL) were sexually mature.

Geographical Information System Design
A simple Windows NT (registered trademark of Microsoft Corporation)
based Geographical Information System was developed using ArcView (reg-
istered trademark of ESRI Inc.). All statistical analysis were conducted us-
ing S-PLUS (registered trademark of Mathsoft). The statistical results in
the form of summaries and coverages were exported back into ArcView
for further manipulation and graphical presentation.

The starting location of each trawl was used to represent the spatial
location, in decimal degrees, of the biological and physical data. The coast-
line and bathymetry was digitized from available nautical maps.
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Figure 1. Map of Agulhas Bank, South Africa, with all stations trawled during 1988-
1995.

Qualitative Analysis
Using overlaying procedures, characteristic of all GISs, relationships be-
tween covariates were investigated. Both point and polynomial interpolat-
ed physical data (to allow for better visual interpretation) were overlaid
with fish density (fish per nm2) in each life-history stage. Trends were
identified using Boolean logic to select alternative combinations of values
within the different coverages to identify zones of physical preference.

Quantitative Analysis
Generalized Additive Modeling (GAM) was used to model the spatial distri-
bution and abundance of P. laniarius on the Agulhas Bank in response to
various predictors (covariates) such as latitude, longitude, temperature,
depth, and dissolved oxygen. From general observation it was noted that
distribution of different life history stages were not homogenous over their
distributional range (Fig. 2). It was also assumed that the density of life
history stages was determined by an underlying Poisson process with the
magnitude of the response variable (in this case fish per nm2), being a
function of at least two covariates—latitude and longitude. The use of GAM
allows for changes in abundance to be related to spatial covariates without
a restriction in the functional form of the relationship. This method allows
for the incorporation of nonlinear (and possibly nonparametric) trends
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Figure 2. Distribution of three life history stages of Pterogymnus lani-
arius on the Agulhas Bank, South Africa. Data was collected
between 1988 and 1995.
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into the working model and to include covariates which could potentially
determine spatial distribution. Details regarding the use of GAMs are de-
scribed by Hastie and Tibshirani (1986, 1990) and Swartzman et al. (1992).

Optimum Fishing Areas
Once spatial trends were estimated, these were used to estimate biomass.
That area of P. laniarius distribution was identified by isolating the area
where fish have been sampled on the research surveys over the past decade.
A polygon was drawn around the extreme points of the known panga dis-
tribution, forming a polygon hull. A polynomial extrapolation-interpola-
tion algorithm (Press et al. 1997) was used on the predicted GAM point
estimates to predict fish density at points not sampled, but occurred within
the polygon hull on a 5 × 5′ square grid. The point density estimates were
then multiplied by the average mass per fish in each life history stage,
multiplied by 25 (the area in each interpolated block) and all life history
stage biomasses summed.

Areas with consistently high adult and low immature biomass were
determined by using Boolean logic within ArcView using the averaged GAM
predicted biomass estimates. Those areas with at least 80% or 85% spawn-
er biomass were selected. Total P. laniarius biomass was estimated for the
central (20°-23°E) and eastern (23°-27°E) portions of the Agulhas Bank.
These areas were chosen as they represent important fishing grounds used
by two distinct trawl fisheries operating from Mossel Bay and Port Elizabeth.

Results
A summary of all data collected and utilized in the analyses is summa-
rized in Table 1 and the trawl positions illustrated in Fig. 1. The impor-
tance of panga is highlighted on the Agulhas Bank as this species makes
up about 7.5% of the demersal biomass and is the third most abundant
demersal species by mass (excluding the pelagic species exhibiting diel
migrations) surveyed since 1988 (Japp et al. 1994).

The polynomial interpolated point estimates of bottom temperature
(Fig. 3) and dissolved oxygen levels (Fig. 4) provide an adequate descrip-
tion of the physical conditions on the Agulhas Bank on a seasonal basis.
While only two surveys during spring and autumn 1993 have been illus-
trated in this study, a description of all the surveys follows. During autumn,
the eastern Agulhas Bank was the warmest, with a small coastal intrusion
of warmer water on the central Agulhas Bank. This situation was similar to
the dissolved oxygen distribution with higher levels of dissolved oxygen,
also being distributed on the eastern Agulhas Bank. During winter, the
intrusion on the central Agulhas Bank from the coast to deeper areas be-
came evident, and by spring the warmest water with the highest dissolved
oxygen was widely distributed over this area. Generally, eastern Agulhas
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Table 1. A summary of south coast biomass cruises within South African
waters between 20° and 27°E.

Cruise Total Trawls with Trawls for Depth Temperature Dissolved
number Date trawls P. laniarius analysis (m) (°C) oxygen (ml/L)

SC 063 May/Jun 93 67 84 117.36±79.61 11.13±1.48 3.83±0.92
1988 (30-450) (9.28-18.47) (1.97-5.53)

SC 072 May 1989 62 49 55 100.59±39.02 10.59±1.59 3.70±0.89
(32-185) (8.8-16.05) (1.85-5.19)

SC 082 May/Jun 58 54 57 100.88±58.91 11.85±2.14 3.64±1.13
1990 (30-480) (9.54-17.17) (1.64-5.42)

SC 086 Sep 1990 91 47 72 79.56±43.22 12.44±2.23 4.47±0.67
(18-224) (8.11-16.21) (3.25-5.91)

SC 093 Jun/Jul 91 70 82 109.69±66.41 11.54±2.20 4.07±0.68
1991 (33-362) (8.13-16.25) (2.47-5.56)

SC 095 Sep/Oct 75 60 68 81.64±24.87 13.78±1.69 4.85±0.70
1991 (31-144) (9.97-17.44) (3.76-5.99)

SC 102 Apr 1992 82 60 44 110.17±60.71 11.04±0.78 3.75±0.78
(30-400) (9.29-13.16) (2.02-4.90)

SC106 Sep 1992 87 67 69 80.32±26.64 13.63±2.14 4.68±0.68
(25-124) (9.33-16.42) (3.36-5.87)

SC 111 Apr/May 104 89 101 109.89±43.52 10.53±1.68 4.05±0.45
1993 (29-237) (7.70-18.16) (2.72-4.79)

SC 116 Sep 1993 105 85 67 90.30±30.73 12.58±2.41 4.53±0.60
(29-186) (8.40-16.30) (3.55-5.98)

SC 122 Jun/Jul 88 65 78 123.74±87.02 11.75±2.88 4.28±0.83
1994 (35-500) (6.59-2.88) (1.36-5.65)

SC 125 Sep/Oct 92 66 66 82.93±31.31 12.04±1.57 4.39±0.83
1994 (30-200) (9.50-15.13) (3.12-9.2)

SC 129 Apr/May 95 64 75 138.18±98.09 10.25±1.83 3.86±0.83
1995 (29-483) (8.30-16.20) (1.80-6.02)

SC 131 Sep/Oct 96 73 81 90.51±37.75 12.06±2.24 4.26±0.65

1995 (28-193) (9.20-16.62) (3.03-6.19)

The mean (±  standard deviation) and range (in parentheses) of the physical data were sampled using a
CTD rosette sampler within 10 m of the substratum. Spring cruises occurred between September and
October while autumn/winter cruises occurred between April and July.
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Figure 3. Bottom temperature profiles (°C) for spring and autumn 1993 on the
Agulhas Bank, South Africa. The polygon coverage, represented as 5 × 5′
squares, was generated by using polynomial interpolation of the raw
point data.
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Figure 4. Dissolved oxygen profiles (ml/L) for spring and autumn 1993 on the Agul-
has Bank, South Africa. The polygon coverage, represented as 5 × 5′
squares, was generated by using polynomial interpolation of the raw
point data.
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Bank water remained relatively warm with relatively high dissolved oxy-
gen levels.

Qualitative Appraisal
Distinct patterns of distribution were evident within the various life history
stages of P. laniarius when all trawl surveys were pooled (Fig. 2). Juvenile
fish were distributed in a narrow area over the central Agulhas Bank with-
in the 60-90 m isobath forming a nursery area. While small patches of
juveniles were noticeable off Mossel Bay and Plettenberg Bay, these were
of low abundance. Subadult fish showed an intermediary distribution pat-
tern between the juvenile and adult life history stages, becoming more
widely distributed than the juvenile fish yet more restricted than adult
fish. They were also distributed predominantly over the central Agulhas
Bank up to Plettenberg Bay, although at depths greater than juvenile fish.
Adult fish were widely distributed, inhabiting deeper waters. Three dis-
tinct areas of high adult biomass were noticed, off the Central Agulhas
Bank, west of Plettenberg Bay and east of Port Elizabeth. This confirms
anecdotal evidence from fisherman who report high spawner biomass in
these areas. Changes with respect to seasonality were also evident, with
fish of all life history stages inhabiting areas with both higher tempera-
tures and dissolved oxygen levels during the spring surveys (Table 2).

Quantitative Appraisal
The application of GAM allows for the investigation of the effect selected
covariates have on fish density. The use of preliminary Generalized Linear
Modeling (McCullagh and Nelder 1989), also with an underlying Poisson
distribution, highlighted linear effects. Despite being statistically signifi-
cant, the GAMs incorporating the linear fits provided higher deviations
with respect to the null model, and nonlinear cubic splines were used in
all further analyses.

A summary of the GAM scatterplot smooths, incorporating all survey
data for the three life history stages, are presented in Figs. 5-7 for juve-
niles, subadults, and adults, respectively. In all three life history stages
analyzed, fish density was shown to increase with longitude and decrease
with respect to latitude. In juvenile fish, there was a steady increase in
abundance with increased dissolved oxygen concentrations. This became
less evident as fish grew larger, having little effect on the GAM smooths in
the subadult and adult life history stages (Tables 3-5). Temperature was
shown to have little effect on fish density in all life history stages. A pre-
ferred depth was clearly evident with fish moving into deeper water as
they grew larger. Highest abundance occurred at approximately <90 m for
juveniles, at approximately 90 m for subadults, and at approximately 100
m for adult fish. The incorporation of a seasonal factor into the GAM high-
lighted the fact that abundance was greatest during autumn in all life
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Table 2. Qualitative analysis of preferred zones for three physical vari-
ables obtained by visual inspection of overlaying physical and
fish density coverages.

Dissolved Dissolved
Temperature oxygen Depth Temperature oxygen Depth

Year (°C)  (ml/L) (m) (°C) (ml/L) (m)

Juveniles (< 13 cm TL)

Spring Autumn

1988 – – – 10.0-13.0 3.0-4.5 60-95

1989 – – – >10.0 2.0-4.0 80-90

1990 10.0-15.0 >3.5 60-100 >10.0 2.0-4.0 50-100

1991 >14.0 >4.0 80-100 9.5-13.0 >3.0 70-100

1992 >13.0 >4.5 40-90 10.5-11.5 3.0-4.0 80-120

1993 >14.0 >4.8 60-95 10.0-16.0 3-4.3 60-95

1994 >12.0 >4.0 50-95 >10.0 3.0-4.0 70-90

1995 a a 60-100 >10.0 3.0-4.0 60-95

Subadults (13-23 cm TL)

Spring Autumn

1988 – – – 10.0-13.0 2.5-5.0 60-120

1989 – – – >9.0 2.0-5.0 40-180

1990 9.0-16.0 >3.5 60-200 >9.0 2.0-5.0 40-180

1991 >13.0 >4.0 70-110 9.5-13.0 >2.5 70-100

1992 >10.5 >4.0 50-130 10.5-11.5 2.5-5.0 60-130

1993 >9.5 >4.2 50-130 6.0-11.2 3.0-4.3 80-140

1994 a a 60-160 >9.5 2.5-4.5 60-180

1995 >10.0 3.5-5.0 60-120 9.0-11.0 3.0-5.0 60-160

Adults (> 23 cm TL)

Spring Autumn

1988 – – – 10.0-15.0 2.5-5.0 40-180

1989 – – – >9.0 2.0-5.0 40-180

1990 9.0-16.0 >3.5 60-200 >9.0 2.0-6.0 50-180

1991 >10.5 >3.5 40-140 >9.0 >2.5 60-160

1992 >10.0 >3.9 50-130 10.0-12.0 2.5-5.0 60-180

1993 >10 >4.0 50-180 >9.5 3.0-4.5 80-140

1994 a a 60-180 >9.5 2.5-4.5 60-180

1995 >9.5 3.5-5.0 60-120 9.0-11.0 3.0-5.0 60-180

Analysis was conducted for different life history stages of Pterogymnus laniarius on the Agulhas Bank,
South Africa during spring and autumn biomass surveys between 1988 and 1996.
a Physical data too sparse for analysis.
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Figure 5. GAM scatterplot smooths for juvenile Pterogymnus laniarius (<13 cm
TL) density in response to various covariates for all surveys ana-
lyzed between 1988 and 1995 on the Agulhas Bank, South Africa.
Dashed lined represent twice-standard error bands.
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Figure 6. GAM scatterplot smooths for subadult Pterogymnus laniarius (13-
23 cm TL) density in response to various covariates for all sur-
veys analyzed between 1988 and 1995 on the Agulhas Bank, South
Africa. Dashed lines represent twice-standard error bands.
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Figure 7. GAM scatterplot smooths for adult Pterogymnus laniarius (>23 cm
TL) density in response to various covariates for all surveys ana-
lyzed between 1988 and 1995 on the Agulhas Bank, South Africa.
Dashed lines represent twice-standard error bands.
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Table 3. Nonparametric significance of various covariates to the GAM
fitted to juvenile Pterogymnus laniarius (<13 cm TL) density.

Year Longitude Latitude Temperature Dissolved oxygen Depth

Spring

1990 <0.001 0.015 <0.001 <0.001 <0.001

1991 <0.001 <0.001 0.162 0.003 0.022

1992 0.006 <0.001 0.281 0.053 0.055

1993 0.005 0.009 0.004 0.093 <0.001

1994 0.014 <0.001 0.008 0.019 <0.001

1995 0.005 0.007 0.048 0.074 <0.001

Autumn

1988 0.983 0.367 0.484 0.610 0.306

1989 0.022 0.249 0.001 0.467 <0.001

1990 <0.001 <0.001 0.005 0.087 0.212

1991 0.137 <0.001 <0.001 0.137 <0.001

1992  a  a  a  a  a

1993 <0.001 <0.001 0.089 0.151 <0.001

1994 0.004 <0.001 <0.001 0.025 0.490

1995 <0.001 <0.001 <0.001 0.003 0.001

All years <0.001 <0.001 0.003 <0.001 <0.001
a Physical data was too sparse for analysis.

history stages analyzed. This is possibly an effect of sampling deeper
areas during the autumn surveys.

Nonparametric statistical significance of the various covariates using
an appropriate χ2 statistic (Hastie and Tibshirani 1990) for each life history
stage and survey analyzed is summarized in Tables 3-5 . In the juvenile
data set, four of the five covariates used in the analysis showed a consis-
tent significant effect on the GAM. While latitude and longitude consis-
tently illustrated the presence of a nursery area on the central bank, the
significant effects of these covariates appear to be merely descriptive.
Dissolved oxygen generally had an insignificant effect in determining the
density of juveniles, with one third of the surveys analyzed being signifi-
cant. In contrast, both depth and temperature were significant in most
surveys. A similar trend was evident with the subadult fish. Both dissolved
oxygen and temperature were generally insignificant in the adult GAM.
The eurytopy of the adult fish was stressed, and mature fish appear to be
able to tolerate a wide range of physical conditions. This, therefore, pro-
vides the mechanism for adult fish to be able to move eastward and colo-
nize vast areas of the eastern bank. In all life history stages, depth was
found to be highly significant in all the surveys analyzed.
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Optimum Fishing Areas
During spring and autumn, at least 60% of the spawner biomass was situ-
ated over the central Agulhas Bank (Table 6). Those areas suitable for com-
mercial exploitation, composing at least 80% of spawner biomass, are
presented in Fig. 8. In both the scenarios presented, the eastern Agulhas
Bank consistently contained the highest proportion of spawner biomass
due to its distance from the nursery area on the central Agulhas Bank. If
the proportion of spawner biomass was specified to be >85%, the model
only selected the eastern Agulhas Bank and western edge of the central
Agulhas Bank. When the criteria for area selection was reduced to contain
only those areas with >80% spawner biomass, a larger portion of the Agul-
has Bank was chosen. In both scenarios, the high juvenile and subadult
abundance on the mid-central Agulhas Bank excluded these areas as suit-
able for fishing effort.

Discussion
From the data presented, it appears that P. laniarius has a distinct ontolog-
ical shift in distribution with respect to size (and age). This is noticeable

Table 4. Nonparametric significance of various covariates to the GAM
fitted to subadult Pterogymnus laniarius (13-23 cm TL) density.

Year Longitude Latitude Temperature Dissolved oxygen Depth

Spring

1990 <0.001 <0.001 0.002 0.003 <0.001

1991 0.004 <0.001 <0.001 0.097 <0.001

1992 <0.001 0.002 0.177 0.003 0.010

1993 0.016 0.005 0.071 0.277 <0.001

1994 0.038 <0.001 0.001 0.082 <0.001

1995 0.102 <0.001 0.002 0.013 <0.001

Autumn

1988 0.557 <0.01 0.097 <0.001 <0.001

1989 0.009 0.006 0.009 0.001 <0.001

1990 0.028 0.002 0.185 0.397 <0.001

1991 <0.001 0.225 0.215 0.089 0.001

1992  a  a  a  a  a

1993 <0.001 0.145 0.225 0.273 <0.001

1994 0.149 0.009 0.008 0.454 <0.001

1995 <0.001 0.002 0.002 0.149 <0.001

All years <0.001 <0.001 0.043 0.029 <0.001
a Physical data too sparse for analysis.
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Table 5. Nonparametric significance of various covariates to the GAM
fitted to adult Pterogymnus laniarius (>23 cm TL) density.

Year Longitude Latitude Temperature Dissolved oxygen Depth

Spring

1990 0.104 <0.001 <0.001 0.212 <0.001

1991 0.458 0.001 0.387 0.047 <0.001

1992 0.136 0.177 0.124 0.165 <0.001

1993 0.030 0.231 0.020 0.047 <0.001

1994 0.110 0.063 <0.001 0.025 <0.001

1995 0.071 <0.001 0.005 0.614 <0.001

Autumn

1988 0.097 0.009 0.132 0.839 <0.001

1989 0.353 <0.001 0.008 0.195 <0.001

1990 0.015 <0.001 0.324 0.007 <0.001

1991 0.257 0.040 0.247 0.177 <0.001

1992  a  a  a  a  a

1993 0.009 0.229 0.084 0.121 <0.001

1994 0.024 0.723 0.238 0.255 <0.001

1995 <0.001 0.008 0.012 0.003 <0.001

All years <0.001 <0.001 0.227 0.321 <0.001
a Physical data too sparse for analysis.

Table 6. Proportion of spawner biomass that is situated over the central
(20°-23°E) and eastern (23°-27°E) portions of the Agulhas Bank.

Spring / summer surveys Autumn / winter surveys

Central Bank Eastern Bank Central Bank Eastern Bank

1988 – – 0.35 0.65

1989 – – 0.64 0.36

1990 0.63 0.37 0.50 0.50

1991 0.57 0.43 0.63 0.37

1992 0.57 0.43 a a

1993 0.66 0.34 0.67 0.33

1994 b b 0.66 0.34

1995 0.56 0.44 0.65 0.35

Average 0.60 0.40 0.59 0.41

Estimates were calculated using the GAM predicted estimates of biomass.
a No convergence in GAM; b Not enough coverage of Agulhas Bank for effective interpolation.
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Figure 8. Optimum areas to fish Pterogymnus laniarius which minimizes the
impact on juvenile fish while directing effort toward spawner bio-
mass. The hatched areas have total biomass composed of at least
85% adults (top) and at least 80% adults (bottom). Data used in the
analysis were GAM biomass estimates which were pooled and aver-
aged for all surveys between 1988 and 1995.



736 Booth — Fish Distribution and Abundance

in the distinct nursery area for immature fish over the central Agulhas
Bank. After sexual maturation, corresponding to the stage when fish feed
predominantly on harder shelled, soft-stratum prey (Booth and Buxton
1997), a large proportion of the adult population migrated eastward.

Results obtained from both the qualitative and quantitative methods
were similar. The combined trends, therefore, provide a reasonable indi-
cation of the functional relationship between the abundance of fish and
its predictive covariates. It was noted that in immature fish, density was
significantly affected by both temperature and depth. In mature fish, only
depth provided a significant effect (with the exception of the spatial cova-
riates) to the GAM fit. Dissolved oxygen was found to be insignificant in
the subadult and adult life history stages and was probably due to the
relatively high dissolved oxygen levels over the entire Agulhas Bank. This
is in contrast to the upwelling dominated Benguela system where anoxic
conditions can prevail (Smale et al. 1993, Roberts and Sauer 1994). While
there appears to be some autocorrelation between temperature and depth
(with temperature decreasing with depth), depth was consistently a sig-
nificant effect in all the GAM fits. It is, therefore, suggested that depth is a
primary factor determining the abundance of P. laniarius on the Agulhas
Bank. Similarly, depth was the covariate that was found to determine flat-
fish abundance in the Bering Sea (Swartzman et al. 1992) and gadoid and
flatfish abundance on the Georges Bank (Murawski and Finn 1988).

The question still arises why small, immature fish are distributed over
the central Agulhas Bank. If depth were the principal factor in determining
abundance, their distribution should include the entire Agulhas Bank. A
similar question arises as to why the larger fish move eastward after sexual
maturation. These questions stress the use of exploratory data analysis
using generalized statistical and spatial methods which allow for trends
to be observed before hypotheses are formulated.

If both surface and bottom current profiles are investigated (see re-
view by Boyd and Shillington 1994), an alternate scenario can be illustrat-
ed. P. laniarius has been shown to have a nonseasonal pattern with all
mature individuals spawning throughout their range all year (Booth and
Buxton 1997). This is possibly a response to the relatively stable oceano-
graphic environment which they inhabit. Spawned eggs and pre-metamor-
phosed planktonic larvae from eastward distributed spawning adults
would, therefore, be carried westward by the strong Agulhas Current be-
fore being advected to the coast by the anti-cyclonic gyre over the central
Agulhas Bank. Similarly, eggs and larvae from central Agulhas Bank spawn-
ing adults would merely be advected toward the coast. This is similar to
the conclusion presented by Werner et al. (1993) using a three-dimension-
al circulation model which in part explained the distribution of cod and
haddock larvae on Georges Bank. The decrease in surface current strength
over the central Agulhas Bank could provide a deposition zone for post-
metamorphosed larvae, and the decreased bottom current strength would
prevent fish from being moved far from their deposition site and lost to
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the West Coast Benguela system. As the fish grow and mature, they be-
come large enough to tolerate stronger currents and also have the ability
to feed on a greater variety of hard-shelled prey. As a density-dependent
response, adult fish would reduce conspecific competition and move east-
ward to colonize larger areas of suitable habitat. Overall, P. laniaris would
restrict themselves to a specific depth range to avoid stress associated
with shallow, coastal wind-driven upwelling and the strong Agulhas cur-
rent with its shelf break–induced upwelling (Lutjeharms et al. 1996).

It has been shown in a variety of studies that the distribution of pop-
ulations is strongly determined by some underlying habitat association,
preferred physical conditions, proximity to food sources, or areas where
spawning success will be maximized (Murawski and Finn 1988, Mahon
and Smith 1989, D’Amours 1993, Perry and Smith 1994, Le Clus et al.
1996). In South Africa, there is paucity of knowledge on the habitat types
and the habitat preferences of associated fish assemblages on the Agul-
has Bank. While it is known that there are extensive areas of hard, low-
profile reef (Badenhorst and Smale 1991, Smale et al. 1993, Le Clus et al.
1996) which appears to be the preferred habitat for P. laniarius, there is a
distinct need for this information. Data that is available is restricted to
surficial sedimentary deposits. In this regard, a concerted effort is needed
in this area before the spatial distribution of any species inhabiting the
Agulhas Bank can be fully understood.

GIS technology offers the facility to combine many biological data
sets and relate them to system-wide observations of habitat. Furthermore
as habitat is not the resource of value, relating biological consequences to
the habitat allows for the ease of management of the habitat via their
biological indicators. In the case of the Agulhas Bank, as more habitat
information becomes available together with knowledge of their associat-
ed fish assemblages, it can be added as a new coverage to the GIS. The
updated GIS can then easily be reanalyzed and interpreted. As a result, the
spatial distribution and abundance of P. laniarius will become more fully
understood. Understanding the influence of the marine environment, a
knowledge of the habitat types and preferences can therefore facilitate
better management of P. laniarius and other sympatric species.

Optimal management areas can be obtained by selecting those areas
which are the most suitable for fishing. Using a GIS, the biomass of the
stock can be easily disaggregated by region or life history stage, thereby
facilitating and improving age-structured modeling (Booth, in prep.). The
most suitable areas would therefore include those in which fishing effort
(and hence fishing mortality) is reduced on vulnerable life history stages.
These would include immature fish which have discrete nursery areas or
annual migrations of spawner biomass to specific spawning areas. In the
case of P. laniarius, only the former constraint applies as adult fish spawn
throughout the year throughout their range (Booth and Buxton 1997). As
P. laniarius is also caught predominantly as bycatch in the demersal trawl
fishery (Booth and Punt 1998), optimal areas for harvesting should also
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include most of the areas fished by the existing demersal trawl fleet. This
includes most of the Agulhas Bank as the trawl fleets are based in Mossel
Bay and Port Elizabeth. In both optimum fishing scenarios presented in
this study, the fleet should merely be restricted from fishing on the mid-
central Agulhas Bank area.

The use of spatial analysis to identify trends in fish distribution and
abundance and to incorporate trends in assessment models and fisheries
management is obvious. Similarly, GIS has enormous value for organizing
biological data and discovering their underlying relationships. This is a
result of each biological data set being only one temporary value because
it is a specific sample drawn from a population or community that is high-
ly variable in both time and space. Despite noticing the potential of GIS,
Meaden and Kapetsky (1991), Simpson (1992), and Meaden (1996) noted
that they have not been fully utilized; instead, they are restricted to ter-
restrial or freshwater applications. This is primarily a response to high
costs associated with the collection of marine biological, physical-chemi-
cal, sediment, and reef data and in synthesizing the vast databases avail-
able into a compatible and comparable format (Caddy and Garcia 1986,
Meaden 1996). GIS includes a complex technology that can enhance the
utility of diverse data at both regional or larger scales and can facilitate
improved fisheries management decisions by including the introduction
of best management practices.
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Abstract
Different data sources tend to give apparently incompatible information
on the state of an ecosystem. Various likelihood functions can be used to
incorporate many data sources in a stock estimate. Such likelihoods should
be viewed as components in an overall likelihood function. This paper
compares the estimates of stock trends and values of likelihood compo-
nents as a function of what data source is used as the primary criterion in
a stock estimation procedure. A multispecies model, Bormicon, is used as
the vehicle for these comparisons, based on indications on stock size,
growth, migration, and consumption from a variety of different data
sources. The model accommodates data from acoustic surveys, ground-
fish surveys, mean length at age in catches and surveys, and stomach
content data. This is an area-based, multispecies, multifleet model which
includes growth, consumption, and migration in addition to the effects of
fishing. It is seen that different data sources may give considerably differ-
ent views of the world in this complex modeling scenario, but in fact this
is also the case even in the simplest of fisheries models. Most of the differ-
ences are seen to stem from model errors, where common fisheries mod-
els exclude certain important factors which are needed when considering
many data sources.

Introduction
With the advent of multispecies models which are orientated toward mod-
eling several aspects of an ecosystem comes a need to consider many
more sources of information than has been necessary earlier. Thus, the
simplest stock-assessment models such as Virtual Population Analysis,
VPA, (Gulland 1965) and catch-curve analysis, (Beverton and Holt 1957)
require only catches in numbers at age for historical analysis and a single
survey index is often used to estimate the fishing mortality in the last
year. An early multispecies model, MSVPA (Helgason and Gíslason 1979),
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also included stomach content data but assumed these to be without error,
at least after initial smoothing. It was further realized that MSVPA, as im-
plemented, did not predict the effects of consumption and food avail-
ability on growth and did not incorporate spatial variation in any way. The
first extensions to accommodate this, such as MULTSPEC (Tjelmeland and
Bogstad 1989), did not do so through a model-based comparison of model
growth to data but rather through assumptions, and the only comparison
to data in a statistical sense was through the use of a likelihood-type com-
ponent involving stomach data (Bogstad et al. 1992).

These problems have been alleviated to some extent in the implemen-
tation of Bormicon, a BOReal MIgration and CONsumption model. The back-
ground of Bormicon was defined in general terms in the form a quest for
an appropriate description of an arcto-boreal ecosystem such as the Ice-
landic waters (Stefánsson and Pálsson 1998) based on available knowl-
edge on food chains and trophic levels (Magnússon and Pálsson 1989,
1991; Pálsson 1983). The model has been described in detail from a bio-
logical and general modeling viewpoint with a case study (Stefánsson and
Pálsson 1997), with a user’s manual (Stefánsson et al. 1997a) and a pro-
grammer’s manual (Stefánsson et al. 1997b). This model is an area-based
multispecies, multifleet model which incorporates predation along with
growth as a function of food consumed and can be used to estimate pa-
rameters based on a collection of very general log-likelihood functions.

The following describes some of the issues which arise when compli-
cated models like Bormicon are used. This includes problems due to ap-
parent data conflicts as well as concerns on how data can best be viewed
for diagnostic (and presentation) purposes when the output volume is
more than can be handled easily in traditional graphs and tables.

Conflicting Evidence in Simple Models and
Data Sets
Given the multitude of data sources used in Bormicon, one may expect
some difficulties in reconciling all of them since they are linked through
highly complicated processes. Such difficulties may appear as apparently
conflicting information in the various sources.

The issue of conflicting evidence can be seen in much simpler mod-
els, however, as will first be demonstrated. It is further argued that a more
appropriate view of the conflict is that there are errors in the model defi-
nition and that the apparent conflict should be used to redefine the model
under consideration.

Example: Conflicting Indications within a Survey
Data Set—Model Error
A groundfish survey typically provides information on the abundance of
several species in terms of numbers caught per unit effort, by age and
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year. The resulting table can be used as it stands as a sole indicator of
various stock attributes. Simple models for this purpose include multipli-
cative models (Shepherd and Nicholson 1991), which are particularly use-
ful for obtaining a quick view of the inherent variability in the data due to
their simplicity and ability to incorporate most of the structure in the
data. The model is simply an analysis of variance of the logged survey
catches in numbers using age, year, and year class as factors. The model
parameters are not all estimable but this is of no consequence when the
emphasis is on the estimation of residual variance.

An example of a survey data set is given in Table 1. This data set
includes ages 1-9 and it is a priori quite possible that the variances of the
survey indices vary from one age to the next. According to well-known
statistical theory (Scheffé 1959), an incorrect variance specification is usu-
ally not overly important. It is, however, quite important to obtain a rea-
sonable specification of the linear predictor, i.e., the mean function.

Fitting the Shepherd-Nicholson model to all age groups yields an esti-
mate of the standard error (on log-scale, i.e., a CV approximation) of some
28%, when estimated as a single value across all ages. In fact, when this
model is used and the same CV is computed only across ages 3-7, it is
found to be 27% and thus the number of fish of these ages does not appear
to be much more accurately known than the older and younger ages (Table
2). It is therefore somewhat curious that, when only ages 3-7 are used in
the criterion for the estimation of the model, the estimated CV on these
ages drops to 21%. An important use of this type of model is precisely to
estimate variances (Pope 1993) and hence it is of some concern that these
estimates can be quite dependent on the age range as in this case. In this
particular case, however, the individual parameter estimates are fairly stable
except for the year effects, which are considerably more variable when
ages 3-7 are used, i.e., the reduced age range results in a portion of the
error variability being explained by the year effect (Fig. 1).

The most likely explanation of this apparent data conflict is that the
model in question is far too simple to capture the dynamics of the age-
year-cohort system and that the built-in restrictions on, e.g., selectivity or
effort changes, are not valid for the data set at hand.

Example: Conflicting Data Sources in Single-Species
VPA Tuning—Model Error
An assessment of a fish stock typically involves a number of different
data sets, common ones being catches, survey, and (commercial) CPUE
indices in numbers by age and year. Many methods of assessment can
include several “tuning fleets,” i.e., survey and CPUE time series. Although
quite variable, the usual reason for including a CPUE series in the first
place is the lack of survey information, or high variability in the survey
index. In this case the CPUE data may be an important component in the
assessment and may drive the assessment results.
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Table 1. Indices by age (1-9) for cod in Icelandic waters from annual
groundfish survey (1985-1995).

Age

Year 1 2 3 4 5 6 7 8 9

85 16,775 36,310 34,532 54,825 51,526 14,296 6,292 1,832 783

86 13,289 53,926 82,614 22,073 18,257 18,298 4,876 1,420 389

87 2,653 25,221 91,880 79,754 17,747 10,333 8,510 1,592 364

88 1,699 5,466 65,640 90,562 50,341 6,908 3,025 2,535 274

89 1,933 15,072 16,735 69,564 56,152 19,589 1,695 571 326

90 3,505 11,627 18,147 8,067 16,026 20,228 6,613 463 140

91 1,750 14,537 15,943 21,716 7,589 9,237 9,393 1,076 99

92 233 20,685 34,874 16,063 10,386 3,737 2,369 1,366 161

93 1,319 2,330 26,851 33,630 10,065 6,815 1,145 703 349

94 8,579 10,968 5,782 17,996 12,779 3,094 1,544 229 100

95 492 28,643 17,393 4,173 11,233 7,075 1,379 436 54

Table 2. Log-scale standard errors (× 100) resulting from
fitting Shepherd-Nicholson models using dif-
ferent criteria, i.e., fitting to different age-
portions of the survey index table.

Estimated CV Criterion (ages used in sum of squares)
for each age range 1-9 2-9 3-7

1-9 28

2-9 25 22

3-7 27 25 21
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Figure 1. Year effects when fitting Shepherd-Nicholson models to groundfish sur-
vey data for cod in Icelandic waters, using data for age groups 1-9 or for
ages 3-7.

Fleets typically increase their catchability by some percent per an-
num. An example of this effect is seen in Fig. 2, where the CPUE and VPA
biomass values from Table 3 are plotted together. For this particular data
set it is seen that the increase in fleet efficiency is some 4.7% per annum.
It follows that a stock assessment based heavily on this index may lead to
a correspondingly biased fishing mortality.

Of course the real problem with the commercial CPUE data is not the
data themselves but rather the model used: It is assumed that there are no
changes in catchability when these exist in reality. On the other hand,
attempts to incorporate catchability changes in the assessment model leads
to poorly determined estimates of stock size in the final year in most
cases (ICES 1984).

Another problem which repeatedly occurs in “tuning” concerns the
influence of the youngest (or, potentially, the oldest) ages on the assess-
ment of intermediate age groups. This effect is best seen through the use
of ADAPT (Gavaris 1988) or similar techniques, which have been reinvent-
ed on a number of occasions both in special cases (Halldórsson et al. 1986,
de la Mare 1989) and the general case (Stefánsson 1988).
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Figure 2. Ratio of catch per unit effort of bottom trawling fleet to VPA biomass for
Iceland cod, indicating trend in catchability.

The catches are from ages 3-14 for this cod data set, whereas the
survey includes ages 1-9. The ADAPT framework can be simplified so that
the selection pattern is assumed known and equal to a VPA-based average
of the first few years. The analysis then consists of a simple estimation of
a single fishing mortality multiplier in the terminal year. Assuming the
survey indices to be proportional to abundance and logarithmic errors,
allows the estimation of the multiplier. If all ages (1-9) are used in the
analysis by assuming that the age 1 index also provides an estimate of
later recruitment at age 3, then the terminal fishing mortality is estimated
at over 2 (Table 4). If, however, only ages 4 and older are used, then the
estimate is around 1.25. This is a considerable difference and, for exam-
ple, the estimate of the size of the last (1992) year class varies almost by
a factor of 2 depending on which estimation criterion is used.

It follows that care needs to be exercised in how the various terms in
the sum of squares are weighted. A common practice of either including
or excluding data is equivalent to assigning either zero or full weight to
each term and this is not “optimal” in any sense and hence one might want
to try to estimate the appropriate weights. This particular model (ADAPT)
is unlike many other statistical models, such as standard ANOVA, in that it
is formally possible to obtain an unbiased estimate of each variance by
eliminating all other variances from the estimation. These can subsequently
be used as (inverse) weighting factors.
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Table 3. Uncorrected catch per unit
effort (U) from trawler log-
books and VPA biomass (B)
for cod in Icelandic waters,
1973-1996.

Year U B

73 700

74 800

75 800

76 800 950

77 1,000 1,214

78 800 1,205

79 1,000 1,290

80 1,100 1,548

81 1,200 1,263

82 900 979

83 800 795

84 900 901

85 1,200 921

86 1,100 854

87 1,200 1,035

88 1,200 1,056

89 1,300 1,024

90 1,000 836

91 1,000 700

92 800 547

93 800 591

94 1,100 650

95 1,300 620

96 2,000 675

Variance estimation can be done by minimizing the sum of squares
for each age group separately to obtain each unbiased variance estimate
and then proceeding to weight the sum to be minimized. When this is
done the terminal fishing mortality varies from 1.03 to 1.71, where the
results are clearly much more internally consistent than before. It follows
that the choice of weights is crucial and attention needs to be given to
how they are chosen. It is, however, also clear that the inclusion of highly
variable age groups 1 and 2 leads to results that are considerably different
from those indicated for age groups 3-9, even in the case when these
young ages are down weighted in accordance with their apparent variance.
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Although much more consistent than before, these results are quite
variable, giving recruitment estimates which vary from 96 million to 156
million for the 1992 year class as 3 years old, depending on which age
groups are included in the minimization.

A part of the reason for the inconsistency is of course variability in
the data. Also important, however, is the model misspecification. In this
case the assumption of a constant selection pattern links the abundance
estimation of the different age groups. Survey data on a single age group
can in fact be used to estimate the abundance of all year classes. It follows
that data on one age group may drive the abundance estimate of another
age group. Problems of the same nature are also seen in “standard” stock
assessments when the selection pattern is free, but these inherent con-
flicts should be alleviated to some extent when the number of parameters
is increased.

Multiple Data Sources in a Multispecies Model
The likelihood approach allows the combination of several sources of data.
This approach has been re-invoked for combining multiple data sources
in fisheries (Methot 1989) but has earlier been used for combining catch,
CPUE, and effort information (Deriso et al. 1985) or for stock assessments
where survey data plays a major role (Gavaris 1988).

Bormicon was designed as a formal method for combining several
data sets into a comprehensive multispecies and multifleet assessment
through the likelihood principle. Although this sounds idyllic in principle,
it is clear that all the problems in the single-species settings above will
multiply in the Bormicon setting.

Table 4. Terminal fishing mortality (F) and re-
cruitment of 1992 year class (R3) of
Iceland cod based on various weight-
ing of sums of squares of errors for
fitted survey indices from selected age
groups.

Age Unweighted Weighted
range F R3 F R3

1-9 2.33 72 1.71 96

3-9 1.58 104 1.46 111

4-9 1.25 129 1.05 153

4-8 1.23 131 1.03 155

4-7 1.26 128 1.03 156
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A further complication is that the data sources vary more widely than
is currently common in fish stock assessments. As a result the negative
log likelihoods are often not simply sums of squares but are of more vari-
able form.

Reconciling and Consolidating Data Sources in a
Multispecies Model
A sample Bormicon model with an objective function which consists of
several negative log-likelihood components for cod and capelin is given in
Björnsson et al. (1997). Although quite complex in detail, the components
available in the objective function are simply descriptions of proportions
at age from biological sampling (agedist), mean length at age (avelen), the
adequacy of a multiplicative fit to age-disaggregated survey indices (ind),
similarly for capelin acoustic survey, although without the multiplier (cap)
and a descriptor of how much biomass is lacking in each area in order to
fulfill the need for enough catches by month and area (understock).

Thus, in principle any type of datum can be placed into a component
of the objective function and can thus become a part of the analysis. The
design of Bormicon has intentionally included considerable flexibility in
this regard and the intent is to make it as trivial as possible to include new
data sources with likelihoods different from those previously considered,
but in the following only the above components will be considered.

Each of the components needs to be given a weight after which they
are added up and minimized over a number of unknown parameters, the
most important parameters being the ones describing the annual recruit-
ment of each and a few basic migration parameters.

The crucial issue is how the underlying model links the models for
the various data. If growth is area-dependent, then the estimation of mi-
gration parameters may be seriously affected due to incorrect specifica-
tion of the basic growth model. Careful analysis needs to be the basis for
reconciling the various data sources so that they can be firm building
blocks in a consolidating model.

Conflicting Data Sources in Multispecies Models—
Model Error
As in the simple models, giving emphasis to different components of the
objective function tends to push the solution in somewhat different direc-
tions. This can be illustrated by multiplying one of the components by a
large number (100) and then estimating the parameters over again.

Figure 3 gives model-predicted mean length at age for a selected year
class of cod when each component is emphasized in this way. It is seen
that the trends in mean length at age differ considerably depending on
which objective is used and in particular, the stomach content data indi-
cates that cod are smaller than implied by other criteria.
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Similarly Fig. 4 depicts the trends in cod biomass. Results based on
emphasizing the age-length keys are omitted from this figure as they are
far off the scale, indicating quite unreasonably high biomass levels, much
higher than indicated from other sources.

Age readings are commonly used to obtain age-length keys which are
then used with length distributions to provide catches in numbers at age
which then drive single species assessments. It has often been observed
that length distributions alone do not provide enough information to ob-
tain the same accuracy in the assessment (ICES 1991). The present results
indicate that one should not overemphasize the age-length keys.

Further, it is again seen that although the various sets give somewhat
conflicting information, the stomach content data are considerably differ-
ent from the other main data sets. Thus, the stomach content data appear
to indicate much greater variation in the cod biomass than do the other
data.

This is somewhat worrisome since stomach data plays a central role
in other models such as MSVPA where they drive the analysis, and in
MULTSPEC, where they form the core of the likelihood function. In MSVPA,
however, the stomach content data do not drive the estimates of popula-
tion abundance of the predator as in this case (and MULTSPEC) and thus
this particular problem may not be an issue for MSVPA. In the present
setting it would seem quite possible that Bormicon is vulnerable to poorly
sampled stomach content data.

The interactions between these various assumptions can also be seen
in Table 5. Each column indicates the value for the individual terms given
the particular emphasized component. The table illustrates a number of
inherent problems in the interaction between these data sets and the model
under consideration.

Thus, the lowest SSE-value obtained for the indices is 12, but when
indices are used with less weight the resulting SSE becomes 18. Although
it is not obvious how many degrees of freedom should be associated with
this sum of squares, it is clear that there is a fair number, since there is
one term for each year, age, and area giving on the order of a hundred
observations and the total number of parameters estimated is around 30.
It therefore appears that in terms of indices, the final parameter estimates
obtained are significantly worse than the “best” ones.

Although issues such as the intra-haul correlation (Pennington and
Völstad 1989, Pennington 1991) invalidate a formal statistical analysis of
the above difference, it is clear that there are indications that the present
model is somewhat too “stiff,” i.e., cannot adequately twist and turn to
accommodate the different data sets.

Of course the ultimate aim is to obtain a model which fits the various
data sources and is “correct.” If the model is wrong in form, then the first
issue at hand would be to modify the basic form before continuing. In the
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Figure 3. Mean length at age of 1984 year class based on emphasizing different
components of the objective function during minimization. Survey indi-
ces (ind) and age-length keys (alk) result in highest values, whereas in-
creased weight to stomach content data results in low values.
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Figure 4. Trend in cod biomass based on emphasizing different com-
ponents of the objective function during minimization.

present setting, however, it is quite possible that the primary problem is
not with form but rather that the model is too parsimonious in terms of the
number of parameters and there is probably room to estimate more param-
eters. In particular it is likely that a more flexible approach to migration
modeling (e.g., by including interannual variation in migration) might be a
useful addition to the model. Thus, the apparent lack of fit can be taken as
a useful indication of required model extension. The precise extensions to
be implemented need further study, but the migration parameters form an
obvious choice for research since they affect the indices, predicted stom-
ach content, growth, etc.

In addition to these model extensions, there is considerable room for
diagnostics in this, like all other likelihood models. In particular, data
exploration should be accompanied with mapping of the likelihood func-
tion for various parameters. This may well lead to some information on
model reduction or sensitivity.
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Table 5. Likelihood component values resulting from putting emphasis
on different components (across) during minimization.

data agedst alk lbar cap ind ldst stom rerun neww

Negative log likelihood components

agedst 44 41 49 57 75 55 50 84 46 14

alk 61 64 38 72 72 63 67 95 61 18

avelen 42 55 44 30 51 51 55 95 42 17

cap 88 99 94 137 67 99 144 200 116 23

ind 18 30 22 50 54 12 37 37 15 15

ldst 75 78 105 98 121 115 63 116 81 16

stom 81 80 79 108 93 80 105 53 80 16

underst 19 20 35 52 42 18 32 33 5 5

Percentage compositions of negative log likelihoods for each criterion

agedst 10 9 10 9 13 11 9 12 10 11

alk 14 14 8 12 13 13 12 13 14 15

avelen 10 12 9 5 9 10 10 13 9 13

cap 20 21 20 23 12 20 26 28 26 19

ind 4 6 5 8 9 2 7 5 3 12

ldst 18 17 23 16 21 23 11 16 18 13

stom 19 17 17 18 16 16 19 7 18 13

underst 4 4 8 9 7 4 6 5 1 4

total 100 100 100 100 100 100 100 100 100 100

Status of each component in percent of minimum possible in each case

agedst 108 100 119 140 182 134 121 204 111 33

alk 160 168 100 187 188 163 176 247 160 48

avelen 141 185 147 100 172 172 187 321 140 56

cap 130 147 140 203 100 147 214 297 172 34

ind 146 245 182 413 446 100 307 304 123 123

ldst 118 123 166 155 191 181 100 182 127 25

stom 154 152 150 205 177 152 200 100 152 30

underst 101 107 191 283 227 100 173 180 28 28

Each column represents a run with one emphasized component and a column entry gives the value for
an individual term in that particular run. Base run values (Björnsson et al. 1997) are given in the data
column. Values in the columns agedst, alk, lbar, cap, ind, ldst, and stom are negative log likelihood re-
sults from estimating model parameters while multiplying the corresponding component by 100. The
weight is reset to the original value after estimation, in order to obtain comparable likelihood values in
the table. Also given are values based on using parameters from reweighting (rerun and neww), assum-
ing the minima obtained in previous columns to be unbiased variance estimates. The rerun column
presents the likelihood components using the same weights as in the previous columns, but the neww
column is based on the revised weights.
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Presentation of Results and Diagnostics from
a Spatially Disaggregated Multispecies Model
The use of spatially disaggregated multispecies models involves a num-
ber of large data tables and the output from these models often stretches
into tens of megabytes. These data need to be analyzed for internal con-
sistency and presented in a comprehensible manner. Concise graphical
presentation is needed in order to illustrate in a lucid manner the essen-
tials of the output but at the same time to avoid unnecessary detail.

One approach to such presentations is to use plots of the type given
in Fig. 5. This figure consists of 5 sub-panels. Each sub-panel illustrates
the spatial distribution of a single species, its catches, or its consumption
of another species. One such plot is available per month for the period
under consideration.

Several such plots can be joined together in an animation in order to
illustrate how the different species migrate between the different regions.
Such animations are not only a diagnostic tool, but also provide a useful
way of presenting all of the important results from a complicated model
such as Bormicon.

Discussion
Once the principle has been adopted to use several likelihood compo-
nents in an overall likelihood function it becomes less important how data
are analyzed prior to their inclusion in the stock assessment, as the as-
sessment method itself can accommodate the raw data directly rather
than only after a preliminary analysis. Thus, age-disaggregated survey
indices are not really needed in order to “tune” an assessment. Rather, the
otolith samples can be used for each area along with the total indices as
two likelihood components. The resulting analysis becomes more com-
prehensive and more statistically valid than one where the prior analysis
is largely hidden and involves extensively correlated use of age-length
keys across many areas and even years.

On the other hand it is also abundantly clear that great care needs to
be exercised when these data sources are combined since model misspeci-
fication of an individual data source may lead to that data source pulling
the overall analysis in incorrect and unforeseen directions. Diagnostic
methods such as testing different weightings to likelihood components
are crucial for finding such tendencies in the model. Similarly, it is impor-
tant to investigate likelihood profiles and in general investigate whether
predicted abundance by area conforms more or less to that expected a
priori. In some cases it may be possible to alleviate some apparent consis-
tencies through increasing the number of parameters. In other cases one
may want to change the form of model component, even to the extent of
making certain relationships nonparametric, e.g., through using GAM
models (Hastie and Tibshirani 1990).
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Figure 5. Snapshot output from Bormicon in November 1984. (a) Distribution of
cod biomass across Bormicon regions, (b) distribution of capelin biomass,
(c) cod catches, (d) capelin catches, (e) consumption of capelin by cod.
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The likelihood principle, in the form of sums of squares and the least
squares method of fitting, is the same principle as generally used in ADAPT
(Gavaris 1988) and similar approaches (Halldórsson et al. 1986, Stefáns-
son 1988, de la Mare 1989). Further, dynamic stock-production models
(Punt 1990, ICES 1995, Polacheck et al. 1993) often use the same principles.
However, the present implementation includes an underlying multispecies,
multifleet model with enough flexibility to incorporate any of these models.

One possibility not explored within the current implementation is to
include a time-series approach, e.g., in a similar way as the method of
Collie and Sissenwine (1983), further developed and implemented by Con-
ser (1991). It is unlikely that a formal Kalman filter implementation as in
Gudmundsson (1994) is feasible given the complexity of the model, but
incorporating process error as in Collie and Sissenwine (1983) may well
alleviate some of the “stiffness” in the usual parametric approaches.

Although the likelihood principle as presented in this paper will con-
tinue to be important well into the next century, another possibly fruitful
way forward is to include Bayesian prior distributions (Hilborn and Walters
1992). This makes possible the incorporation of the uncertainty in vari-
ous parameters and the inclusion of this uncertainty into future projec-
tions. In a huge model such as Bormicon the estimation procedure is not
only time consuming but the total likelihood function may in fact have
many maxima, and it is not clear whether the overall function is differen-
tiable and thus the estimation of the variances and covariances between
parameters is not trivial. When a Bayesian approach is used, some of these
issues become less relevant, but of course other problems appear in their
place, notably questions concerning the specification of priors and con-
siderably increased computational complexity.

References
Beverton, R.J.H., and S.J. Holt. 1957. On the dynamics of exploited fish popula-

tions. Chapman and Hall. Reprint edn. 1993.

Björnsson, H., G. Stefánsson, H.N. Stefánsson, and H. Sigurgeirsson. 1997. Extend-
ed Bormicon examples. In: G. Stefánsson and Ó.K Pálsson, Bormicon: A Boreal
migration and consumption model. Marine Research Institute Report 58, Reyk-
javík. 250 pp.

Bogstad, B., S. Tjelmeland, T. Tjelda, and Ö. Ulltang. 1992. Description of a multi-
species model for the Barents Sea (MULTSPEC) and a study of its sensitivity to
assumptions on food preferences and stock sizes of minke whales and harp
seals. Int. Whaling Comm., Scientific Committee 44/O9.

Collie, J.S., and M.P. Sissenwine. 1983. Estimating population size from relative
abundance data measured with error. Can. J. Fish. Aquat. Sci. 40:1871-1879.



Symposium on Fishery Stock Assessment Models 757

Conser, R.J. 1991. A DeLury model for scallops incorporating length-based selec-
tivity of the recruiting year-class to the survey gear and partial recruitment to
the commercial fishery. Northeast Regional Stock Assessment Workshop Re-
port, Woods Hole, MA. Res. Doc. SAW 12/2. Appendix to CRD-91-03. 18 pp.

de la Mare, W.K. 1989. The model used in the Hitter and Fitter program. Rep. Int.
Whal. Comm. 39:150-151.

Deriso, R.B., T.J. Quinn II, and P.R. Neal. 1985. Catch-age analysis with auxiliary
information. Can. J. Fish. Aquat. Sci. 42:815-824.

Gavaris, S. 1988. An adaptive framework for the estimation of population size.
Can. Atl. Fish. Sci. Adv. Comm. (CAFSAC) Res. Doc. 88/29. 12 pp.

Gudmundsson, G. 1994. Time series analysis of catch-at-age observations. Appl.
Statist. 43(1):117-126.

Gulland, J. 1965. Estimation of mortality rates. Annex to Arctic Fisheries Working
Group report. Gadoid Fish Commission, ICES C.M. Doc. 3.

Halldórsson, Ó., P. Reynisson, and G. Stefánsson. 1986. A method for estimating
terminal F’s from a series of acoustic surveys. ICES C.M. 1986/H:62

Hastie, T.J., and R.J. Tibshirani. 1990. Generalized additive models. Chapman and
Hall, New York. 335 pp.

Helgason, Th., and H. Gislason. 1979. VPA-analysis with species interaction due to
predation. ICES C.M.1979/G:52.

Hilborn, R., and C.J. Walters. 1992. Quantitative fisheries stock assessment: Choice,
dynamics and uncertainty. Chapman and Hall, New York. 570 pp.

ICES. 1984. Report of the Working Group on Methods of Fish Stock Assessments.
ICES Coop. Res. Rep. 129.

ICES. 1991. Report of the Working Group on Methods of Fish Stock Assessments.
ICES C.M. 1991/Assess:25.

ICES. 1995. Report of the Working Group on Methods of Fish Stock Assessments.
ICES Coop. Res. Rep. 199.

Magnússon, K.G., and Ó.K. Pálsson. 1989. Trophic ecological relationships of Ice-
landic cod. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 188:206-224.

Magnússon, K.G., and Ó.K. Pálsson. 1991. The predatory impact of cod on shrimps
in Icelandic waters. ICES C.M. 1991/K:31

Methot, R.D. 1989. Synthetic estimates of historical abundance and mortality for.
northern anchovy. Amer. Fish. Soc. Symp. 6:66-82.

Pálsson, Ó.K. 1983. The feeding habits of demersal fish species in Icelandic waters.
Rit Fiskideildar 7(1):1-60.

Pennington, M. 1991. Assessing the effect of intra-haul correlation and variable
density on population estimates from marine surveys. ICES C.M.1991/D:14.



758 Stefánsson — Information Sources in a Multispecies Context

Pennington, M., and J.H. Volstad. 1989. Optimum size of sampling unit for estimat-
ing the density of marine populations. ICES C.M.1989/D:22, Ref. K.

Pope, J.G. 1993. A reappraisal of the 1992 assessment of the Icelandic cod stock.
MAFF [Ministry of Agriculture, Food and Fisheries], Fisheries Laboratory, Low-
estoft.

Polacheck, T., R. Hilborn, and A.E. Punt. 1993. Fitting surplus production models:
Comparing methods and measuring uncertainty. Can. J. Fish. Aquat. Sci.
50:2597-2607.

Punt, A.E. 1990. Is B1 = K an appropriate assumption when applying an observation
error production-model estimator to catch-effort data ? S. Afr. J. Mar. Sci. 9:249-
259.

Scheffé, H. 1959. The analysis of variance. John Wiley and Sons, Inc., New York.

Shepherd, JG., and M.D. Nicholson. 1991. Multiplicative modeling of catch-at-age
data, and its application to catch forecasts. J. Cons. Cons. Int. Explor. Mer
47:284-294.

Stefánsson, G. 1988. A statistical analysis of Icelandic trawler reports, 1973-1987.
ICES C.M.1988/D:13, Stat. Committee/Ref. G.

Stefánsson, G., and Ó.K. Pálsson (eds.). 1997. Bormicon: A boreal migration and
consumption model. Marine Research Institute, Tech. Report 58, Reykjavik.

Stefánsson, G., and Ó.K. Pálsson. 1998. A framework for multispecies modeling of
boreal systems. Rev. Fish Biol. Fish. 8:101-104.

Stefánsson, H.N., H. Sigurgeirsson, and H. Björnsson. 1997a. Bormicon: User’s man-
ual. Marine Research Institute, Report 59, Reykjavik.

Stefánsson, H.N., H. Sigurgeirsson, and H. Björnsson. 1997b. Bormicon: Program-
mer’s manual. Marine Research Institute, Report 60, Reykjavik.

Tjelmeland, S., and B. Bogstad. 1989. Multspec: The manual. Sponsored by the
Norwegian Fisheries Research Council, Bergen.



Fishery Stock Assessment Models 759
Alaska Sea Grant College Program • AK-SG-98-01, 1998

Rapid Appraisal of the Status
of Fisheries for Small Pelagics
Using Multivariate,
Multidisciplinary Ordination
Tony Pitcher, Steven Mackinson, and Marcelo Vasconcellos
University of British Columbia, Vancouver, B.C., Canada

Leif Nøttestad
University of Bergen, Bergen, Norway

David Preikshot
University of British Columbia, Vancouver, B.C., Canada

Abstract
This paper explores a new method for rapidly evaluating the relative sta-
tus of fisheries using information from multiple sources in the ecological,
technological, economic and social fields. Within each discipline, each
member of a set of fishery attributes is scored using published sources or
information from experts. First, using multivariate data description, fish-
eries are ordinated within the four disciplinary areas using Multidimen-
sional Scaling. Second, a single interdisciplinary ordination is performed
by using the ordination scores from each discipline together. Reference
points for the diagnoses are provided by constructing hypothetical fisher-
ies that are assigned “good” or “bad” scores, defined in terms of sustain-
ability for each discipline, or that have a random assignment of attribute
values.

Evaluations of status are made among 29 fisheries for sardine, Atlan-
tic herring, Pacific herring, and anchovy in a wide range of upwelling and
coastal systems, including time series for three major herring fisheries. In
general, Pacific herring fisheries ordinate in “better” positions than Atlan-
tic herring fisheries; Western Atlantic better than Eastern Atlantic, Alaskan
better than British Columbia for Pacific herring, sardines and anchovies
better than herring fisheries. Fixed gears, bycatch reduction devices, and
socially integrated fishing communities increase evaluated status. For most



760 Pitcher et al. — Appraisal of Fisheries for Small Pelagics

individual fisheries and for the trajectories from the herring fishery time
series, the ordinations provide evaluations of relative status that is in
concordance with what we know from historical documentation and con-
ventional assessments.

Although results are encouraging, the technique needs further refine-
ment. It is not intended to replace conventional stock assessments, but it
shows promise for rapid appraisal and monitoring, triage in the face of
scarce management resources, and a more objective way of conflating
diagnoses from a range of disciplines.

Introduction
This paper contributes to the development of a novel technique (Pitcher
et al. 1998) aimed at providing a rapid, cost-effective appraisal of the
status of a fishery. Multivariate ordinations of scored attributes evaluate
fishery status separately within ecological, technological, economic and
social areas, and then provide a combined, multidisciplinary evaluation.
Ordination may include a set of individual fisheries, or the trajectory in
time of a single fishery. Status is assessed relative to the best and worst
possible fisheries that may be constructed using a given set of attributes.

The aim of this paper is an evaluation of fisheries for small pelagic
zooplanktivorous shoaling fish of the clupeid family, such as herring, an-
chovies and sardines. This group of species constitute over 40% of the
world fish catch (Garcia and Newton 1994), and their fisheries exhibit con-
siderable changes in status over time, including dramatic and economi-
cally damaging stock collapses. Small pelagic fish perform extensive
migrations driven by behavioral tradeoffs between food, predators and
reproduction that optimize feeding, spawning, and overwintering during
the life history (e.g., herring: Fernö et al. 1998) and these traits render
them vulnerable to environmental fluctuation and change. Characteristi-
cally, they also exhibit great volatility of recruitment (Bailey 1992, Zheng
1996), probably as a hedge against ocean changes affecting larval reten-
tion areas (Gagne et al. 1991, Bakun 1996). In fisheries, the catchability of
small clupeids may be increased by social aggregation into schools (Pitch-
er and Parrish 1993, Pitcher 1995), and by a rapid reduction in geograph-
ical range (“range collapse”) in the face of environmental change and fishing.
These factors can engender a dramatic fishery collapse (Pitcher 1997,
Mackinson et al. 1997a). Many of these small clupeids have pivotal trophic
roles in their ecosystems (Mackinson et al. 1997b), so that collapse can
have consequences for other fishery sectors. Moreover, in some cases,
particularly for herring fisheries, there are long historical databases going
back into the past century that may be used for long-term analysis (e.g.,
Cushing 1988). In addition, small pelagic fish are harvested with a wide
range of gear, such as pair trawls, purse seines, driftnets, gillnets, and
traps. All of these features challenge the new method, but help by provid-
ing considerable contrast in the data.
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Methods
Attributes Used in the Analysis
Our method ordinates fisheries in four disciplinary areas that are critical
to long term viability of a fishery:

1. Ecological (including fish population parameters and environment).
2. Technological (including gear and fishing characteristics).
3. Economic (including both micro- and macroeconomic factors).
4. Social (including social and anthropological factors).

Within each ordination, a set of 9-10 attributes have been defined. At-
tribute numbers are designed to maximize discriminating power in the
ordination technique, where a rule of thumb is to have three times as
many fisheries as attributes used to ordinate them (Stalans 1995). Criteria
for choosing attributes are that they were easily and objectively scored,
that extreme values are easily ascribed to “good” and “bad” in relation to
sustainability, and that scores are available for all the fisheries and time
periods in the analysis.

Scores for each fishery were determined from the literature or from
correspondence with experts. Some values for economic and social areas
were obtained from the CIA World factbook (CIA 1995). Full details of the
attributes are given in Table 1; most are scored on a 3- or 4-point ranked
scale that makes it relatively easy both to obtain a score in the absence of
precise surveys and interviews, and for a group of experts to agree. More-
over, ranked scores can easily be refined later by inserting precise values
without disrupting the main features of an ordination.

Fisheries Used in the Analysis
Table 2 lists sources of information for the 29 individual fisheries that we
have used. These comprised seven fisheries for Atlantic herring, nine for
Pacific herring, six sardine fisheries and seven anchovy fisheries. Three
herring fisheries have been followed through time from 1950 to the present
day; the Norwegian spring spawning herring, the North Sea herring, and
the British Columbia herring.

In order to provide fixed reference points for status, two hypothetical
fisheries were simulated by choosing “good” or “bad” scores as the ex-
tremes for each attribute in each discipline, where good and bad were
evaluated in terms of sustainability of the fishery. In addition, to show if
status evaluations were meaningful, twenty random sets of attribute scores
(“random” fisheries) were simulated for each discipline.

Ordination Method
We have used non-parametric multidimensional scaling (MDS) (Kruskal
and Wish 1978, Schiffman et al. 1981, Stalans 1995), an ordination tech-
nique that can produce unbiased distance maps of relative location
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(Clarke 1993) which may be rotated and shifted linearly with minimal
disruption (Clarke and Warwick 1997). We employed a squared Euclidean
distance matrix with attribute scores normalized using Z-values. MDS in
two dimensions was implemented for our 44 fishery points, the “good,”
“bad,” and 20 “random” fisheries using the SPSS statistical package (SPSS
1996) and the PRIMER package (Carr 1997). Fishery scores on the two MDS
axes were plotted against each other for each of the four disciplinary anal-
yses and goodness-of-fit evaluated using stress values (values below 0.25
are considered acceptable by Clarke and Warwick 1997). MDS scores for
the simulated “good” and “bad” fisheries, and the average and 95% confi-
dence limits from the “random” fisheries, were included on the plot. The
two MDS scores from each analysis, making eight scores in all, were used
as input data for the final interdisciplinary ordination. After ordination,
we adopted a convention to rotate plots (to a least squares criterion) so
that “good” appeared at top left (azimuth 315°) and “bad” at lower right
(azimuth 135°); in all cases these two points fell very close to a straight
line through the plot origin. The simulated random fisheries, which were
in each case approximately normally distributed with SD ≈ 0.4, have been
represented by their means and 95% confidence limits as a rotated cross
on the plot.

To examine which attributes most influenced an ordination, we again
rotated the plots using least squares until “good” and “bad” lay at 90 and
270°. We then took the X-axis as the dependent variable in a multiple re-
gression with the normalized attributes as the independent variables.

To check that the method would ordinate fisheries monotonically, we
simulated some fisheries whose status moved in single steps from “bad”
to “good,” scored on 10 ordinal attributes from 0 to 4. The resulting ordi-
nations of two such simulated fisheries (Fig. 1a) are encouragingly mono-
tonic. Figure 1b shows an ordination of a fishery exhibiting periodic larger
steps in status (3 steps), which are reasonably linearly preserved relative
to the reference fishery, although movement at the edges occupies more
space than at the center. As might be expected, in both cases the “random”
fisheries lie close to center of the plot, and this justifies our re-centering
the fishery plots to the zero from the “random” fisheries. In answer to a
referee, in a real ordination, an excess of points to one side or the other of
this zero does not represent analytical bias, but a greater or lesser num-
ber of fisheries above or below the median status score that lies in the
middle of our fixed scale from “good” to “bad.”

Results
MDS ordinations are presented for each discipline and the combined anal-
ysis in Figs. 2 to 6, stress values are given in the figure captions, and
symbols used for fisheries are listed in Table 2 and in Fig. 2.
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Figure 1. A. MDS ordination of simulated fisheries moving in single steps
from “bad” status (lowest possible scores on ten attributes) to
“good” (highest possible scores on each of ten attributes). Many
alternative routes are possible: two fisheries are shown togeth-
er with fisheries constructed from random scores (central cross).
B. As Fig. 1A, but with fishery 2 showing periodic 3-step im-
provements in status.
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Figure 2. Multidimensional scaling ordination (MDS) of the small pelagic
fisheries using scores of ecological attributes in Table 1. Axes 1
and 2, ticked in standard deviations, represent the rotated axes
as described in the text. “Good” and “bad” locations were con-
structed using extremes scores for each attribute. Cross indi-
cates the 95% confidence limits on the original ordination axes,
for 20 hypothetical fisheries constructed from random scores;
large triangles = Atlantic herring; diamonds = Pacific herring;
small circles = sardines; large circles = anchovy. Codes for indi-
vidual fisheries are listed in Table 2. Stress value for this ordina-
tion = 0.25. 2a.Trajectories of ecological status for three herring
fisheries through time. 2b. Ordinations of individual herring,
sardine, and anchovy fisheries. The most recent points for three
fisheries in Fig. 2a are shown.
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Figure 3. As Fig. 1, for MDS ordination using economic attributes. Stress
value = 0.24.
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Figure 4. As Fig. 1, for MDS ordination using social attributes. Stress
value = 0.28, somewhat high for a reliable ordination.
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Figure 5. As Fig. 1, for MDS ordination using technological at-
tributes. Stress value = 0.23.
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Figure 6. Combined interdisciplinary MDS ordination of fisheries using
ordination scores on axes 1 and 2 from the four disciplinary
analyses shown in Figs. 2 to 5. Stress value = 0.23.
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Figure 7. Multiple regression coefficients for normalized attributes in each disci-
pline against the rotated “good” to “bad” axis. Shaded bars indicate non-
significant coefficients. Multiple R squares were: Ecological = 0.16;
Economic = 0.88; Social = 0.91; Technological = 0.28; Combined = 0.96.

Figure 7 shows the multiple regression coefficients for the attributes
on the rotated “good” to “bad” axis. For the ecological analysis, catch per
fisher, migratory range, exploitation status, discards, and immature catch
all play a large but (non-significant) negative role in the separation of
points. Seven of the nine economic attributes are significant in determin-
ing changes, fishers having other income, importance of fisheries in the
country, and local ownership are positive factors, while limited entry,
marketable rights, GDP per capita and price are, perhaps surprisingly for
economists, negative. Devices to improve the selectivity in the gear have
the largest significant positive influence on the technological ordination.
Information sharing, socialization of fishing, and kinship are the largest
significant positive factors in the social ordination, while negative factors
are education level, conflict status, and, surprisingly, fisher influence on
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regulations. For the combined ordination, all eight axes are almost equal-
ly important, the first of each axis pair positively, and the second nega-
tively related to the ordination, as should be expected from the original
rotation that placed “good” at 315 and “bad” diagonally at 135° azimuth.

Time Series: British Columbia Herring
Like the North Sea, the B.C. herring fishery has experienced radical
changes since the 1950s. Traditionally, herring were taken for reduction
to meal in a fishery that intercepted fish on pre-spawning migrations from
offshore feeding grounds in fall and winter (Outram and Humphreys 1974),
and this fishery reached the point of collapse in 1967. However, since the
early 1970s the fishery has changed entirely to a sac-roe product. The
1976 and 1996 points (roe fishery years) are clearly separated from the
earlier years by a movement toward “good” quadrant on the ecological
ordination (Fig. 2), a pattern that is repeated in all of the other disciplines.

Since the start of the sac-roe fishery, herring has become the highest
landed value species in B.C. In 1991, on average, herring contributed about
Can$220,000 to the gross income of a herring boat, while other species,
mainly salmon, accounted for Can$146,500 per vessel (SOE 1994). Hence
the economic ordination trajectory (Fig. 3) has headed rapidly toward “good.”

As with the North Sea fishery, the social trajectory for B.C. herring
(Fig. 4) does not provide obvious indicators as to its change of status
measured in this discipline. With the exception of the most recent 1996
point which has clearly moved toward “bad,” the B.C. fishery ordinates in
the same area as fisheries with randomly chosen attribute scores.

During the development of the reduction fishery from 1950s to 1967
a number of changes occurred that help to explain the technological tra-
jectory (Fig. 5). Radio-telephones were widely used by 1950 (Hourston
and Haegle 1980) and during that decade the power block and sonar were
introduced. Catches rose to 190,000 t in 1965, but the fishermen had
more difficulty in locating quantities of fish (Hourston 1980). Drum sein-
ing became popular and the use of arc lights enabled fishermen to capture
the more thinly distributed dwindling stocks, together with other species
attracted by the light. The proportion of immature fish in the catch rose
significantly, and despite the prohibition of lights in 1966, the stock col-
lapsed in 1967 (Hourston 1980, Pearse 1982). Since arc lights are not used
in the sac-roe fishery and net meshes are more stringently enforced than
in the reduction era, these provide a “good” influence on the technological
trajectory, and we see the 1976 and especially the 1996 points moving
leftward. It is noteworthy that technological change in the Norwegian and
North Sea fisheries produces a similar trajectory.

Time Series: North Sea Herring
On the ecological ordination (Fig. 2), the 1950 North Sea herring corre-
sponds with a period of high catch below the age at first maturity during
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a rapidly expanding juvenile fishery. By 1974 both stock and range col-
lapse (Whitmarsh et al. 1995), ascribed retrospectively by Saville and Bailey
(1980) to overexploitation, were so serious that the fishery was closed,
and so the 1975 point has moved toward “good,” a trend continued to the
1980 point, which reflects stock rebuilding during closure. In more recent
years the rebuilt North Sea herring stock has again suffered serious de-
clines so that between 1990 and 1997 the fishery has continued to move
back in the “bad” direction almost to where it started in 1950.

On the economic ordination (Fig. 3), the North Sea fishery clearly im-
proved from 1950 to 1980, and some of this improvement was maintained
until 1997.

Technological change was rapid in the North Sea during the 1960s as
the fleet shifted from drifters to trawlers and purse seines. Moreover, pri-
marily as a result of the decline in the Atlanto-Scandian herring fishery,
purse seine fleets moved to the North Sea, increasing from 16 vessels in
1963 to 326 in 1967, by which time the proportion of trawlers dropped,
and drift and ring-netting had all but disappeared. The geographic mobil-
ity of vessels and crew resulted in a high degree of transfer from innova-
tors (Whitmarsh et al. 1995) so that, concurrent with advances in gear and
storage of fish, came the ability to increase trip length. These changes are
reflected in this fishery’s ordination trajectory (Fig. 5) which shifts toward
“bad” by 1975 and 1980. More recent changes, indicated by shifts on the
plot from 1990 to 1997, have made little improvement. Note that in this
discipline we have scored attributes indicative of highly mechanized, cap-
ital-intensive industrial fisheries as intrinsically “bad” in terms of sustain-
ability.

On the social ordination (Fig. 4), little change is discernible except for
a small movement toward the “bad” direction in recent years.

The combined, interdisciplinary ordination (Fig. 6) exhibits the trajec-
tory that most accurately reflects what we know of the history of this
fishery, remaining poor from 1950 to 1964, improving after closure but
then shifting back toward “bad” in recent years.

Time Series: Norwegian Spring Spawning Herring
On the ecological ordination (Fig. 2), the Norwegian spring spawning her-
ring stock is remarkably similar to the North Sea trajectory. It shows clear
improvement from overfishing periods in the 1950s and 1960s to the
fishery closure period during the 1970s and 1980s (Dragesund et al. 1980).
But the trend then reverses and by 1996 the location moves back near to
the 1960s points when commercial catches commence again after the clo-
sure (Fiskeridirektoratet 1996, ICES 1996, Slotte and Johannessen 1997).

Economically, the Norwegian herring fishery during the 1950s and
1960s lies in the poorest position of the ordination (Fig. 3), reflecting a
particularly low economic yield. The situation improved while the fishery
was closed in the 1970s and 1980s and the current economic position is
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clearly much improved, reflecting a greater quantity destined for direct
human consumption (Bjørndal et al. 1996). The present location is, how-
ever, within the “random” attribute score area so a large movement would
be required to verify any further improvement or deterioration.

On the social ordination (Fig. 4), the fishery exhibits the greatest move-
ment of any of our time series. It plots amazingly close to the “best” pos-
sible fishery scorable on these attributes in the 1950s, 1960s, and into the
1970s, when many fishermen were employed in the fishing sector and
supported families along the coast (Myrstad 1996). But when the fishery
closed in the 1970s the social impact was understandably negative, and
the ordination moves in the “bad” direction. The negative effect worsened
by the 1980s after 20 years without any herring fishery. After the fishery
re-opened in the late 1980s, the last two points show large negative move-
ments toward “bad” and it is now as poor socially as the North Sea. Com-
pared to previous decades, this may be connected with drives to increase
economic efficiency such as centralization, rationalized fleet structure, a
dramatic reduction in the number of fisherman, less family fishing, and
fewer employees in the sector (Bjørndal et al. 1996).

Like most fisheries in the world, technologically the herring fishery in
Norway has undergone dramatic changes (Fig. 5). The introduction of so-
nar, the power block, and a change in the fleet structure toward very large,
efficient, and sophisticated purse-seiners (Myrstad 1996) have all affected
the herring fishery quite dramatically, and this is seen in the large move-
ment across the plot from 1950 to 1980, changes nevertheless viewed by
our present analysis as neutral in terms of sustainability. Since 1980, re-
cent points have moved in the “good” direction, perhaps driven by the
increased use of gear selectivity devices to reduce bycatch.

The combined ordination linking the ecological, economic, social, and
technological disciplines shows a clear movement toward good from 1970
to 1980, but progressive shift back to “bad” since then.

Individual Fisheries
The Peruvian anchovy fishery is plotted just before and just after the major
collapse caused by El Niño and overfishing in 1970-1971. On the com-
bined ordination (Fig. 6) the pre-collapse fishery has a location worse than
any other point, and improvement by 1975 is also apparent on the eco-
nomic and ecological plots (Figs. 2 and 3). Social and technological changes
are minor (Figs. 4 and 5). This fishery is in the middle range socially, but
the worst economically and on the combined plot, and among the worst
ecologically and technologically.

The four Adriatic fisheries may be compared (Figs. 2–5). On all except
the economic ordination, the unselective pair trawls “volante” score in
worse locations than the night-operated selective purse seines “lampara,”
and, for both gear types, the anchovy, which is heavily fished and under-
went a stock collapse the mid-1980s, scores worse than the less valuable
and less heavily fished sardine fishery. Both “lampara” fisheries score very
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high on the social ordination, and are among the best ecologically and in
the combined analysis. In general, fisheries for both sardines and ancho-
vies in the Adriatic tend to score higher than their counterparts elsewhere.

On the combined economic and social ordinations, anchovy fisheries
with the exception of the Peruvian fishery, tend to fall in better positions
than sardines and herring. Among the anchovy fisheries, the Japanese
fisheries, especially the fixed gear, consistently ordinate in “better” loca-
tions. Among the sardine fisheries, the South African is generally among
the worst, especially on the ecological ordination, and we are unsure of
the reason for the Brazilian often scoring better than Mexican, Japanese,
and South African fisheries. Japanese and Brazilian sardines score very
high on the social ordination.

The Alaska herring fisheries usually ordinate very close together, but
the Nunivak Island and Prince William Sound fisheries seem to score bet-
ter than Security Cove, Good News Bay, and Cape Avinoff, and generally
the Alaska herring fisheries score better than the 1996 British Columbia
herring fishery.

Among the present-day Atlantic herring fisheries, the fixed gear Bay
of Fundy herring fishery is by far the best, falling among the best three on
the combined plot (Fig. 6). The Icelandic and Bay of Fundy fisheries tend
to score better than the Norwegian or North Sea fisheries, whereas the
Baltic fishery often falls between the two. The relatively poor location of
the two Icelandic fisheries in the economic ordination is a surprise, and
suggests that other factors outweigh the high scores given to individual
transferable quotas (ITQs).

Pacific herring fisheries, with smaller migration ranges that subject
them to fewer jurisdictions, tend to ordinate in better locations than At-
lantic herring fisheries (Fig. 6). Finally, with exceptions like the Peruvian
anchovy and South African sardine, herring fisheries in general appear to
score less well than most sardine or anchovy fisheries, perhaps reflecting
their location in northern developed nations, a longer history of heavy
exploitation, and a higher degree of capitalization.

On the combined plot (Fig. 6), the fixed gear fisheries are the best in
terms of sustainability and the Peruvian anchovy the worst, with a wide
spread of fisheries in between. The ecological ordination suggests that
the best present day fisheries are for Alaskan and B.C. herring, the Adriat-
ic lampara sardine, and the Bay of Fundy fixed gear herring (Fig. 2). The
worst are the Peruvian anchovy, South African sardine, and the North Sea
and Norwegian herring. The best fisheries socially (Fig. 4) are the Brazilian
and Japanese sardines, and the Adriatic lampara fishery, while the worst
are the B.C. and Norwegian herring. Economically the fixed gear Bay of
Fundy herring fishery scores high (Fig. 3), along with B.C. herring. The
Peruvian anchovy is by far the worst on the economic ordination. Figure 5
suggests that the best fisheries technologically are the fixed gears for
anchovy and herring, while there is a large group of sardine and Pacific
herring fisheries near to “bad.” The preponderance of points to the lower
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right in this ordination suggest there is great scope for technological im-
provement in sustainability status.

Discussion
These results are encouraging, but it is clear that this technique needs
refinement before it can be used on a new fishery with confidence, and
before it can fully meet the aims set out in the introduction. Further sim-
ulations similar to those reported here will be required to validate the
method. It is, however, promising that MDS simulation trajectories are
monotonic and largely preserve relative changes in status. We are fortu-
nate in having access to the considerable insight of non-parametric ordi-
nation that has been developed recently in marine ecology (Clarke and
Warwick 1997).

In this paper, the ordinations for the three herring fisheries mirror in
general what we know of the ecology, economics, and sociology associat-
ed with their histories of collapse and rebuilding, and their relative status
and characteristics. Here, the technique appears to be giving the right
signals about shifts in sustainability status, which might be loosely de-
fined as fisheries “health.” Among individual fisheries, such as the four
fisheries for Adriatic pelagics, the ordinations appear to reflect what we
know of their relative status. Status evaluations based on this technique
might therefore serve to help set priorities for the allocation of limited
survey and formal assessment management resources, so aiding a triage
of fisheries.

In the present analysis we took attribute scores only for years when
significant changes were documented. Ideally, individual fishery trajec-
tories should be plotted as time series year by year but many technologi-
cal, social, and economic attribute scores are not readily available on this
basis. Care also has to be taken that correspondents who supply data
interpret the scoring system in the same way. On the other hand, once it is
begun, an analysis should be easily updated year by year. Some of the
herring ordination trajectories could be extended back to the era of sail
and steam drifters as fisheries became industrialized in the nineteenth
century. Data for such an analysis could likely be found in historical records
and documents from the North Sea, Scandinavia, and elsewhere. Addi-
tional ordination disciplines might be added effectively, for example man-
agement instruments, detailed changes in a gear over time, or ecosystem
impacts.

A critical question is whether this technique can be used to diagnose
key problems, (such as environmental change, overcapitalization, or re-
cruitment overfishing) early enough to give warning of impending trouble.
Ideally, all analyses would use the same universal set of attributes so that
direct comparison can be made. At present, however, we find that attributes
are likely to be tuned to a particular type of fishery. Attributes that more
clearly define the period immediately preceding a documented collapse
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would increase the power of this method. A more formal analysis of the
leverage of individual attributes would also be valuable.

Despite these problems, we feel that the method has promise in that
it is robust in several senses. First, it can learn not only from refinement
of historical analyses but also from more formal stock assessment science
about what are “good” and “bad” attributes that may be scored. Second,
users can make their own choice of which discipline to concentrate on;
the biological, social, or economic analyses can be used alone or in combi-
nation with the technological area if required. It also provides a quantita-
tive way of conflating interdisciplinary evaluations, a process considered
essential in the management of many fisheries (Lane and Stephenson 1997).
The present method avoids arbitrary weighting of disciplines in that the
final ordination will reflect statistically the original choice of attribute
values running from “bad” to “good” as the two fixed extremes. Third, the
new method is robust in the sense that criticism of attributes from within
each of the disciplines such as economics, anthropology, ecology, or stock
assessment can serve to improve the power of the ordinations within each
field, rather than invalidate the method.

For multivariate analysis, ordination techniques have a benefit in that
they provide a “statistical common currency” for multivariate measures
that are free both of the underlying models of stock assessment or model-
ing, and of the underlying assumptions that relate utility scores to mea-
sured attributes in decision analysis techniques. Moreover, updated
ordinations can be performed each year on the basis of approximate in-
formation, minimizing the need for frequent surveys. We do not suggest
that this method replace conventional stock assessment, but we do offer
the technique as way of a cost-effective, heuristic, and rapidly updated
appraisal of the exploitation status of fisheries and their sustainability.

Acknowledgments
We would like to thank all of the respondents listed in the Table 1 for
generously providing data about their fisheries. Jake Rice (DFO, Canada),
Peter Gehrke, Geoff Gordon, and Doug Ferrell, (NSW Fisheries, Australia),
André Punt and Dennis Heinemann (CSIRO, Australia), and two referees
have all made valuable suggestions that have improved the method.

References
Alaska Department of Fish and Game. 1996. From Web site www.state.ak.us/local/

akpages/fish.game/notebook/herring.htm.

Bailey, R.S. 1992. The global pelagic fish resource and its biological potential. In:
J.R. Burt, R. Hardy, and K.J. Whittle (eds.), Pelagic Fish: The resource and its
exploitation. Fishing News Books, Oxford, U.K. 352 pp.

Bakun, A. 1996. Patterns in the Ocean: Ocean processes and marine population
dynamics. California Sea Grant College System, La Jolla. 323 pp.



780 Pitcher et al. — Appraisal of Fisheries for Small Pelagics

Bjørndal, T., A.D. Hole, W.M. Slinde, and F. Asche. 1996. Norwegian spring spawn-
ing herring: Some biological and economic issues. Working paper no. 29/1997,
Institute of Marine Research, Bergen.

Burd, A.C. 1974. The Northeast Atlantic herring fishery and the failure of an indus-
try. In: F.R. Harden Jones (ed.), Sea fisheries research. Elek Science, London,
pp. 167-191.

Carr, M.C. 1997. PRIMER user manual: Plymouth routines in multivariate ecological
research. Plymouth Marine Laboratory, U.K. 27 pp.

Central Intelligence Agency. 1995. World factbook 1995-1996. Brassey, Washing-
ton, DC. 512 pp.

Cergole, M.C. 1993. Avaliacao do estoque da sardinha-verdadeira, Sardinella brasil-
iensis, na costa sudeste do Brasil, periodo 1977-1990. PhD. dissertation. Uni-
versidade de São Paulo. 245 pp. (In Portuguese.)

Clarke, K.R. 1993. Multivariate analyses of changes in community structure. Aust.
J. Ecol. 19:117-143.

Clarke, K.R., and R.M. Warwick. 1997. Change in marine communities: An approach
to statistical analysis and interpretation. Plymouth Marine Laboratory, Ply-
mouth, U.K. 144 pp.

Coull, J. 1988. The North Sea herring fishery in the 20th century. In: E.M. Borgese, N.
Gindburg, and J.R. Morgan (eds.), Ocean yearbook 7. University of Chicago
Press, pp. 115-131.

Cushing, D.H. 1988. The provident sea. Cambridge University Press, U.K. 329 pp.

Diegues, A.C.S. 1995. Povos e mares: Leituras em socio-antropologia maritima.
NUPAUB-USP (Nucleo de Aporo a Perquisa valore Populaces Humanas e Areas
Umidas Brasilienas-USP), São Paulo, Brazil. 296 pp. (In Portuguese.)

Dragesund, O., J. Hamre, and Ø. Ulltang. 1980. Biology and population dynamics of
the Norwegian spring-spawning herring. Rapp. P.-V. Reun. Cons. Int. Explor.
Mer. 177:43-71.

Fernö, A., T.J. Pitcher, W. Melle, L. Nøttestad, S. Mackinson, C. Hollingworth, and
O.A. Misund. 1998. The challenge of the herring in the Norwegian Sea: Making
optimal collective spatial decisions. Sarsia 83:149-167.

Fiskeridirektoratet. 1996. Beskatningsstrategi for norsk vårgytende sild. Rapporter
og Meldinger nr.1. Fiskeridirektoratet, November 1996. (In Norwegian.)

Gagne, J.A., J. Lambert, F. Mongeau, and L. Fortier. 1991. Population dynamics of
herring in the St. Lawrence estuary: A test of the member/vagrant hypothesis.
In: Proceedings of the International Herring Symposium. University of Alaska
Sea Grant, AK-SG-91-01, Fairbanks, pp. 103-106.

Garcia, S.M., and C. Newton. 1994. Current situation, tends and prospects in world
capture fisheries. FAO, Global Trends in Fisheries Conference, Seattle, June
1994.

Hourston, A.S. 1980. The decline and recovery of Canada’s Pacific herring stocks.
Rapp. P.-V. Reun. Cons. Int. Explor. Mer. 177:143-153.



Symposium on Fishery Stock Assessment Models 781

Hourston, A.S., and C.W. Haegle. 1980. Herring on Canada’s Pacific coast. Can. Spec.
Publ. Fish. Aquat. Sci. 48. 23 pp.

ICES. 1996. Report of the Atlanto-Scandian Herring, Capelin and Blue Whiting As-
sessment Working Group. Bergen 12-18 October 1995. ICES C.M. 1996/Assess:9.

Kruskal, J.B., and M. Wish. 1978. Multidimensional scaling. Sage Publications, Bev-
erly Hills, CA.

Lane, D.E., and R.L. Stephenson. 1997. Fisheries management science: Integrating
the roles of science, economics, sociology and politics into effective fisheries
management. In: D.A. Hancock, D.C. Smith, A. Grant, and J.P. Beumer (eds.),
Developing and sustaining world fisheries resources: The state of science and
management. CSIRO, Collingwood, Australia, pp. 177-182.

Mackinson, S., R. Sumaila, and T.J. Pitcher. 1997a. Bioeconomics and catchability:
Fish and fishers behaviour during stock collapse. Fish. Res. 31:11-17.

Mackinson, S., M. Vasconcellos, T.J. Pitcher, C.J. Walters, and K. Sloman. 1997b.
Ecosystem impacts of harvesting small pelagic fish using a dynamic mass-
balance model. In: Forage fishes in marine ecosystems. University of Alaska
Sea Grant, AK-SG-97-01, Fairbanks, pp. 731-750.

Matsuura, Y. 1981. Analise economica da producao da sardinha na regiao sudeste
do Brasil. Bol. Inst. Oceanogr., S. Paulo, 30(1):57-64. (In Portuguese.)

Matsuura, Y. 1990. Rational utilization of coastal ecosystem in tropics: Integrated
investigation of coastal ecosystem in Ubatuba region. In: Simposio de
ecossistemas da costa sul e sudeste brasileira: Estrutura, funcao e manejo, 2.
ACIESP [Academia de Ciências do Estado de São Paulo] V.1, São Paulo, pp. 47-
52. (In Portuguese.)

Myrstad, B. 1996. The Norwegian fishing industry. Ministry of Foreign Affairs.
UDA245ENG, Oslo.

Outram, D.N., and R.D. Humphreys 1974. The Pacific herring in British Columbia
waters. Fisheries and Marine Service, Pacific Biological Station, Nanaimo, B.C.
Circular No. 100.

Pearse, P.H. 1982. Turning the tide: A new policy for Canada’s Pacific fisheries. The
Commission on Pacific Fisheries Policy, Vancouver, Canada. 292 pp.

Pitcher, T.J. 1995. The impact of pelagic fish behaviour on fisheries. Sci. Mar. 59:295-
306.

Pitcher, T.J. 1997. Fish shoaling behaviour as a key factor in the resilience of fisher-
ies: Shoaling behaviour alone can generate range collapse in fisheries. In: D.A.
Hancock, D.C. Smith, A. Grant, and J.P. Beumer (eds.), Developing and sustain-
ing world fisheries resources: The state of science and management. CSIRO,
Collingwood, Australia, pp. 228-232.

Pitcher, T.J., and J. Parrish. 1993. The functions of shoaling behaviour. In: T.J.Pitcher
(ed.), The behaviour of teleost fishes, 2nd edn. Chapman and Hall, London,
pp. 363-439.

Pitcher, T.J., M. Esseen, and N. Cingolani. 1992. Analysis of Adriatic pelagic fish
stocks. Marine Resources Assessment Group, London. 55 pp.



782 Pitcher et al. — Appraisal of Fisheries for Small Pelagics

Pitcher, T.J., A. Bundy, D. Preikshot, T. Hutton, and D. Pauly. 1998. Measuring the
unmeasurable: A multivariate interdisciplinary method for determining the
health of fisheries. In: T.J. Pitcher, P.J.B. Hart, and D. Pauly (eds.), Reinventing
fisheries management. Chapman and Hall, London, pp. 31-54.

Rossi-Wongtschowski, C.L.D.B., S.A. Saccaro, and M.C. Cergole. 1995. Situação do
estoque da sardinha na região sudeste-sul do Brasil. Coleção meio ambiente.
Série Estudos de Pesca. Ibama (Itajaí, SC). M17.

Saville, A., and R.S. Bailey. 1980. The assessment and management of the North Sea
herring stocks in the North Sea and the west coast of Scotland. Rapp. P.-V.
Reun. Cons. Int. Explor. Mer 177:112-142.

Schiffman, S.S., M.L. Reynolds, and F.W. Young. 1981. Introduction to multidimen-
sional scaling: Theory, methods and applications. Academic Press, London.

Slotte, A., and A. Johannessen. 1997. Exploitation of Norwegian spring spawning
herring (Clupea harengus L.) Before and after a stock decline: Toward a size
selective fishery. In: D.A. Hancock, D.C. Smith, A. Grant, and J.P. Beumer (eds.),
Developing and sustaining world fisheries resources: The state of science and
management. CSIRO, Collingwood, Australia, pp. 103-108.

SOE. 1994. Sustaining marine resources: Pacific herring fish stocks. Environment
Canada, Ottawa. State of the Environment Bulletin No. 94-5.

SPSS Inc. 1996. SPSS for Windows, release 7.5. SPSS Inc.

Stalans, L.J. 1995. Multidimensional scaling. In: L.G. Grimm and P.R. Yarnold (eds.),
Reading and understanding multivariate statistics. American Psychological
Association, Washington, DC. 373 pp.

Taylor, F.H.C. 1964. Life history and present status of British Columbia herring
stocks. Bull. Fish. Res. Board Can. 143. 81 pp.

Taylor, F.H.C. 1985. Introduction to the international Symposium on the Biological
Characteristics of Herring and Their Implications for Management. Can. J. Fish.
Aquat. Sci. 42(Suppl. 1):2.

Valentini, H., and R. de D. Cardoso. 1991. Analise da pesca da sardinha-verdadeira,
Sardinella brasiliensis, na costa sudeste-sul do Brasil. Atlantica, Rio Grande,
13:45-54.

Whitmarsh, D.J., C.A. Reid, C. Gulvin, and M. Dunn. 1995. Natural resource exploi-
tation and the role of new technology: A case history of the UK herring indus-
try. Environ. Conserv. 22:103-110.

Zheng, J. 1996. Herring stock-recruitment relationships and recruitment patterns
in the North Atlantic and Northeast Pacific oceans. Fish. Res. 26:257-277.



Fishery Stock Assessment Models 783
Alaska Sea Grant College Program • AK-SG-98-01, 1998

Development of a Simple Biomass
Analysis Model
Rex Baleña
University of the Philippines in the Visayas, College of Fisheries,
Iloilo, Philippines

Abstract
A simple oceanographic mass conservation model is formulated with the
capability to generate rich information on new and dynamic indices of
biomass analysis solely from catch data. The model utilizes modal data
decomposition and features some advantages: control of data errors, re-
duction of uncertainties due to multi-parameterization, economy of com-
putation, and simple but robust interpretation. A case application is
discussed along with the potential refinements of the model and its impli-
cations to modern stock assessment.

Introduction
Procedures in modern stock analysis may be thought of generally to have
evolved from two types of complementary models: the Schaefer (1954)
model and the Beverton and Holt (1957) model. Although the earlier is
relatively unpopular and has been criticized as inflexible (Gulland 1969),
apparently it is simple and has a low demand on input data. This desirable
feature is exploited in the present conceptualization of a new tool for
biomass analysis.

Coincidentally, this paper discusses the type of equation used by
Schaefer, except differentiating an alternative interpretation of that equa-
tion; i.e., while Schaefer utilized only the usual prognostic interpretation,
the equation is interpreted presently as an oceanographic mass continu-
ity model (MCM from here on). Consequently, new indices useful to dy-
namic biomass analysis are derived: biomass divergence, which acts as
center of biomass redistribution, and biomass flux or “migration” of bio-
mass from or to the centers of redistribution.

MCM is an integral concept and complements the popular “black box”
(Sparre 1985) on its inherent problem of differentiating the biomass flux
into poorly known components. Specifically, because it appears that the
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analysis of biomass has only one piece of solid information to begin with,
which is the catch data, it is this information alone that MCM exploits to
describe biomass exchanges as an integral process. In contrast to the lat-
ter model, MCM produces new and meaningful results relative only to this
single given information.

Methodology
MCM—The Theory
A philosophical basis for formulating MCM is the fact that the real ocean is
a contiguous integral environment. Hence, though organisms may be found
in “patches,” they are not truly confined within arbitrary boundaries; they
can move around (at will or in response to environmental changes) and, in
so doing, redistribute biomass. Like many phenomena in nature, this re-
distribution process is governed by a well-founded law called the conser-
vation of mass. The human role in this process represents an intervention
which may modify only the process but not the basic conservation princi-
ple. The robustness of this principle is appealing to biomass modeling.

In fisheries, a relatively solid indicator of human disruption of the
ocean biomass exchanges is the catch data, which is defined here simply
as the amount of biomass obtained through fishing. The following dem-
onstrates that the use of this data alone, in conjunction with the mass
conservation principle, results in a simple but useful model that is devoid
also of parameterization.

Consider a chunk of oceanic water as in Fig. 1a. Invoking mass conti-
nuity, or mass conservation in oceanographic parlance, a balance of bio-
mass fluxes for the volume can be formulated as

dtB = Fin – Fout = Fnet (1)

where dtB is defined as the temporal change of biomass B in the volume
that is associated with F, the flux of biomass into or out of the same volume.
Particularly, F comprises fluxes defined to occur at open lateral bound-
aries. In general, these fluxes need not balance and, as expressed by (1), a
net flux occurs. Consequently, because fluxes at solid boundaries (e.g.,
the coastline) and ocean bottom may be considered nil, dtB assumes this
form of (net) flux that must occur at the surface. Thus, we use also the
term surface divergence (or simply, divergence) for this flux because of its
resemblance to an oceanographic analogue which is the surface divergence
of water in a region associated with subsurface horizontal water fluxes
converging to the same region. (The opposite phenomenon is called sur-
face convergence and is associated with subsurface horizontal outfluxes.)

MCM is thus a simple statement of the balance of biomass fluxes at the
ocean surface and at open horizontal boundaries. Particularly, the flux at
the surface (divergence) is due mainly to fishing and, at the latter bound-
aries, due to “migration” of biomass (toward the region if there is surface
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divergence, as in Fig. 1b). Note that the contrasting processes of immigra-
tion and emigration contribute to the latter process but, to avoid confusion,
these terms are not used in lieu of horizontal fluxes which, generally, refer
to the horizontal movement of biomass or the tendency toward that move-
ment. To be specific, this new quantity is the unknown in the present model.

Figures 1b-1d illustrate the relation of divergence and horizontal
flux(es). The simplest case in Fig. 1b shows how in a semi-enclosed region
a single horizontal influx explains totally the divergence (due to catch).
Therefore, given the catch data as a function of time, B(t), both quantities,

Figure 1. (a) Schematic of the mass balance in a given volume. (b) The
simplest balance Fnet = Fin (plan view). (c) An additional boundary
to (b) makes the problem underdetermined relative to two influx-
es; the balance is Fnet = Fin,1 + Fin,2. (d) The most underdetermined
condition wherein all boundary fluxes are unknown; Fnet = Fin,1 +
Fin,2 + Fin,3 + Fin,4. (e) Sharing of boundary fluxes between cells.
Rectangular cells had been assumed in all diagrams for con-
venience.
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notably the influx, are obtained at once from (1). Certainly, a similar straight-
forward calculation cannot be done for the case shown in Fig. 1c, because
an additional open boundary makes the problem underdetermined rela-
tive to the given data. Moreover, the worst case can happen in the open
ocean where all horizontal fluxes are unknown, as in Fig. 1d. However,
regardless of the configuration, a pragmatic method is available to deter-
mine these fluxes making use of only the catch data.

In general, catch data is a function of space and time (i.e.,     B x t[ , ]) and
may not be evenly distributed along either dimensions. In particular, bio-
mass has an observed “patchy” distribution in space. However, these are
mere sampling problems such that, in the absence of dense data, one may
resort to interpolation, if only to proceed with the necessary computa-
tions. Certainly, interpolated values can be meaningless and have to be
interpreted with caution but, unless someone can finally claim to have
sampled every square meter of the ocean at all times, these values remain
as useable estimates.

To proceed with spatial interpolation, it is helpful to grid arbitrarily
an area of interest into uniform cells (e.g., rectangles) such that, if the
observations,     B x t( , ), represent only certain cells, data-void cells may be
supplied with appropriate values following, e.g., the procedure of optimal
interpolation (Levitus 1982). A map of     B x t( , ) will help describe its spatial
distribution. A gridded domain is helpful also to depict, as in Fig. 1e, how
neighboring cells share fluxes at their adjacent boundaries. This map of
horizontal fluxes is a desirable product of the analysis but is rather not
straightforward to obtain.

Once     B x t( , ) is gridded, divergence, dt    B x t( , ), can be computed directly
through simple cellwise temporal differentiation. This is a critical stage of
the analysis for two reasons. First, a contour map of the latter quantity
will reveal features in the domain resembling as either “sinks” or “sources”
of biomass in the sense that, in these places, a “deficit” (due to divergence
or catch) or “excess” (due to negative divergence or convergence) of bio-
mass has occurred, respectively. Specifically, divergence implies an in-
creased catch and, consequently, an increased tendency for the horizontal
convergence of biomass flux, e.g., what is expected normally when a region
responds to or begins recovering from fishing stress. Likewise, conver-
gence implies decrease in catch and, consequently, an increased tendency
for biomass outflux. Divergences and convergences are significant fea-
tures because they act as dynamic centers of biomass redistribution and
are, therefore, important starting points in biomass or stock analysis. Sec-
ond, the potential pathways associated with the biomass redistribution
process (i.e., the trajectory of the fluxes) can be traced simply from

      P ( , ) ( , )x t B x th t= ∇ d (2)

where ∇h is a horizontal gradient operator. A vector plot of this function
will indicate orthogonals to the contours of dt    B x t( , ) (i.e., dt    B x t( , ) = c),
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linking regions with excess biomass to regions of deficit biomass (i.e., the
dynamic centers). Therefore, one obtains also an indication of the path of
biomass movement—a very valuable guide at least to migration studies.
Finally, it remains optional to deduce from these pathways the detailed
fluxes across cell boundaries, as in Fig. 1e, if one desires to utilize these
fluxes as boundary estimates to complete cell balances. Particularly, bio-
mass budget studies of specific areas with relatively more comprehensive
data will benefit from this procedure.

Modal Decomposition
Since     B x t( , ) is the sole input to MCM, its quality is crucial to the success of
the model. Hence, it is desirable to remove its inconsistencies before these
are aggravated by differentiation. For this purpose, empirical orthogonal
functions or EOF (e.g., Kutzbach 1967, Weare 1976, Wenzel 1984) are in-
voked as a natural means of re-expressing the observations into a noise-
free model input. Specifically, the novel application of these functions in
estimating errors jointly as a function of space and time is introduced.
This procedure may be outlined briefly.

In the case of the catch data, the simultaneous determination of data
modes or quality data, D    ( , )x t , and error, ξ    ( , )x t , proceeds by assuming that

    B x t x t x t( , ) ( , ) ( , )= +D ξ (3)

The usual EOF procedure computes for D    ( , )x t  through a decomposition of
B    ( , )x t , which is assumed a separable function of independent space and
time components. An eigen-manipulation of the data covariance matrix
finally yields D    ( , )x t , after truncating these components using an appro-
priate criterion (e.g., Catell 1966). The general outcome demonstrates the
power of modal decomposition to extract only a few most dominant modes
of the data. Moreover, the procedure is most conveniently applied to time
series data (below).

It is not usually done but, at this point, ξ    ( , )x t  is obtainable immediate-
ly from equation (3), simply as the residual of two known quantities. (A
computer shareware to do this calculation and the eigen-decomposition is
in preparation.) In this paper, we make use of this function to quantify the
errors in catch data. Intrinsically, it possesses the desirable property of
incorporating those observational inconsistencies with respect to both
space and time.

An Application
An attempt at elucidating the application MCM is necessary. For this pur-
pose, the Philippine archipelago is used because it typifies a complex to-
pography to test the procedures (Fig. 2). The archipelago is constituted by
some 7,107 islands of various shapes and sizes forming an intricate net-
work of small seas, bays, and waterways. Yearly catch data for 10 of the 12
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designated fishing regions were obtained for the period 1968 to 1975.
This dataset represents one of the more complete time series that could
be formed from a compilation of landing statistics (BFAR 1972, 1973, and
1975). Data decomposition as outlined previously was performed on this
dataset in order to isolate the “error-free” component which was then used
in the subsequent calculations.

The archipelagic domain was gridded and the processed data deci-
mated proportionately over the respective regions according to area. Op-
timal interpolation was then performed to provide smooth transition
between data-rich and data-void regions. This artificial procedure was
necessary to avoid discontinuity problems in calculating derivatives. Af-
terward, separate modal decompositions were done for the data and di-
vergence fields.

Results
Looking first at the observations, a comparative plot of the fish produc-
tion for Regions 1 to 10 is shown in Fig. 3 along with the quality data,
mean data, and error estimates from modal decomposition. The numeri-

Figure 2. The Philippine archipelago and its 12 fishing regions. Only Re-
gions 1 to 10 have complete data for analysis. (Source: BFAR 1972,
1973, and 1975.)
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cal values are in Table 1. The largest variations in the observations are due
only to Regions 3 to 6. Altogether, Figs. 3a to 3c reveal that the extracted
error field has the largest variance beginning only in 1973 (coincidentally,
right after the onset of the 1972 El Niño and the declaration of Philippine
Martial Law) and due mainly to Regions 4 and 6. The mean curve for the
archipelago in Fig. 3d shows a low catch from 1969 to 1971 and a rapid
increase afterward. The cause of this behavior is evident in the regional
plots. The low catch is attributed to Regions 1,2,4, and 6 to 10, while the
recovery is due mainly to Regions 4 and 6, i.e., an apparent indication of a
regional shift in catch effort. The overall trend in catch is increasing, sug-
gesting that exploitation had increased. In fact, this trend had become
obvious since 1956 (Fig. 4). Thus far, the observations have twofold indi-
cations. First, regardless of the cause of the increase in the volume of
catch, e.g., population growth or demand for export (Fig. 5), the archipel-

Table 1. Fish production from10 regions of the Philippine archipelago
with corresponding computed errors. Quality data (not printed)
can be derived simply as the difference between the raw obser-
vations and these errors.

Observations (× 106 kg)

Region 1968 1969 1970 1971 1972 1973 1974 1975

1 1.51048 0.91868 1.07820 0.75824 0.82013 1.29546 1.71028 1.37997

2 0.87892 1.33180 0.94888 0.60224 1.41164 1.97223 1.30679 1.41635

3 310.66856 280.80096 298.19234 288.99692 296.62104 2.44386 1.85641 1.38272

4 9.64972 7.76212 7.76272 10.31332 24.49505 319.68174 235.19567 207.78613

5 63.96904 58.32484 54.57200 62.46500 57.83424 23.28600 14.38693 31.67572

6 5.99764 4.95292 5.20578 4.33540 13.94168 80.85922 151.64648 205.38829

7 7.57148 6.26700 5.44280 3.11260 20.52914 8.72095 17.56756 12.88235

8 4.97804 6.92444 7.27652 10.16788 7.46540 5.44624 9.18218 9.10980

9 0.73144 0.62772 0.63456 0.50976 0.86860 10.49140 16.77019 14.21560

10 0.83856 0.81616 0.76332 1.01428 0.76720 0.79052 8.19169 1.07833

Errors (× 106 kg)

Region 1968 1969 1970 1971 1972 1973 1974 1975

1 0.44861 –0.03678 0.07324 –0.23500 –0.27830 –0.26888 0.33948 –0.01467

2 –0.18980 0.37061 –0.06166 –0.39772 0.29834 0.25718 –0.19638 –0.11213

3 –0.21980 –0.35140 1.04422 –0.77421 0.28913 0.62039 1.23403 –1.92952

4 –0.13392 –0.22415 0.18883 0.57104 –0.20174 42.03657 –8.66193 –38.76615

5 1.60781 2.00458 –4.87586 4.28457 –2.96669 –1.63250 –7.30546 9.21291

6 0.23337 0.22050 0.68752 –1.38490 –0.12549 –73.98976 15.64256 67.87884

7 –1.35442 –1.76141 –2.99838 –5.23864 11.24085 –5.42317 5.17124 0.27630

8 –2.65294 0.04937 0.03648 3.03642 –0.27252 –2.98219 1.80254 1.58531

9  0.17157 0.16724 0.19399 –0.04524 –0.48286 –4.28051 3.79604 1.09775

10 –0.00331 0.06563 –0.01903 0.22178 –0.22814 –2.69784 5.13011 –2.02329
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Figure 3. Processing of catch data using modal decomposition: (a) raw data from10
regions, (b) calculated errors, (c) quality data (QC, quality control), and
(d) mean raw data. Numerical values for (a) and (b) are found in Table 1.
Relevant statistical parameters are shown: m = mean, sd = standard de-
viation, and rd = relative dispersion.

Figure 4. Increasing trend in catch from 1956 to 1975 in 107 kg.
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Figure 5. Similar trend as in Fig. 4, except for (a) consumption (related
to population growth) and (b) export and for the period 1968-
1975. Plotted values are in 108 kg and 109 kg, respectively.
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Figure 6. (a) and (b). (See caption
on facing page.)
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Figure 6. Dominant data modes: (a) (facing page top) the first mode (62.64%
variance) showing peak values at Regions 3 and 5, (b) (facing
page bottom) second mode (35.42% variance) showing a large
area of high values at Regions 4 and 6, and (c) (above) the sum
of the first and second modes (98.06% variance). (Axes labels
indicate gridding of the domain using 19 × 28 cells.)

ago cannot be suspected as depleted of stocks. Second, it follows that
some unidentified biomass influxes must be coming in from somewhere
to sustain the increasing trend in catch. Precisely, this existence of biom-
ass exchange, in conjunction with biomass “sources” or “sinks,” is the main
thesis of this paper.

The dominant modes of the data resulting from modal decomposition
are plotted in Fig. 6. The first mode, capturing 62.64% of the data vari-
ance, characterizes the eight-year catch record as due mainly to relatively
high catch in Regions 3 and 5 (Fig. 6a). The second mode, capturing some
35.42% of the variance, is due to relatively high catch in Regions 4 and 6
(Fig. 6b). The time coefficients of the decomposition show that these modes
had opposing tendencies; the tendency of the first mode decreased in
1972, while that of the second mode increased (Fig. 7a). By 1973, both
modes settled more or less to a new equilibrium. These results indicate a
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Figure 7. Plots of (a) (top) time coefficients and (b)
(bottom) the spatial functions. Catch or fish
production for a given area and time is the
product of the time coefficient and space
function for each of the eigenmodes.
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clear shift in concentration of catch from Regions 3 and 5 (Manila Bay
area, San Miguel and Lagonoy gulfs) to Regions 4 and 6 (mainly Palawan
and west-central Visayan waters) which are now a relatively wide cover-
age. In particular, a closer look at the point values of the space function in
Fig. 7b reveals the large swing of catch at Region 3 which was synchro-
nously positive with the rest of the regions for the first mode, but asyn-
chronously negative (almost with Region 5) for the second mode. Notice
that, in support of the above findings, the overall mode shows a prepon-
derance of positive catch for the given period of observations (Fig. 6c).

Computed divergence for the regions is shown in Fig. 8. The plots
reveal the overwhelming magnitude at Region 3 (about an order of magni-
tude), where the largest loss of biomass in 1972 occurred. (Manila Bay
area, representing Region 3, is a well-known “overexploited” fishing ground.)

Figure 8. Time series of divergence for the fishing regions, clustered
according to decreasing magnitude of variations. Notice that
the process of differentiation caused a loss of one data point
for 1975.
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Basically, there is no indication of convergence in the region during the
entire period. The variation is mirrored almost at Region 5 but only at
extremely negligible magnitude. Region 8 exhibits a peculiar variation of
divergence during 1968, 1970, and 1973. (Region 8 is at the terminus of
the North Equatorial Current or NEC.) The rest of the regions show conver-
gence during 1972, with Regions 4 and 6 having relatively higher magni-
tudes. Overall, it appears that the biggest variations happened in 1972,
resulting to a net divergence for the archipelago mainly at Region 3. This
is a possible aftermath of the heavy catch in this region as evident in the
original data. (Landing bias could be a real cause of error here but, for
convenience, this is presumed as one of the limitations of the data, as
discussed in the following section.)

Another outcome of modal decomposition for the entire period from
1968 to 1975 is the dominant mode of divergence shown in Fig. 9a. Here
the use of quality (processed) observations paid off in reducing error vari-
ance. The plot confirms that for the given period, Regions 3 and 5 had
acted asynchronously with the rest of the regions as a center of diver-
gence. Therefore, these active regions had acted as “sinks” of biomass
which, according to equation (1), could be linked to convergence or bio-
mass influx from other regions of the archipelago. Indeed, a schematic of
this influx is shown in Fig. 9b. Notice that some pathways were so drawn
to conform to the complex topography. It is a simple matter to verify the
detailed origin and pathways of the fluxes using equation (2), especially
with available boundary flux information (flux across a coastline is as-
sumed nil). This task is considered beyond the scope of the present study.

It is emphasized that, in general, analysis of time series is subject to
resolution restrictions based on its finite length. In the present case, the
findings were derived from a record length of only eight years from 1968
to 1975. The addition of old or new data may influence these findings.

Discussion
The modeling introduced here focused on the dynamic concept involving
biomass redistribution centers as exemplified by divergence and the as-
sociated horizontal fluxes. The model is simple, utilizes only one piece of
information (catch data), and is devoid of excessive parameterization. The
use of modal decomposition to control the quality of the input data proved
crucial to the results. Further, because the well-established mass conser-
vation law is utilized, the results, interpreted within the context of the
model, are likely robust.

The coherent variations exhibited by the various regions of the Philip-
pine archipelago suggest that biomass exchanges did occur simply be-
cause these regions share common boundaries. Fluctuations at the
redistribution centers, resulting in either divergence or convergence, could
then be linked to the fluxes according to equation (1). Further, the varia-
tions of regional divergence showed that this linkage was time-dependent.
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Figure 9. (a) (top) The dominant
surface divergence mode
(99.90% variance) show-
ing Regions 3 and 5 as
centers of biomass redis-
tribution, particularly as
centers of strong diver-
gence. Computations uti-
lized the quality data of
Fig. 3. (b) (bottom) A sche-
matic of the horizontal
fluxes deduced from the
distribution of divergence.
Size of the circles reflects
the relative strength of
flux. Some pathways are
shown to conform to to-
pography.
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Generalizing, it can be the case, therefore, that certain regions of the oce-
anic environment act as either “sinks” or “sources” during the process of
biomass redistribution, and that we might have unknown biomass fluxes
that continuously link these regions. This dynamic viewpoint appears fun-
damental and suggests that the existence of biomass fluxes or “migration”
could be of central significance to modern stock analysis.

Indeed, the existence of fluxes could complicate currently upheld as-
sumptions and may lead to intriguing queries. For instance, can Regions 3
and 5 be labeled as depleted or overexploited? The results of this study
indicate that these regions appeared divergent relative only to the rest of
the archipelago and because biomass were being removed from these re-
gions more excessively than the rest of the archipelago which, in turn,
served as a “source” of biomass. Hence, divergence at Regions 3 and 5, in
fact, was being counteracted by influxes. How then can one define sus-
tainable yield for these regions in the presence of changing fluxes? Fur-
ther, how does managing these regions fare if one insists on strategies
based on the usual concept of sustainable yield?

Therefore, it is conceivable that managerial indices like overexploita-
tion and maximum sustainable yield (MSY) may have to be redefined as
dynamical quantities because, unless the biomass fluxes are known con-
stantly, these indices will remain largely arbitrary. For example, if one
considers a region as overexploited (under-exploited) only in the sense
that it continually imports (exports) stock as suggested by its biomass
influx (outflux) then, sustainable yield may be re-defined to be propor-
tional to some threshold or “equilibrium” value of the flux gradient:

      MSY x t max∝ P ( , ) (4)

Moreover, absolute biomass is unknown generally and deriving reliable
information on its variation may require integration of a suitably large
area. Hence, the complications due to biomass fluxes imply also that man-
agement indices are truly meaningful only if an integral area is consid-
ered because one cannot isolate for analysis a small area that interacts
dynamically with neighboring areas through its boundaries. To be pre-
cise, how can one declare an open area as overexploited if exchanges across
its boundaries are unknown? In order to drive home this point, it is tempt-
ing to relate an allegory at this juncture.

One can imagine a huge livestock population of some ten million chick-
ens confined (squeezed) in an area of 16 km2 (you have roughly one chick-
en per 2 m2). (The ocean is not really this small, but this suffices for an
illustration.) Suppose a hunter subsists on this livestock, consuming a
maximum of three chickens per day, and is able to hunt within his perim-
eter of only 0.25 km2. We make sure that the hunter does not consume all
the chickens by limiting his hunting to a finite duration of, say 10 weeks
(by then he would not have consumed more than a miniscule number of
210 chickens). It is then reasonable to expect that, not long after he begins
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shooting down his prey, the hunter will complain of a diminishing num-
ber of chickens within his perimeter. He will complain also of finding more
of the young than the adult. (Obviously, mature animals respond quicker
to gun shots than young animals.) Eventually, he will oblige himself to
conclude that his place no longer has chickens to hunt—a very similar and
familiar complaint heard about our fishing grounds. To finish, unknown
to the hunter, when he is fast asleep plenty of adults pass by his open
perimeter, possibly in search for their own food.

In Fig. 9b, the fluxes indicate a general northward and southward “mi-
gration,” converging biomass towards the vicinity of Regions 3 and 5. The
association of these fluxes with the mean and seasonal circulation pat-
terns in the archipelago is another interesting subject to explore, perhaps
in relation to migrating species. Indeed, although equation (1) was exem-
plified as a bulk biomass formula, nothing precludes a finer analysis with
an available catch composition data. In general, individual, group, or bulk
analysis of species is plausible with MCM. For instance, the model is at the
same time useable for multispecies (or multilayer/depth) analysis, if each
term in the mass balance is generalized to mean as the sum of its respec-
tive components, i.e.,

∑idtB = ∑i(Fin – Fout); i = 1,2,3,…,n species (or layer/depth) (5)

Knowledge on the vertical distribution or migration of species may be
inferred if there is ample data as a function of depth. Virtual population
analysis (VPA) or intricate models which attempt to quantify the biomass/
energy flow in an ecosystem via diagnostic or prognostic (simulation) means
(e.g., Christensen and Pauly 1992 and 1996) might derive insights from
varied applications of MCM. In purely prognostic mode, MCM may form a
component of existing fishery simulation models (e.g., King 1995). Anoth-
er interesting possibility is the coupling with a water circulation model to
explore fully the time-dependent biophysical dynamics of biomass distri-
bution. Further, MCM is capable potentially of producing reliable mass
balances which are essential to the successful management of resources
involving a wide area. An example of a national management scheme is
the so-called Fisheries Sector Program (FSP), which attempts to implement
complex and comprehensive management plans throughout the Philip-
pines. At a staggering cost of US$155 million, borrowed from the Asian
Development Bank (ADB) and the Overseas Economic Cooperation Fund
(OECF), the program cannot possibly afford to risk implementing manage-
ment policies devoid of integral information on the archipelago (DA 1993).

On the other hand, certain caveats are in order. One must be careful in
interpreting the seemingly mechanical fashion that the horizontal fluxes
are associated to the centers of redistribution. One way to imagine this
dynamics is to treat the latter as some “forcing function” which generates
(or responds to) the potential fluxes. This potential exists simply because
it fulfills the conservation law stated in equation (1). Thus, any discrepancy
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found between computed fluxes and the actual movement of biomass (if
ever this can be measured accurately) must not be taken to mean that it
nullifies the dynamics. Discrepancy can be the result of a temporal lag in
the interaction between redistribution centers and fluxes. Unfortunately,
information on lag may only be determined with adequately sampled data,
as it is largely pegged also on one complex factor—organismal behavior.
There is no means to ascertain lag in the present data which uses a coarse
interval of a year. However, it is conceivable that at this and suitably long-
er temporal scales, significant biomass adjustments (e.g., migration cy-
cles) are allowed to minimize lags. Certainly, one other real cause of
discrepancy is poor data resolution itself. Inadequate data, at the same
time, limit the temporal as well as spatial scales of analysis. Moreover, the
gradient in equation (2) is only a means of reckoning the magnitude of the
forcing potential, indicating the tendencies for biomass movement. Again,
these tendencies exist only because of the “forcing” due to the dynamic
centers. It is essential that these centers are not misunderstood necessar-
ily as places where you have catch data but rather those determined by
the data.

Certain factors neglected in MCM require some clarifications. First,
insignificant surface fluxes like the addition of biomass by artificial re-
stocking are ignored relative to catch. Second, growth, biological recruit-
ment, and mortality are processes considered as internal to the system.
They are not boundary fluxes by definition and thus cannot be incorpo-
rated easily in the calculations. However, it is pointed out that any imbal-
ance among these factors may result in a biomass flux as suggested also
by the following mass balance formulation derived from Christensen and
Pauly (1993):

Export = Production – Mortalities (6)

In this equation, the delicate balance between production and mortalities
(predation and nonpredatory) suggests that export/import (or the flux) in
a given system is bound to happen and, when it does, it has the potential
to induce biomass changes. These changes are transparent to the MCM
and hard to measure because both estimates of production and mortali-
ties are unreliable. Further, this implies also that the difference between
these estimates could be erratic. These are the same reasons why the ini-
tial development of MCM must exclude these factors. As a new model, it is
desired that MCM’s consistency be verified as data becomes more avail-
able prior to modifying its dynamical properties. Third, it must be clari-
fied that MCM is not concerned with the absolute measure of but rather
the increase or decrease of biomass with time. (In the first place, biomass
is not straightforward to calculate from equation [1].) For example, a huge
biomass does not necessarily imply strong divergence because changes in
its size can be small. Finally, one must be aware of the serious limitations
of MCM: scarce and questionable reliability and accuracy of reported catch
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data, inadequate sampling of the water column and, as pointed out above,
the presence of yet unexplained internal biomass redistribution. These
are interesting subjects for future publication.

The human role in biomass redistribution, i.e., through fishing activ-
ities, is much easier to quantify than the complex role of nature’s forcing
functions. For instance, one may imagine the extreme difficulty of model-
ing changes in the environment coupled with responses from both the
fishery and consumers. Therefore, one may appreciate MCM as a prelimi-
nary attempt at dynamic biomass modeling. The concept of center of bio-
mass redistribution is potentially useful in defining an indicator or predictor
of biomass concentration in an area. The model likewise establishes the
relevance of an even more interesting (but difficult to observe) quantity—
the biomass flux. Indeed, clearcut dynamics, as stated by equation (1), is
easy to imagine and is intuitively appealing; it brings one closer to a quan-
titative grasp of biomass movement without having to observe directly
that movement. More than that, the direction of flow, origin, and fate of
biomass can be ascertained given only an ample spatial coverage of the
catch data.

Ideas in this paper are developing and, indeed, some may not appeal
at all to a fishery scientist. However, with the current deplorable state of
fishery management strategies, one has no brighter option than to devise
alternatives (cf. Maclean1996). Perhaps, having known the mass conserva-
tion as a robust natural principle, it may not be surprising to discover that
the relevant ideas may work in the real world.
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Abstract
This paper presents a multidisciplinary approach for the comparative eval-
uation of small-scale tropical fisheries. Previously, these most often have
been studied within single disciplines of the social or natural sciences,
rarely leading to broad comparisons. Here, multidimensional scaling, ca-
nonical correlation, and cluster analysis were used to examine and con-
trast the information contained in multivariate data sets originating from
the disciplines of biology, economics, social science, and technology of
seventeen real tropical small-scale fisheries and two simulated ones. Mul-
tivariate analysis was performed within the four disciplines and the re-
sultant outputs were compared and contrasted. The relative location of
the fisheries in these derived scores suggests relations among social, eco-
nomic and biologic factors.

Introduction
One of the most debated topics in fisheries science has been the incorpo-
ration of multidisciplinary information into what has chiefly been a bio-
logical discipline. With recent developments it is now possible, even with
modest budgets, to purchase a computer that can store and synthesize
gigabytes of data. Multivariate statistics provides the crucial tool, though,
in accessing multidisciplinary studies. That potential is explored here.

There can be little doubt that there is presently a crisis in the manage-
ment of many of the world’s fisheries. This has been brought about by
phenomena such as subsidization of overcapacity in fishing fleets (Pauly
1997), fish habitat destruction (Hagler 1995), unregulated bycatch (Hagler
1995 and Pitcher 1993), overly optimistic predictions by managers (Pauly
1996, Christensen and Pauly 1995, and Walters 1995), and institutional
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inability to deal with the complex issues created by the conflicts between
players in fisheries policy development (McGoodwin 1990).

These problems are aggravated in the case of tropical small-scale fish-
eries, wherein the resources are being depleted, while there is an increase
in the number of participants, a phenomenon now called “Malthusian over-
fishing” (Pauly 1997). This situation is catalyzed by the marginality of the
participants in the fishery relative to the apparatus of political decision-
making. This marginality is increased by a number of factors: isolation
from power, geographic and cognitive remoteness, and illiteracy (Pauly
1997). The mechanism leading to the overexploitation of the fishery is an
increase in the number of fishers resulting from natural increase and the
immigration, into coastal areas, of outsiders displaced, by landlessness,
from traditional activities such as farming. These outsiders often turn to
fishing as a vocation, as it provides them with the potential of earning
some money, or at least the capacity to get food (Pauly 1997). The intro-
duction of these new entrants to the fisheries often upsets established
local traditional management practices. This may be facilitated by the
creation and imposition of new fisheries rules by central governments all
too ready to find a place to settle the migrants (Pauly 1997). Blaikie (1985)
writes of similar problems with terrestrial environments in developing
countries.

By contrasting factors from ecological, economic, social science, and
technological attribute sets, it may be possible to compare what the data
sets, in particular and in combination, say about a fishery. This knowl-
edge would be of great value to fisheries researchers since it would enable
the rapid identification of “at risk” fisheries if based on easy to identify
attributes. Further, if we can determine that information from one disci-
pline reinforces information from another, it may be unnecessary to al-
ways initiate expensive research in all fisheries science disciplines at all
times, benefiting developing countries. Last, by identifying which fishery
in an area or country is at risk, it may be easier for governmental and non-
governmental organizations to decide where aid may be most needed.

Methods
Attribute data were collected for seventeen real, and created for two mod-
el, small-scale tropical fisheries in four main categories: ecology, econom-
ics, sociology, and technology. See Table 1 for the attributes and their
definitions. Attributes for the four groups were chosen such that they
would describe as much distinct information as possible in each subject.
The hypothetical fisheries A and B were scored such as to reflect our pre-
conception of Malthusian overfishing effects through early, young, ma-
ture, and old stages. These were scored, with declining relative and absolute
economic standards, collapsing social structures, and decreasing use of
selective gears. The real fisheries that were examined were scored from
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available literature or based on interviews with fisheries scientists who
had studied the fishery. The score table for this study is available from the
authors via the U.B.C. Fisheries Centre WWW page: http://fisheries.com.
The fisheries that were analyzed and their codes for graphing can be seen
in Table 2.

The four groups were subjected to multidimensional scaling (MDS)
analysis with the Statistical Package for the Social Sciences (SPSS 1995) to
extract two principal coordinates. The distance matrix for scaling was of
the Euclidean distance type and measured scores as intervals. To con-
struct the distance matrix and make all variables of the same magnitude
all data were transformed to a range from zero to one. This implied equal-
ity in the potential contribution of all the attributes to the final ordina-
tions. In all of the MDS ordinations the axes were flipped where necessary
to reflect the association of positive characteristics on the x axes on the
left and the y axes to the top. Thus for all ordinations fisheries with favor-
able characteristics should tend to the upper left quadrant, while fisheries
with less favorable characteristics should tend to the lower right quad-
rant.

After the first two principle coordinates were generated canonical
correlation (CC) was used in the Statistica program (Statsoft 1996) to ana-
lyze relationships between the first two principal coordinates of each group
and the data set from which they were derived. This allowed an investiga-
tion of the data most influential to each axis (Stalans 1995). Last, cluster
analysis (CA), in the Statistica program (Statsoft 1996) was performed with
the first two principal coordinates for each attribute group to help in the
classification of the fisheries.

Results
The MDS ordinations produced in this analysis can be seen in Figs. 1, 2, 3,
and 4. MDS produced distinct groupings for the fisheries in all four disci-
plines. Also, the fisheries stayed close to each other in the different sub-
ject groups, although these associations were weaker in the economic
analysis. Statistics used with SPSS to analyze the derived MDS space were
Young’s S-stress formula 1, Kruskal’s stress formula 1, and squared corre-
lation (RSQ). For the Ecological MDS the S-stress after two iterations was
0.27733. A third iteration, producing a third dimension, was not deemed
necessary since the S-stress improvement was less than 0.01% of the sec-
ond iteration’s S-stress value. Indeed, for all of the derived MDS ordina-
tions two iterations were used since in none of them did a third iteration
yield any better than a 2% improvement on the second iteration’s S-stress.
For the economic, sociological, and technological MDS ordinations, S-stress
after two iterations was 0.32857, 0.38416, and 0.29281 respectively.
Kruskal’s stress formula 1 yielded values of 0.22219, 0.24091, 0.29693,
and 0.23723 respectively for the ecological, economic, sociological, and
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Table 1. Disciplines and attributes used in the multivariate analyses.

Ecological
Attribute scoring Notes

1 Catch/fisher Metric tons Person/year

2 Exploitation status 0, 1, 2 FAO scale, low, full, over

3 Trophic level Number Average trophic level of species in catch

4 Migratory range 0, 1, 2 1, 2-3, >3 jurisdictions encountered
during migration

5 Catch < maturity 0, 1, 2 None, some, lots caught before maturity

6 Discarded bycatch 0, 1, 2 Low 0-10%, med 10-40%, hi >40% of
target catch

7 Species caught 0, 1, 2 Low 1-10, med 10-100, hi >100 species

8 Primary production 0, 1, 2 gCm–2y–1, low = 0-50, med = 50-150,
high = 150+

Economic
Attribute scoring Notes

1 Price US$/t US$/t of landed product for analysis
time

2 Fisheries in GNP 0, 1, 2 Importance of fisheries sector in
country: low, med, high

3 GNP/person US$/capita In country of fishery

4 Limited entry 0, 1, 2 Almost none, some, most (includes
informal limitation)

5 Other income 0, 1, 2 Mainly casual, part-time, full-time
fishers

6 Earnings by fishers 0, 1, 2 Below, same, above national average for
workers

7 Market 0, 1, 2 Principally local, national, international

Sociological
Attribute scoring Notes

1 Fishing socialization 0, 1, 2 Fishing by individuals, families, or
community groups

2 Fishing comm. growth 0, 1, 2 Over past 10 years: <10%, 10%-20%,
>20%

3 Fisher sector 0, 1, 2 Community households fishing: <1⁄ 3,
1⁄ 3-2⁄ 3, >2⁄ 3

4 Education level 0, 1, 2 Below, same, above population average

5 Conflict status 0, 1, 2 Level of conflict with other sectors

6 Information sharing 0, 1, 2 None, some, lots

7 Fisher influence 0, 1, 2 Strength of fisher direct influence on
fishery regulations

8 Fishing income 0, 1, 2 Family income from fishing: <50%,
50-80%, >80%

9 Kin participation 0,1 Do kin sell family catch and/or process
fish?: no or yes
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technological data sets. This is somewhat larger than what Stalans (1995)
terms a “good fit” but acceptable. RSQ values for the four distance matri-
ces were 0.76676, 0.72863, 0.55201, and 0.76798. RSQ values measure
the proportion of variance of the scaled data in the distance matrix ac-
counted for by their corresponding distances (SPSS 1995).

CC was used to help describe what general properties were implied by
the dimensions produced by the MDS, see Table 3. Each attribute’s associ-
ation with either axis was proportional to the correlation (Stalans 1995).
When the correlation was positive a high score in an attribute tends to
give a high score on the MDS dimension. A negative correlation implied
high scores for an attribute resulting in low scores on the associated MDS
axis.

The final statistical procedure used on the data was CA to produce
objective mathematical groupings, offsetting the tendency of the human
mind to impose preconceived ones. Groupings for all cases analyzed were
done for all four attribute sets. The groupings were determined by the
complete distance Euclidean distance rule. This technique promotes
“clumpiness” since distances between clusters are determined by the dis-
tances of their furthest neighbors (Statsoft 1995.) As Cooper and Weekes
(1983) point out, there is much controversy over what constitutes a clus-
ter and there are no rules for their identification. Therefore, it was decid-
ed to use CA to identify the first three or four groups created. This was
done to help in the assessment aspect of the analysis by creating a man-
ageable number of groups.

Table 1. (Continued.)

Technological
Attribute scoring Notes

1 Trip length Days Average days at sea per fishing trip

2 Landing sites 0, 1, 2 Dispersed, some centralization, heavily
centralized

3 Processing 0, 1, 2 None, some, lots of gutting etc. before
sale

4 Use of ice 0, 1, 2 None, some, lots

5 Gear 0, 1 Passive = 0, active = 1

6 Mesh 0, 1 Net meshes not in gear = 0, net mesh in
gear = 1

7 Selective gear 0, 1, 2 Device(s) in gear to increase selectivity:
few, some, lots

8 FADS 0, 1 Fish aggregation devices not used = 0,
are used = 1
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Table 2. Fisheries and codes used for graphing in the analyses.

Fishery Graph name

Belize small scale fisheries, 1996 Belize 1996

Bolinao Reef, Philippines, 1992 Bolinao 1992

Diani-Kinondo reef, Kenya, 1995 Diani-Kinondo 1995

Federated States of Micronesia, Trochus, 1995 FSM 1995

Lake Kariba, Zambia, 1995 Kariba, Zam 1995

Lake Kariba, Zimbabwe, 1995 Kariba, Zim 1995

Lake Kivu, Rwanda, 1993 L. Kivu 1993

Lake Malombe, Malawi, 1993 L. Malombe 1993

Lake Victoria, Kenya, 1985 L. Vic Ken 1985

Lake Victoria, Tanzania, 1985 L. Vic Tan 1985

Lake Victoria, Uganda, 1985 L. Vic Ugan 1985

Model “A” A early, young, mature, old

Model “B” B early, young, mature, old

Sakumo Lagoon, Ghana, 1971 Sakumo 1971

Sakumo Lagoon, Ghana, 1994 Sakumo 1994

SE Lake Malawi, 1993 SE L. Malawi 1993

Ubolratana Reservoir, Thailand, 1984 Ubolratana 1984

Zanzibar, coral reef demersals, 1985 Zanzibar 1985

Zanzibar, coral reef demersals, 1995 Zanzibar 1995

Discussion
In the ecological component of the analysis the first, i.e. x, axis was most
influenced by characteristics associated with the size and amount of fish
caught, trophic level, migratory range, and catch per fisher. The second,
or y, axis was most correlated with exploitation status, catch before matu-
rity, and discarded bycatch, properties that described the overall state of
an ecosystem. Therefore, in ecologically assessing these fisheries the “best”
should be those in which relatively large fish are caught with little impact
on other parts of the ecosystem. Indeed, the young and early stages of
fishery A, modeled as a “pre-Malthusian” fishery, are seen in the upper left
corner of Fig. 1. The only real world fishery in the upper left quadrant is
Lake Kivu in Rwanda. Significantly, attributes for this fishery were collect-
ed before the civil war of 1994 and it is also the youngest analyzed, hav-
ing only been established in 1980, after the introduction of the sardine
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Limnothrissa miodon to the lake two decades earlier (de Iongh et al. 1995).
The fisheries located in the lower right corner of the ordination would
appear to be more problematic since they would be associated with poor
environmental conditions and small catches of small fish.

The fisheries of the other two quadrants seem to be representative,
then, of two types of intermediate fisheries: those with low environmental
quality yet otherwise maintaining fair fishing characteristics (lower left),
and those with diminished fish quality within a relatively more stable eco-
system (upper right). It should be noted that the latter group was almost
entirely made up of modeled fisheries, except for the Trochus harvest in
the Federated States of Micronesia (FSM), and the small-scale fisheries of
Belize. Both derive all or most of their value from the harvesting of a few
valuable invertebrates (Clarke and Ianelli 1995; pers. comm., Gillett, U.B.C.
Fisheries Centre, 2204 Main Mall, Vancouver, B.C. V6T 1Z4, 1997). Thus,
small-scale tropical fisheries appear to suffer environmental declines fol-
lowed by declines in quality of the fish caught. This ecological “trajectory”
is supported by the fact that tropical ecosystems are often species rich
and the targeted organism of the associated fishery can be switched if the
original species is/are exhausted. Four groups were identified by CA, and
we can describe them as: upper left “favorable,” upper right “fishery de-
cline,” lower left “environmental decline,” and lower right “unfavorable.”

In the economic ordination fisheries in the upper left quadrant were
associated with localized markets, low GNP per capita yet relatively high
incomes, and closed access on the x axis, and with high value fish and
fisheries as important constituents of the national economy on the y axis.
Note how the Belize and FSM fisheries again are segregated from the other
real fisheries. Note too that of the thirteen real fisheries in the two ecolog-
ical groups exhibiting less favorable characteristics, eight are found in the
least favorable economic groups.

In the sociological ordination the left of the x axis correlated with
fishing in community groups, high degrees of information sharing, high
fisher influence on regulations, and lots of kin participation. The upper
part of the y axis was also associated with lots of kin participation, but
also with fishers as a large proportion of the community. If the two groups
in the social ordination are considered to be at the bottom and right side
of the graph then it is significant that of the thirteen least favorable eco-
logical fisheries, nine are in the two least favorable sociological groups.

The technological ordination had the left side of the x axis associated
with decentralization of landing sites, use of net meshes in fishing gear,
use of selective gear, and absence of fish aggregating devices. The upper
part of the y axis was correlated with lots of processing and use of ice by
fishers. Of the three main groups identified by using CA, the group entire-
ly to the right of the y axis appears to be least favorable. Of the thirteen
least favorable fisheries from the ecological analysis, nine were found in
the least favorable technological grouping.
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Figure 1. Ecological MDS ordination of small-scale fisheries of developing nations.
Fisheries tending to the upper left are characterized by more favorable
characteristic, while those to the lower right typically have less favorable
characteristics.

Figure 2. Economic MDS ordination, with favorable fisheries to the upper left, less
favorable to the lower right.
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Figure 3. Sociological MDS ordination, with favorable fisheries to the upper left,
less favorable to the lower right.

Figure 4. Technological MDS ordination, with favorable fisheries to the upper
left, less favorable to the lower right.
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The large degree of overlap among the least favorable fisheries in the
attribute groups analyzed here indicates a linkage between them. This
linkage is consistent with the Malthusian overfishing hypothesis (Pauly
1997). The relations between the ordinations of the fisheries in the four
attribute groups would be improved if the sample size were doubled and
time series data were included. A wider analysis would enable better iden-
tification of pathological tendencies in small scale fisheries of the devel-
oping world, and perhaps warn of problems.
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Mass-Balance Food Web
Ecosystem Models as an
Alternative Approach for
Combining Multiple Information
Sources in Fisheries
Daniel Pauly, Johanne Dalsgaard, and Thomas A. Okey
University of British Columbia, Vancouver, B.C., Canada

Robert Powell and Stuart Pimm
The University of Tennessee, Knoxville, Tennessee

Highly parameterized analytical single-species models offer a tempting
framework for integrating data from different sources, e.g., survey bio-
mass estimates, fishery catches, and catch composition data. We argue,
however, that forcing data that usually cover a number of species into
single-species models, however sophisticated, does not optimally use such
data.

Rather, emphasis should be given to models that explicitly account
for multispecies interactions, especially trophic models. While mathemat-
ically not complex, trophic models can be made complete, i.e., they can be
made to include all groups in a system, and thus consider direct and indi-
rect trophic impact on target species. Such completeness also, in itself,
provides set limits on difficult-to-estimate stock sizes, production, and
mortality rates, i.e., on processes directly relevant to fisheries resource
management. In addition, these models lend themselves to answering
questions about ecosystem dynamics and the responses of ecosystems to
anthropogenic changes.

As an example, we discuss the properties and behavior of a mass-
balance trophic model representing the Prince William Sound ecosystem
from 1980 to 1989, i.e., prior to the Exxon Valdez oil spill, pending the
construction, through collaboration with experts on the various ecosys-
tem components, of a more comprehensive, consensus model to be used
for answering questions such as those mentioned above.

Adapted from a presentation at the 15th Lowell Wakefield Symposium, Fishery Stock Assessment Mod-
els for the 21st Century, October 8-11, 1997, Anchorage, Alaska.
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J.G. Cole
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Abstract
Estimation of red snapper bycatch in the shrimp trawl fishery of the Gulf
of Mexico has been a contentious issue. Estimates are generated by the
National Marine Fisheries Service (NMFS) using a general linear model which
establishes a relationship between resource trawl survey data and catch
data from the fishery obtained by observers on shrimp fishing vessels.
The more complete time series of resource trawl data is then used to
predict commercial vessel CPUE which is multiplied by total fishing effort
to determine bycatch. The estimates are characterized by exceptionally
low R2 values and highly skewed residuals (70% of the catch observations
were zeros). We have attempted to improve the estimates by using fewer
and larger time-space cells, pooling catch and effort data to reduce the
number of zeros contained in the analysis, incorporating significant inter-
actions, and using epochs to guard against nonstationarity. The R2 values
for the revised models are 2 to 3 times higher than the R2 for the base
case, and the distribution of the residuals is greatly improved. The re-
vised estimates in recent years average on the order of 30 to 47% lower
than the NMFS estimates. Nevertheless, bycatch levels are high (26 to 32
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million per year) and are increasing due to increasing abundance of juve-
niles. However, the age of structure of the bycatch may consist of a much
larger fraction of age-0 fish and fewer age-1 fish than has been thought.
Bycatch Reduction Devices (BRDs) do not effectively exclude age-0 red
snapper. Thus, the existing stock recovery policy based on NMFS GLM
bycatch estimates and using BRDs to reduce shrimp trawl mortality of
juvenile red snapper may be ineffective.

Introduction
The fishery for red snapper (Lutjanus campechanus) in the Gulf of Mexico
began over 150 years ago off Pensacola, Florida (Goodyear 1995) and by
1872 it had developed as a separate industry. The stocks offshore of Pensa-
cola were greatly depleted between 1865 and 1883, causing the fishery to
shift first to the Florida middle grounds (1883 to 1885), and then farther
southward along the west Florida coast during 1885 to 1910 (Camber 1955).
In 1892, the fishery also expanded to (1) newly discovered red snapper
grounds in the Campeche Banks off Mexico, and (2) to the western Gulf of
Mexico between the mouth of the Mississippi River to about Galveston,
Texas. In the eastern U.S. gulf and Campeche, Mexico, subsequent geo-
graphic expansions of the fishery were driven by dwindling stocks in the
areas previously fished.

The U.S. fishing fleet was excluded from Mexican waters in the early
1980s and as a result the effort was redirected at the remaining stocks in
U.S. waters. By this time, the U.S. stock was essentially restricted to the
western Gulf part of the range from Mississippi/Alabama to Texas. This
area has been fished commercially since 1892, and also lies in the heart of
the Gulf of Mexico shrimping grounds. Many juvenile (age-0 and age-1)
red snapper are taken as bycatch in the shrimp fishery (Nichols et al.
1987, 1990; Nichols 1990; Nichols and Pellegrin 1992; Nichols 1996).

Although there is some debate (e.g., Rothschild et al. 1997), most con-
sider the gulf red snapper stock to be, at present, severely overfished
(Goodyear 1995, MRAG Americas, Inc. 1997). Management actions began
in the mid-1980s and a stock rebuilding plan has been developed. Some of
the management measures implemented between 1984 and 1996 include
size and bag limits for the recreational fisheries, commercial and recre-
ational quotas, prohibition of traps and longline gears in certain areas,
and prohibition of commercial sale of red snapper from shrimp trawls.
Also, Turtle Excluder Devices (TEDs) were mandated for use in the gulf
shrimp fishery in 1990. These mechanical separation devices likely ex-
clude large fish as well as turtles, and may have some effect on reducing
take of juvenile red snapper (unpublished data).

Collectively, these actions appear to have had positive effects on the
stock as reflected by increases in both stock and recruitment and, possibly,
the increased size of harvested fish (Schirripi and Legault 1997, Rothschild
et al. 1997). A key component of the stock rebuilding plan, yet to be im-
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plemented, is to reduce mortality from shrimp trawl bycatch of age-0 and,
in particular, age-1 red snapper through the use of bycatch reduction de-
vices (BRDs). BRDs are more effective at excluding age-1-sized than age-0-
sized red snapper (Nichols et al. 1995, NMFS 1996).

Quantification of bycatch levels and the age-0 and age-1 fractions rep-
resented in this incidental catch are necessary for stock assessment and
rebuilding evaluations. Estimates of bycatch are provided by the National
Marine Fisheries Service (NMFS) as described in Goodyear (1995). In sum-
mary, the NMFS bycatch estimates are generated from a general linear
model (GLM) applied to two datasets generated from shrimp trawl catches
of red snapper. One dataset consists of catch-per-tow data which are pro-
vided from resource surveys conducted by NMFS, predominantly in sum-
mer and fall of each year (Nichols and Pellegrin 1989, Goodyear 1995).
Features of this program since 1985 include a semi-synoptic sampling of
the entire western Gulf of Mexico in summer and fall based on a random
sampling design and the use of a standard shrimp trawl. Although the
scope and design of the resource surveys have varied through time, con-
tinuous data are available for the fall season offshore Louisiana since 1972.
For simplicity, we shall refer to these data as SEAMAP data, and include
results from the Fall Groundfish and Summer SEAMAP programs.

The second dataset comes from records of finfish catch and fishing
effort compiled on an individual tow basis by observers placed on shrimp
fishing vessels specifically to quantify the bycatch including red snapper.
Observer data are collected year round, but observer programs are not
conducted every year. Even when conducted, only a small fraction of the
fleet is sampled. Observer data are available for 1972 to 1982, and 1992 to
1996 periods. We shall refer to these data as Observer (OBSR) data.

The structure of the GLM model used by NMFS to estimate commercial
catch per unit effort (CPUE) for a single net is:

Log (CPUE + 1)ijklmn = mean + dataseti + yearj +
seasonk + areal + depthm + eijklmn

for an array of space (4 areas × 2 depths) – time (three 4-mo seasons or
trimesters) cells over the 24-y period, 1972 to 1996. In effect, the GLM
“calibrates” shrimp vessel catch rates and resource trawl surveys during
the periods and areas that had observations in common, and then uses
the resource trawl data to index shrimp trawl bycatch (Nichols et al. 1987,
1990; Nichols and Pellegrin 1992). The GLM-based estimators of the mean
log (CPUE+1) are transformed to an unbiased estimate of the commercial
CPUE. These estimates are then multiplied by 2 (the assumed average num-
ber of nets) times the effort estimated for that time-space cell in hours
fished. The catch estimates are then summed to provide an overall by-
catch estimate. This GLM approach has been selected because observer
programs have not been conducted in each space-time cell and the stock
assessments require annual estimates of bycatch mortality. Use of the
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SEAMAP data enables an estimate for each year as well as an update of the
previous year’s estimates.

We believe the structure of the NMFS GLM model is problematic and
that improvements can be made. The basic problems are that (1) on the
order of 70% of the tows in each dataset have zero catch of red snapper,
(2) less than 50% of the space-time cells have been sampled overall (29% of
the OBSR cells and 46% of the SEAMAP cells), (3) interactions between the
five factors in the GLM model are ignored, and (4) there is no consider-
ation of possible effects of nonstationarity (effects of explanatory vari-
ables changing over time). Our approach toward addressing these problems
is to (1) combine catch and effort over several tows to reduce the number
of zeros, (2) use fewer but larger strata to reduce the number of empty
cells, (3) consider significant interactions, and (4) conduct separate mod-
els for early and late epochs to protect against nonstationarity.

 Our hypothesis was that the above described changes would result in
a better fit of the revised models (higher R2 and lower residual error) as
compared to models using the NMFS GLM structure, and a more normal
distribution of residuals. The findings of the revised approach are pre-
sented and then discussed in terms of their ramifications with respect to
management measures designed to recover red snapper stocks.

The Data
As noted above, the basic data used in the analysis are of three types:
observer data, resource trawl survey data, and shrimp fishing effort data.
The observer data are available for only two periods: 1972 to 1982 (histor-
ical) and 1992 to 1996 (modern). The historical observer data and what we
have defined as the SEAMAP data were obtained from S. Nichols (NMFS,
Pascagoula Laboratory) and the “modern” observer data were obtained
from J. Nance (NMFS, Galveston Laboratory). Dr. Nance also provided the
shrimp fishing effort data which is estimated by statistical reporting grid
and depth zone within each grid. The spatial distributions of the OBSR
tow data, historical and modern, are shown in Figs. 1 and 2, along with the
distribution of the tows that contained red snapper. The historical (1972-
1982) sample sizes are small as compared to the sample sizes obtained in
the 1992 to 1996 program, especially when considered on an annual basis
(Figs. 1 and 2).

The distribution of the SEAMAP data for 1972 to 1984 and tows con-
taining red snapper during this period are shown in Fig. 3; the same data
for 1985 to 1996 are shown in Fig. 4. The “fall groundfish” component of
the SEAMAP dataset originated in 1972, and through 1984 sampling was
mainly restricted to the so-called primary area off Louisiana (see Good-
year 1995). In 1985, the fall component of the NMFS resource surveys was
expanded to encompass the entire geographic region from Pensacola, Flor-
ida to Brownsville, Texas. The summer component of the resource trawl
surveys (SEAMAP) originated in 1982 and sampled the entire western Gulf
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Figure 1. Distribution of observer tows and tows containing red snapper, 1972
to 1982, in Gulf of Mexico statistical reporting grids 10-21. The 10-
fathom contour is provided as a reference depth. Longitude 95°13′W
provides the boundary between North and South Regions used in
the GLM.
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Figure 2. Distribution of observer tows and tows containing red snapper, 1992 to
1996, in Gulf of Mexico statistical reporting grids 10-21. The 10-fathom
contour is provided as a reference depth. Longitude 95°13′W provides
the boundary between North and South Regions used in the GLM.
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Figure 3. Distribution of SEAMAP tows and tows containing red snapper, 1972 to
1984, in Gulf of Mexico statistical reporting grids 10-21. The 10-fathom
contour is provided as a reference depth. Longitude 95°13′W provides
the boundary between North and South Regions used in the GLM.
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Figure 4. Distribution of SEAMAP tows and tows containing red snapper, 1985 to
1996, in Gulf of Mexico statistical reporting grids 10-21. The 10-fathom
contour is provided as a reference depth. Longitude 95°13′W provides
the boundary between North and South Regions used in the GLM.
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from Pensacola, Florida to Brownsville, Texas. Summer and fall surveys
thus became directly comparable in terms of spatial coverage in 1985,
and shortly thereafter (1987) in terms of detailed sampling protocol. The
data for years prior to 1985 are strongly dominated by fall samples taken
in the primary area off Louisiana, but much better balance in seasonal and
spatial sampling has been achieved since 1985 (compare Figs. 3 and 4).

Shrimp fishing effort data are estimated by statistical grid and depth
zone based on a census of shrimp landings obtained from seafood dealers
by port agents. The Gulf of Mexico is stratified into 221 spatial cells for
each month. Port agents assign the landings to these cells based on their
knowledge of the shrimp fishery and interviews. Interviews are conduct-
ed with a subset of the landings, targeting larger vessels, to obtain CPUE
data of the shrimp fleet in each of these cells every month. Where data are
missing, the CPUE of a cell is imputed using a GLM model. These estimates
are then used to calculate an estimate of total shrimping effort in each of
these cells every month. The values are summed to provide an estimate of
total shrimp fishing effort.

Model Structure and Approach
We use only two spatial strata in our models, both restricted to the west-
ern gulf. The North Region consists essentially of statistical grids 10-18
and the South Region includes grids 19-21 (Figs. 1-4). Juvenile red snap-
per are scarce in the gulf region east of grid 10, and shrimp fishing effort
there is small compared to effort in the modeled area. The South Region
corresponds roughly to the Texas Transitional Faunal Province of Pulley
(1952) and the Dry Sub-Humid Climatological Zone of Parker (1960). The
North Region has been a major source of red snapper in the Gulf of Mexico
since 1892. Some major differences between the North and South Regions
are shown in Table 1.

Our models use only two periods—January to August and September
to December—rather than three as used by NMFS. SEAMAP data for the
January-April period were relatively sparse and winter shrimping effort is
typically low compared to summer and fall. Further, age-1 juveniles pre-
dominate from January-August; age-0 fish are most abundant in the catch-
es in September-December periods.

We did not incorporate separate depth cells in our models, but rather
used two “cases.” For Case I, the models were constructed using OBSR,
SEAMAP, and shrimp fishing effort based on samples obtained for all depths
greater than 5 fathoms for most of the North Region (as detailed below),
and used data for all offshore depths for the remaining North Region and
all of the South Region. For Case II, the models were based on data from
depths greater than 10 fathoms. Examination of Figs. 1 and 2 shows that
red snapper juveniles are infrequently encountered in commercial shrimp
tows inside of 10 fathoms, and become even less frequent with proximity
to the mainland. The historical (1972-1984) SEAMAP data reflect a similar
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trend (Fig. 3), but red snapper have occurred with some regularity inside
of 10 fathoms in statistical grids 17-21, especially in recent years (Fig. 4).
Gallaway and Cole (1997) have shown that high-value habitat for juvenile
red snapper (and brown shrimp) in the western Gulf of Mexico to be large-
ly restricted to depths (>10 fathoms based upon results of habitat suit-
ability modeling [USFWS 1980, 1982]).

We constructed two temporal versions (epochs) for each model case.
The first epoch covered the period 1972 to 1984; the second covered 1985
to 1996. In 1985, the spatial coverage of the fall component of the NMFS
resource surveys was expanded from the so-called primary area off Loui-
siana (see Goodyear 1995) to encompass the entire geographic region from
Pensacola, Florida to Brownsville, Texas. From this year, the summer and
fall surveys became directly comparable in terms of spatial coverage and,
shortly thereafter (1987), in terms of detailed sampling protocol. Also, the
first red snapper management actions were taken in about that time frame
(actually 1984), and it was not until about 1985 that good compliance with
the mandatory dealer reporting of shrimp landings regulation was achieved
(Pers. comm., M. Hightower, NMFS, Galveston). The latter should have re-
sulted in more certain estimates of shrimping effort since effort is derived
from the landings census.

Each model case thus has 100 cells for each dataset: 52 cells for epoch
I (2 regions × 2 seasons × 13 years) plus 48 cells for epoch II (2 regions × 2
seasons × 12 years). Of these, 53% of the OBSR cells and 78% of the SEAMAP
cells were sampled overall. This compares to the NMFS model structure
which has 576 cells for each dataset (4 regions × 2 depths × 3 seasons × 24
years). Under this structure, only 29% of the OBSR cells and 46% of the
SEAMAP cells were sampled overall.

Table 1. Rationale for region determinations.

North Region (Grids 10-18) South Region (Grids 19-21)

Positive flow estuaries Neutral or negative flow estuaries

River influenced nearshore waters More saline nearshore

Hypoxia prevalent Hypoxia not prevalent

Currents predominantly to west in Currents predominantly to north
Zones 13-18

Bathymetry gradient gentle Bathymetry gradient steep

Natural banks at shelf edge Natural banks on mid-shelf

High density of petroleum platforms Low density of petroleum platforms

The South Region corresponds to the Texas Transitional Faunal Province of Pulley (1952) and the Dry
Sub-humid Climatological Zone of Parker (1960). Boundary between Stat Areas 18 and 19 displaced
west to 95°13′W offshore to correspond with inshore boundary; i.e., “dogleg” removed (see Figs. 1-4).
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We also reduced the percent of zero values by using catch per trip per
week as the basic observation unit rather than catch per tow. In the SEAMAP
data, the percent of zeros declined from 70.6 to 6.9%; and in the OBSR
data from 70.9 to 33.2%. Further, since the resource survey tows are of
short duration (e.g., 15 min), combining tows over weekly intervals re-
duced the imbalance between SEAMAP and OBSR sample sizes.

The data files used by NMFS to calculate their red snapper annual
bycatch estimates were obtained from the NMFS Pascagoula Laboratory.
This dataset included SEAMAP station and catch data for the years 1972-
1995, and station and catch data from the early observer programs be-
tween 1972 and 1982 (Fig. 5). SAS® programs were run to merge the station
and catch data into a new dataset (Mod_Data) which included the new
variables period (NMFS trimester), year, week (SAS date divided by 7), re-
gion (North or South), and dataset (SEAMAP or OBSR).

The raw 1996 SEAMAP station, environment, and catch data, obtained
from another department of the NMFS Pascagoula Laboratory were merged
to form a new dataset (SEAMAP96) including the same variables from
Mod_Data. The modern observer station and catch data were obtained
from the NMFS Galveston Laboratory and were merged to create the “mod-
ern” Observer dataset, again including the same variables as the other sets
(Fig. 5).

Assignment of the region fields in each of the data records was based
on the combination of depth and longitude of the sampling station. All
stations located west of 95°13′W were assigned to the south zone; sta-
tions between 87°W and 94°W and greater than 5 fathoms depth were
assigned to the north region. Stations between 94°W and 95°13′W were
also assigned to the north region, regardless of depth.

These three datasets were reduced to include only samples which
contained a net operation code that indicated an undamaged tow, and
these were then merged with a dummy dataset which included records for
all year, period, and region cell combinations to be predicted by the SAS
GLM (the catch per unit effort for each of the cell combinations was en-
tered as a missing value) to form the model dataset.

The catch and effort data in model dataset were then summarized by
year, period, region, week, and cruise number to create the dataset BY-
CRUISE. This catch and effort data was used to create a catch per unit of
effort (CPUE) value for each year, period, region, week, and cruise number
combination. The natural logarithm of the CPUE + 1 value was assigned to
create the variable LNCPUE.

Data for years prior to 1985 were extracted from BYCRUISE to create
the CRUISE_EARLY dataset; post 1984 data were used to create the
CRUISE_LATE dataset. In each dataset, trimester 2 values were reassigned
to trimester 1. The SAS procedure GLM was then run on each of the two
new datasets, modeling LNCPUE as a function of the class variables dataset,
year, period, and region, and their interactions. For the CRUISE_LATE
dataset, the year by region interactions were found to be significant, and
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Figure 5. Schematic of the steps in the estimation of red snapper bycatch show-
ing the sources and types of data, the modifications made to the data,
and the sequence of the analysis.
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were thus included in the analysis. No other significant interactions were
found in either dataset.

The modified GLM results produced a pair of datasets with predicted
LNCPUE for each year, period, region, dataset combination. The observer
dataset values were translated by using the following formula:

e (OBSR Predicted LNCPUE + 0.5 × GLM MSE) –1

to create an unbiased estimate of the predicted observer cell values. These
cell values were multiplied by the NMFS estimate of fishing effort for each
cell (from the NMFS Galveston Laboratory dataset) to create a bycatch es-
timate for each year, period, and region combination. These estimates
were then summed and compared to the annual bycatch estimates pro-
duced by the NMFS Pascagoula Laboratory (Fig. 5).

All of the bycatch in the January-August period was treated as if it was
entirely age-1 fish. A few age-0 fish would be expected during June-August,
but the fraction would be very low (less than 1 or 2% during June and July;
on the order of 12% in August, Table 83 in Goodyear 1995). In fall, a sub-
stantial fraction of the catch (13 to 39%; Table 83, Goodyear 1995) can be
age-1 fish although the catches are dominated by age-0 fish. The datasets
provided to us included length-frequency data for juvenile red snapper in
both the SEAMAP (1988 to 1995) and OBSR (1992-1995) datasets. We plot-
ted length frequency histograms for each of our two regions. These were
used to allocate the total fall bycatch for each of the two regions into age-
0 and age-1 fractions.

Results and Discussion
The changes we instituted resulted in better performance of the models
as compared to the NMFS estimates used as the base case (Table 2). Ad-
justed R2 values for the historical period 1972 to 1984 and the more re-
cent period (1985 to 1996) were 0.22 and 0.37, respectively, for Case I;
and 0.22 and 0.38 for Case II. This compares to an R2 of 0.13 for the NMFS
base model. Likewise, skewness and kurtosis values of the modified GLM
models were, considering sample size effects, greatly improved as com-
pared to the base model, especially the model for the period 1985 to 1996
(Table 2). A part of the explanation for the better performance relates to
improved balance between SEAMAP and OBSR data in recent years, partic-
ularly as compared to the historical period (compare Figs. 1-4). Using two
models, one for each epoch, served to reduce the impact of the historical
imbalances (which were severe in the early epoch) on the data for recent
years. Pooling of effort and catch over several tows eliminated a large
fraction of the zeros, and using larger spatial strata reduced the number
of empty cells. The net result is better model performance, especially for
the recent data.
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Table 2. Results of ANOVA and univariate residuals analyses.

Basic ANOVA comparisons

Root LCPUE
Model structure n F P > F R2 CV MSE Mean

Case I 446 7.87 0.0001 0.215 81.925 1.214 1.4819
1972-1984 Epoch

Case I 625 14.05 0.0001 0.370 68.377 0.867 1.2686
1985-1996 Epoch

Case II 350 5.87 0.0001 0.209 65.144 1.195 1.8338
1972-1984 Epoch

Case II 559 13.00 0.0001 0.379 63.360 0.858 1.3535
1985-1996 Epoch

NMFS (1972-1995)a 25,390 125.29 0.0001 0.126 159.911 1.304 0.8156

Results of residual analysis

Shapiro-Wilk
Model structure Skewness Kurtosis  statistics P < W

Case I 1972-1984 Epoch 0.6445 –0.0487 0.9504 0.0001

Case I 1985-1996 Epoch 0.3065 0.0132 0.9690 0.0001

Case II 1972-1984 Epoch 0.3378 –0.2706 0.9714 0.0016

Case II 1985-1996 Epoch 0.2883 –0.1602 0.9749 0.0006

NMFS (1972-1995)a 1.3276 1.2746 0.1921b <0.01c

a Calculated by LGL using stated model structure and data provided by NMFS.
b Kolmogorov “D”
c P > D

Bycatch Level
The ramifications of our changes in GLM structure to the bycatch esti-
mates as compared to the NMFS results are shown by Table 3 and the
bottom panel of Fig. 6. Our estimates for the period 1972 to 1984 vary
around the NMFS base-case estimates showing an 11% reduction overall
for Case I, and a 10% reduction for Case II. Four of the 13 annual estimates
were actually higher in our revised models than annual estimates yielded
by the NMFS model structure. In contrast, a net reduction of about 30% for
Case I and 47% for Case II is seen for the recent epoch (1985 to 1995), and
only one estimate from the revised models is higher (2%) than a corre-
sponding estimate from the base case (Table 3).

Plots of the GLM estimates of annual CPUE and the corresponding
levels of effort for each year illustrate the nature of the differences in
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Table 3. A comparison of shrimp trawl fishing bycatch estimates for ju-
venile red snapper in the western Gulf of Mexico, 1972 to 1996.

GLM: Case I Epoch I Case II Epoch I
Year NMFS This study Reduction (%) This study Reduction (%)

1972 65,100,000 48,267,935 0.25856 39,181,831 0.39813

1973 23,200,000 14,370,909 0.38056 14,318,987 0.38280

1974 16,800,000 21,655,960 –0.28905 17,579,208 –0.04638

1975 15,200,000 8,338,273 0.45143 11,627,585 0.23503

1976 23,300,000 36,092,778 –0.54905 46,343,610 –0.98900

1977 24,800,000 27,219,142 –0.09755 28,203,783 –0.13725

1978 21,700,000 17,007,973 0.21622 20,564,819 0.05231

1979 23,000,000 16,593,497 0.27854 22,668,893 0.01440

1980 34,300,000 19,416,077 0.43393 21,804,067 0.36431

1981 34,300,000 57,943,153 –0.68930 62,250,591 –0.81489

1982 33,900,000 26,039,604 0.23187 30,439,811 0.10207

1983 21,300,000 12,853,086 0.39657 16,250,129 0.23708

1984 16,600,000 9,215,449 0.44485 11,126,182 0.32974

Totals 353,500,00 315,013,836 0.10887 342,359,597 0.09685

GLM: Case I Epoch II Case II Epoch II
Year NMFS This study Reduction (%) This study Reduction (%)

1985 20,100,000 11,712,627 0.41728 9,011,712 0.55166

1986 19,400,000 7,347,288 0.62127 6,500,352 0.66493

1987 24,400,000 14,450,654 0.40776 9,235,304 0.62150

1988 23,500,000 10,346,981 0.55970 9,386,562 0.60057

1989 28,400,000 13,101,080 0.53869 12,528,296 0.55886

1990 54,200,000 42,656,137 0.21299 22,959,556 0.57639

1991 48,100,000 28,266,626 0.41234 19,953,992 0.58516

1992 30,700,000 26,012,971 0.15267 24,551,139 0.20029

1993 32,900,000 24,354,494 0.25974 19,216,628 0.41591

1994 40,400,000 33,405,020 0.17314 23,292,520 0.42345

1995 42,000,000 43,184,149 –0.02819 35,895,796 0.14534

Totals 364,100,000 254,838,027 0.30008 192,531,856 0.47121

NMFS estimates are from Goodyear (1995).
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Figure 6. Annual trends in shrimp fishing effort, CPUE of red snap-
per in shrimp trawls, and red snapper bycatch in the west-
ern Gulf of Mexico, 1972 to 1996.
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bycatch estimates among the three cases (NMFS; Case I and Case II of this
study, Fig. 6). In the NMFS model, CPUE is low and shrimp fishing effort is
high relative to our cases. This is because the NMFS model incorporates
data for Florida where both juvenile abundance and shrimp fishing effort
are low; and, more important, data from shallow nearshore areas in the
western gulf where red snapper are either absent or low abundance, but
shrimp fishing effort is high. Incorporating these data has a smoothing
effect on the CPUE time series. In our cases, we excluded data for areas
which, in our opinion, do not constitute suitable habitat for this species
(Case I); and, in Case II, restricted the analysis to high-value habitats. As a
result our values of CPUE are high relative to the NMFS case, but the corre-
sponding effort multipliers are smaller (Fig. 6). With only one exception
(1990), the annual CPUE values for Case II are higher than the values for
Case I, reflecting the higher abundance of juvenile red snapper in areas
greater than 10 fathoms in depth as compared to more shallow areas. The
1990 CPUE exception was largely attributable to a few large collections of
red snapper which were obtained in the Fall SEAMAP sampling program
just inside the 10 fathom contour in the North Region in the vicinity of the
mouth of the Mississippi River where the bathymetry gradients are steep.

The results of the bycatch analyses show that the trend of increase in
red snapper bycatch since the mid-1980s is attributable to increased CPUE
of juvenile red snapper (Fig. 6). Effort has remained relatively stable, and,
in the most recent years, has even declined. Fishery-independent recruit-
ment indices for red snapper have exhibited a similar trend of increase
over the same time frame and the range occupied by recruits appears to
be expanding (Goodyear 1997, Schirripa and Legault 1997).

Age Composition of the Bycatch
The stock assessment requires that the bycatch be partitioned into age-0
and age-1 fractions for each year class beginning with 1982. Age-0 year
class fish are abundant mainly in fall (September to December) and are
treated as age-1 fish from January through the following December. The
length frequency data for the fall collections of juvenile red snapper showed
marked differences by region (Fig. 7). Juvenile fish of a size to suggest age
1 were not apparent in the samples from the South Region except in the
1992 SEAMAP collections (1 out of 8 years). In contrast, the length distri-
butions were clearly bimodal in 6 of 8 fall collections from the North Re-
gion (Fig. 7). The fall bycatch totals for the South Region in 1992 to 1994
were allocated to age fractions based on the OBSR length frequencies, and
the mean of the 1992 to 1994 OBSR bycatch frequency data for this region
was used to allocate the bycatch to age fractions in years in which there
were no OBSR size data (i.e., 1982 to 1991, 1995). The same approach was
used in the North Region.

Based on the above, and using the more conservative Case I results,
we estimate that the combined bycatch of the 1982 to 1992 year classes
was on the order of 198 million fish, of which 65% were age-0 fish and 35%
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Figure 7. Length frequency of juvenile red snapper taken in the shrimp fishery
observer program (OBSR) and National Marine Fisheries Service re-
source trawl surveys (SEAMAP) in fall in the North and South Regions
of the Gulf of Mexico used in the analyses, 1988 to 1995.
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Figure 8. Estimated total bycatch and age composition of the bycatch for
the 1982 to 1992 year classes based on comparisons of the re-
sults of Goodyear (1995) to results from this study.
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were age-1 fish. The corresponding estimates used in the Goodyear (1995)
stock assessment are 311 million fish, of which only 44% were age 0, and
56% were age 1 (Fig. 8). The difference appears to stem from NMFS using
length data combined from both datasets as well as over all regions to
estimate the age composition of the fall collections, whereas we partition
the catch data to age on a region-specific basis. The overall reduction
indicated for total bycatch from our estimates as compared to the NMFS
estimates (36%) may not seriously affect the conclusions of the stock as-
sessment (Goodyear 1996). However, the marked differences in age com-
position of the bycatch are a matter of concern since BRDs do not effectively
exclude age-0-sized red snapper. Their mandated use thus may not be an
effective means of lowering shrimp trawl bycatch mortality.

Independent Estimates
Rothschild et al. (1997) have independently estimated red snapper by-
catch in the Gulf of Mexico shrimp fishery. Their approach was to use only
the observer data and they initially focused on the depths (5-20 fathoms),
locations (grids 16-21), and time of year where the great majority of red
snapper bycatch is taken (May-December). They used standard ratio esti-
mation techniques to derive CPUE, and multiplied these by the correspond-
ing effort to obtain bycatch on a per net basis. To complete the time series
for years with no OBSR data (1982-1991), the computed mean CPUE values
for the available data were multiplied by the corresponding ratios of shrimp
effort yielding estimates for all years. The correspondence between pre-
dicted and observed values in recent years was good, but there was less
similarity between predicted and observed values for the historical period.
They advised that the historical estimates should be viewed with reason-
able caution.

The results obtained for recent years by Rothschild et al. (1997) indi-
cated a bycatch level between 7 and 8 million juvenile fish per trawl net,
which, assuming an average of two nets, provides a lower bound estimate
of 15 million. Based on their professional opinion, this lower bound was
inflated by 50% to account for multiple nets, catches during other times
and places, etc. They estimated that total bycatch was perhaps on the
order of 20 to 25 million fish (Rothschild et al. 1997). They suggested the
age-0 component might be on the order of 15 million fish or about 75% of
the total. Rothschild et al. (1997) also commented on the scarcity of age-1
fish off the Texas coast during fall, providing independent confirmation
of our findings regarding regional differences in age composition of the
bycatch.

Conclusions
The results of our analysis and those of Rothschild et al. (1997) would
suggest that bycatch of the 1982 to 1992 year classes has been overesti-
mated in the Goodyear (1995) stock assessment by 36%. Nevertheless, the
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number of juvenile red snapper taken incidental to shrimp trawling is
large (in our study the 1992 to 1996 average was 26 million for Case II and
32 million for Case I), and bycatch is increasing as juveniles are becoming
more abundant (Case I value was 43 million in 1995). The more important
finding of this study is that the age-0 fraction of the catch is likely much
larger and the age-1 fraction much lower than has been previously as-
sumed. Since BRDs do not effectively exclude age-0 fish, the anticipated
level of gain from BRD use may not be realized. Recruitment, the distribu-
tional range of recruits, and stock level of red snapper are apparently all
increasing in the Gulf of Mexico, as is size of harvested fish (Schirripa and
Legault 1997, Rothschild et al. 1997). The commercial fishery presently
lasts only days before the quota is filled, and the recreational quota in
1997 was, for the first time ever, reached before the year ended. All of this
is occurring in the face of unabated and growing bycatch levels.
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Abstract
The North Pacific Fishery Management Council (NPFMC) is responsible for
effectively managing the groundfish fisheries in the Bering Sea (BS), Aleu-
tian Islands (AI), and Gulf of Alaska (GOA). These fisheries target walleye
pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus),
sablefish (Anoplopoma fimbria), Atka mackerel (Pleurogrammus monop-
terygius) and numerous flatfish (Pleuronectes sp. and Hippoglossoides sp.)
and rockfish (Sebastes sp. and Sebastolobus sp.) species. The stocks are
routinely evaluated by National Marine Fisheries Service (NMFS) scientists,
who are relied on by the NPFMC to recommend harvest levels that will
maintain healthy stocks. Alaska Department of Fish and Game scientists
evaluate the stocks of three species of demersal shelf rockfish, for which
the NPFMC has delegated management authority to the State of Alaska.

Introduction
Stock assessments have evolved since 1978 in response to changes in
target species, data collection, and assessment methodology. Currently,
biomass for most groundfish stocks is estimated using a stock synthesis
model described by Methot (1990). The lack of age data, however, has
prevented the traditional application of the synthesis model to some stocks
of flatfish, rockfish, GOA Atka mackerel, and squid. Instead, stock biom-
ass is estimated using an area-swept index from trawl survey data.

There also have been changes in methodology for estimating optimal
harvest rates and overfishing rates. These harvest rates, when applied to
estimated biomass for individual stocks, result in a preliminary recom-
mendation for acceptable biological catch (ABC) and an overfishing level
(OFL). For most stocks, ABC estimates are determined by calculating the
fishing mortality which reduces the equilibrium level of spawning biomass
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per recruit to 40% of its unfished level (F40%) (Clark 1993). The OFL for
most stocks is currently based on an F30% rate. In the absence of maturity
and growth information, ABC is based on an F = 0.75M harvest strategy,
and overfishing is based on F = M.

Historical Assessment Methodologies
The groundfish assessments are compiled into a stock assessment and
fishery evaluation (SAFE) report, which is prepared and reviewed annually
for each fishery management plan. These assessments undergo a thor-
ough peer review process, first by the council’s groundfish plan teams
which review the stock assessments and then by the council’s Scientific
and Statistical Committee (SSC), both of which are composed of biologists
and economists from state and federal agencies, and academia.

Conservation-based scientific assessment advice, along with strict
adherence to scientific advice by managers, has resulted in relatively
healthy stocks of groundfish in the North Pacific. Of 37 North Pacific ground-
fish stocks examined, three-year trends in relative abundance, based on
stock assessment and survey catch-per-unit-effort (CPUE) trends, indicate
8 stocks are increasing, 8 stocks are stable, 13 stocks are decreasing, and
8 stocks are of unknown status (Table 1). Total groundfish harvests in
1996 relative to their respective ABCs are shown in (Table 2). Harvests for
all species except GOA Pacific cod and BS/AI and GOA Pacific ocean perch
(POP) (Sebastes alutus) were held at or below the respective ABC. Overruns
occurred due to difficulty of in-season management of Pacific cod and
POP.

The council’s reliance on the plan teams and SSC is well-documented.
During 1987-1997 (Table 3), the council exceeded the SSC ABC recommen-
dation only twice in 344 ABC determinations. In 1980, the council set the
AI sablefish ABC at 4,500 t, higher than the SSC recommendation of 3,700
t, but lower than the plan team recommendation of 9,600 t. In 1992, the
council set the GOA pollock ABC midway between the SSC and plan team
recommendations. The council set ABC lower than the SSC recommenda-
tion in five instances. At no time has the council set total allowable catch
(TAC), or quota, higher than ABC. In fact, the council set TAC lower than
ABC for 54% of the determinations and set TAC equal to ABC in 44% of
determinations. ABCs were not specified by the council in 2% of cases;
these occurred in the GOA between 1987 and 1990.

Based on current criteria in the Magnuson-Stevens Act, under which
the council is authorized to manage North Pacific fish stocks, NMFS has
determined that of 106 groundfish stocks under the council’s jurisdiction,
0 are overfished or approaching overfished condition, 64 are not over-
fished, and 42 are of unknown status (NMFS 1997). Nationally, 86 stocks
are overfished, 10 are approaching overfished, 183 are not overfished,
and 448 are unknown. Stock status may change under revised guidelines
that should be published in late 1998.
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Table 1. Relative abundance (exploitable biomass in t) of Bering Sea (BS),
Aleutian Islands (AI), and Gulf of Alaska (GOA) groundfish, 1996.

Biomass
1996 Mean Reference relative 3-year

Species Area biomass biomass years to mean trend

Pollock BS 6,200,000 8,540,000 1964-1996 Below Down

AI 230,000 688,000 1978-1996 Below Down

Bogoslof 680,000 1,210,000 1988-1996 Below Stable

GOA 574,000 1,495,600 1969-1996 Below Down

Pacific cod BSAI 1,106,000 1,364,000 1978-1996 Below Up

GOA 314,000 453,300 1978-1996 Above Up

Deepwater flatfish GOA 101,400 116,000 1978-1996 Below Down

Yellowfin sole BSAI 2,862,000 1,979,000 1960-1996 Above Stable

Greenland turbot BSAI 127,000 448,000 1960-1996 Below Down

Arrowtooth flounder BSAI 556,400 279,700 1975-1996 Above Stable

GOA 1,640,000 924,000 1961-1996 Above Up

Rock sole BSAI 2,183,000 1,187,000 1975-1996 Above Stable

Rex sole GOA 72,300 85,900 1990-1996 Below Down

Flathead sole BSAI 616,400 403,000 1975-1996 Above Stable

GOA 206,000 217,400 1990-1996 Stable NK

Other flatfish BSAI 589,500 595,000 1975-1996 Near Stable

Shallow water flatfish GOA 316,000 306,700 1990-1996 Stable Down

Sablefish BS 24,100 41,200 1979-1996 Below Stable

AI 24,100 54,200 1979-1996 Below Down

GOA 271,000 390,000 1979-1996 Below Down

Pacific ocean perch BS 72,500 97,300 1960-1996 Below Down

AI 324,000 234,000 1962-1996 Above Up

GOA 774,000 360,000 1984-1996 Above Up

Sharpchin/northern AI 96,800 96,646 1980-1996 Near NK

Northern rockfish GOA 85,000 73,100 1984-1996 Above Up

Shortraker/rougheye AI 45,600 45,616 1980-1996 Near NK

GOA 65,000 68,800 1984-1996 Near Down

Pelagic shelf rockfish GOA 78,000 56,300 1984-1996 Above Up

Other slope rockfish GOA 131,000 138,100 1984-1996 Near Up

Other red rockfish BS 29,700 NK NK NK NK

Other rockfish BS 7,100 5,200 1979-1996 NK NK

AI 13,600 13,600 1980-1996 NK NK

Thornyheads GOA 47,000 65,100 1967-1996 Below Down

Atka mackerel AI 576,000 699,000 1977-1996 Below Down

GOA NK NK NK NK NK

Squid BSAI NK NK NK NK NK

Other species BSAI 621,000 574,000 1975-1996 Above Stable

NK = not known.
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Table 2. Exploitable biomass and harvest specifications (t) of Bering Sea
(BS), Aleutian Islands (AI), and Gulf of Alaska (GOA) groundfish,
1997.

Species Area Biomass OFL ABC TAC

Pollock BS 6,120,000 1,980,000 1,130,000 1,130,000

AI 100,000 38,000 28,000 28,000

Bogoslof 558,000 43,800 32,100 32,100

GOA 1,097,830 111,270 79,980 79,980

Pacific cod BSAI 1,590,000 418,000 306,000 270,000

GOA 562,000 180,000 81,500 69,115

Deepwater flatfish GOA 101,430 9,440 7,710 7,710

Yellowfin sole BSAI 2,530,000 339,000 233,000 230,000

Greenland turbot BSAI 118,000 22,600 12,350 9,000

Arrowtooth flounder BSAI 587,000 167,000 108,000 20,760

GOA 1,639,671 280,800 197,840 35,000

Rock sole BSAI 2,390,000 427,000 296,000 97,185

Rex sole GOA 72,330 11,920 9,150 9,150

Flathead sole BSAI 632,000 145,000 101,000 43,500

GOA 206,340 34,010 26,110 9,040

Shallow water flatfish GOA 315,590 59,540 43,150 18,630

Other flatfish BSAI 616,000 150,000 97,500 50,750

Sablefish BS 17,900 2,750 1,308 1,100

AI 18,600 2,860 1,367 1,200

GOA 206,060 35,950 14,520 14,520

Other slope rockfish GOA 103,710 7,560 5,260 2,170

Northern rockfish GOA 83,370 9,420 5,000 5,000

Pelagic shelf rockfish GOA 55,640 8,400 5,140 5,140

Demersal shelf rockfish GOA 60,510 1,450 950 950

Pacific ocean perch BS 72,500 5,400 2,800 2,800

AI 324,000 25,300 12,8700 12,800

GOA 242,300 19,760 12,990 9,190

Sharpchin/northern AI 96,800 5,810 4,360 4,360

Shortraker/rougheye AI 45,600 1,250 938 938

GOA 65,380 2,740 1,590 1,590

Other red rockfish BS 29,700 1,400 1,050 1,050

Other rockfish BS 7,100 497 373 373

AI 13,600 952 714 714

Thornyheads GOA 46,110 2,400 1,700 1,700

Atka mackerel AI 450,000 81,600 66,700 66,700

GOA NK 6,200 1,000 1,000

Squid BSAI NK 2,620 1,970 1,970

Other species BSAI 688,000 138,000 25,800 25,800

GOA NK NK NK 13,470

TOTAL (all species) BSAI 17,004,800 3,998,839 2,464,130 2,000,000

TOTAL (all species) GOA 4,797,760 784,860 493,050 282,815

TOTAL (all species) BOTH 21,802,560 4,783,699 2,957,180 2,282,815

OFL = overfishing level; TAC = total allowable catch; ABC = allowable biological catch; NK = not known.



Symposium on Fishery Stock Assessment Models 845

Table 3. Comparison of allowable biological catch (ABC) and total allow-
able catch (TAC) recommendations for groundfish targets in the
Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BSAI) area.

# of species # of times council set:
Year complexes ABCs > SSC ABCs < SSC TACs > ABC TACs = ABC TACs < ABC

Gulf of Alaska

1997 16 0 0 0 10 6

1996 16 0 1 0 8 8

1995 16 0 1 0 9 7

1994 16 0 1 0 8 8

1993 13 0 0 0 5 8

1992 13 1 0 0 7 6

1991 13 0 0 0 7 6

1990 10 0 1 0 5 4

1989 8 0 1 0 3 4

1988 8 0 0 0 4 3

1987 9 0 0 0 1 5

Total GOA 138 1 5 0 67 65

Bering Sea/Aleutian Islands

1997 21 0 0 0 11 10

1996 21 0 0 0 4 17

1995 21 0 0 0 4 17

1994 20 0 0 0 14 6

1993 20 0 0 0 6 14

1992 20 0 0 0 13 7

1991 19 0 0 0 12 7

1990 17 1 0 0 6 11

1989 17 0 0 0 2 15

1988 15 0 0 0 5 10

1987 15 0 0 0 8 7

Total BSAI 206 1 0 0 85 121

TOTAL 344 2 5 0 152 186

From the North Pacific Fishery Management Council and its Scientific and Statistical Committee (SSC),
1987-1997, based on one allowable biological catch (ABC) per species or complex. Some rows do not
sum as reported as a result of unspecified ABCs in some years for Atka mackerel, DSR, and other rock-
fish.

POP = Pacific ocean perch, OFD= overfishing definition; DSR = demersal shelf rockfish.
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Table 5. Current research surveys conducted for Bering Sea (BS), Aleu-
tian Islands (AI), and Gulf of Alaska (GOA) groundfish, by spe-
cies and area.

Trawl Acoustic Longline
Species Area survey survey survey

Pollock BS Annual Triennial

AI Triennial

Bog – Annual

GOA Triennial Annual

Pacific cod BSAI Annual

GOA Triennial

Yellowfin sole BSAI Annual

GOA Triennial

Greenland turbot BSAI Annual

GOA Triennial

Arrowtooth BSAI Annual

GOA Triennial

Rock sole BSAI Annual

GOA Triennial

Flathead sole BSAI Annual

GOA Triennial

Other flatfish BSAI Annual

GOA Triennial

Sablefish BS – – Biennial

AI – – Biennial

GOA – – Annual

P. ocean perch BS Annual

AI Triennial

GOA Triennial

Sharp/northern AI Triennial

GOA Triennial

Short/rougheye AI Triennial

GOA Triennial

Red rockfish BS Annual

Other rockfish BS Annual

AI Triennial

GOA Triennial

Atka mackerel AI Triennial

GOA Triennial

Squid BSAI Annual

Other species BSAI Annual

GOA Triennial
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Table 6. Life history characteristics for BSAI/GOA groundfish used in 1997
stock assessments.

Maturity Weight
Growth parameters indicators  parameters

Species Area M Linf k L50% A50% Alpha Beta

Pollock BS 0.30 59.0 0.228 NK NK 1.14E–5 2.877
AI 0.30 52.8 0.368 NK NK 2.73E–5 2.651
Bogoslof 0.20 55.7 0.171 NK NK 1.29E–6 3.436
GOA 0.30 56.2 0.328 NK NK 1.27E–5 2.885

Pacific cod BSAI 0.30 98.2 0.227 67 5.7 5.29E–6 3.206
GOA 0.37 120.0 0.119 67 6.6 5.29E–6 3.206

Rex sole GOA 0.20 59.5 0.20 NK NK 4.46E–3 3.471

Dover sole GOA 0.10 NK NK NK NK NK NK

Yellowfin sole BSAI 0.12 35.8 0.147 30 10.5 9.72E–4 3.056
GOA 0.20 34.0 0.18 NK NK 6.68E–3 3.18

Greenland turbot BSAI 0.18 NK NK 60 9.0 2.69E–6 3.309

Arrowtooth BSAI 0.20 59.0 0.170 NK NK 5.68E–6 3.103
GOA 0.20 59.6 0.17 47 NK 3.92E–3 3.223

Rock sole BSAI 0.20 45.1 0.180 NK NK 7.61E–3 3.120
GOA 0.20 38.8 0.21 NK NK 9.98E–3 3.047

Flathead sole BSAI 0.20 42.6 0.165 NK NK 3.96E–3 3.259
GOA 0.20 29.9 0.49 NK NK 4.06E–3 3.237

Other flatfish BSAI 0.20 72.2 0.053 NK NK 8.84E–3 3.111

Sablefish BS 0.10 70.7 0.275 NK 4 3.23E–3 3.294
AI 0.10 77.6 0.206 NK 4 3.23E–3 3.294
GOA 0.10 89.3 0.142 65 4 2.99E–3 3.30

Pacific ocean BS 0.05 39.9 0.135 NK NK 1.19E–5 3.037
perch AI 0.05 39.6 0.167 NK NK 1.22E–5 3.030

GOA 0.02-0.08 44.8 0.088 10.5 NK 1.54E–5 2.96

Sharpchin/ AI 0.06 NK NK NK NK NK NK
northern GOA 0.05/0.06 34.9/35.6 .095/.190 NK NK 1.63E–5 2.98

Shortraker/ AI 0.03 NK NK NK NK NK NK
rougheye GOA 0.027-0.042 54.7 0.050 NK NK NK NK

Other red rockfish BS NK NK NK NK NK NK NK

Demersal shelf GOA 0.02 68.9 0.053 52 21 4.35E–6 3.396
rockfish

Thornyheads GOA 0.07 NK NK 22 NK 1.36E–6 3.390

Other rockfish BS 0.07 NK NK NK NK NK NK
AI 0.07 NK NK NK NK NK NK
GOA 0.01-0.07 NK NK NK NK NK NK

Atka mackerel AI 0.30 43.5 0.449 31.1 3.6 5.05E–6 3.240
GOA 0.30 47.3 0.610 38.3 3.6 1.55E–5 2.979

Squid BSAI NK NK NK NK NK NK NK

Includes natural mortality rate (M), length and age at 50% maturity (females), growth parameters (Linf
and k or von Bertalanffy equation where L = Linf {[1–exp(–k (t – t0)]}, and weight parameters (W = alpha ×
Lbeta) for both sexes combined. Length is measured in centimeters (cm) and weight in grams (g).

NK= not known.
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Table 7. Tiers used to determine allowable biological catch (ABC) and
overfishing level (OFL) for North Pacific groundfish stocks.

(1) Information available: Reliable point estimates of B and BMSY and reliable pdf of
FMSY .
(a) Stock status: B/BMSY > 1

FOFL = mA, the arithmetic mean of the pdf
FABC ≤ mH, the harmonic mean of the pdf

(b) Stock status: a < B/BMSY ≤ 1
FOFL = mA × (B/BMSY – a)/(1 – a)
FABC ≤ mH × (B/BMSY – a)/(1 – a)

(c) Stock status: B/BMSY ≤ a
FOFL = 0
FABC = 0

(2) Information available: Reliable point estimates of B, BMSY , FMSY , F30% , and F40% .
(a) Stock status: B/BMSY > 1

FOFL = FMSY × (F30% /F40%)
FABC ≤ FMSY

(b) Stock status: a < B/BMSY ≤ 1
FOFL = FMSY × (F30% /F40%) × (B/BMSY – a)/(1 – a)
FABC ≤ FMSY × (B/BMSY – a)/(1 – a)

(c) Stock status: B/BMSY ≤ a
FOFL = 0
FABC = 0

(3) Information available: Reliable point estimates of B, B40%, F30%, and F40%.
(a) Stock status: B/B40% > 1

FOFL = F30%
FABC ≤ F40%

(b) Stock status: a < B/B40% ≤ 1
FOFL = F30% × (B/B40% – a)/(1 – a)
FABC ≤ F40% × (B/B40% – a)/(1 – a)

(c) Stock status: B/B40% ≤ a
FOFL = 0
FABC = 0

(4) Information available: Reliable point estimates of B, F30%, and F40%.
FOFL = F30%

FABC ≤ F40%

(5) Information available: Reliable point estimates of B and natural mortality rate M.
FOFL = M
FABC ≤ 0.75 × M

(6) Information available: Reliable catch history from 1978 through 1995.
OFL = the average catch from 1978 through 1995, unless an alternative value is

established by the SSC on the basis of the best available scientific informa-
tion

ABC ≤ 0.75 × OFL

F = fishing mortality; M = natural mortality; B = biomass; MSY = maximum sustainable yield; OFL =
overfishing level; ABC = allowable biological catch; SSC = scientific and statistical committee; pdf =
probability density function.
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The council has responded to plan team and SSC recommendations
for enhanced groundfish management by separating or grouping appro-
priate species within the management unit of the FMPs. When a directed
fishery for black rockfish began developing in the GOA, the GOA plan
team informed the council that the NMFS bottom trawl survey did not
adequately assess black (Sebastes melanops) and blue (S. mystinus) rock-
fishes and recommended that the council separate those rockfishes from
the pelagic shelf rockfish (PSR) management grouping to prevent overex-
ploitation under the large overall PSR TAC. In 1997, the council submitted
a plan amendment to do so, and deferred their management to the State
of Alaska (NPFMC 1997). This action was approved by the Secretary of
Commerce and implemented in 1998. GOA arrowtooth flounder was sep-
arated from GOA flatfish in 1995; GOA Atka mackerel was separated from
GOA other species in 1993.

The history of assessment models for the BSAI and GOA for species/
complexes with sufficient biological information since 1986 is presented
in Table 4. Trawl, longline (sablefish), and hydroacoustic (pollock) research
surveys collect required biological information to implement the models
(Table 5). Life history information is summarized in Table 6.

The council also employs a precautionary approach in applying stock
assessment results to commercial fisheries. New assessment models and
modifications to existing models are reviewed and phased-in only after
considerable peer review by the plan teams and SSC. New models are gen-
erally introduced in one year, but do not replace the existing model until
tested and reviewed. In its December 1996 meeting minutes, the SSC re-
quested that beginning in 1997, stock assessment authors incorporate:
(1) biomass and yield projections for an F40% harvest strategy under vary-
ing assumptions regarding recruitment and for other relevant exploita-
tion rates; (2) standard errors or confidence intervals for important model
parameters; (3) sensitivity analyses for key parameters and input assump-
tions; (4) weightings given to individual data components with justifica-
tions; and (5) risk analyses.

In the GOA SAFE report for 1998, Hollowed et al. (1997) included an
appendix to the walleye pollock chapter that incorporated predation mor-
tality by arrowtooth flounder, Pacific halibut, and Steller sea lion as a fish-
ery type into the stock synthesis model. A second appendix demonstrated
the use of the AD Model Builder software in the GOA pollock stock assess-
ment, which facilitates the rapid development of nonlinear statistical
models. This modeling software may also be used in the near future for
GOA sablefish and rockfish species.

Conclusions
In the future, assessments will continue to be further developed to more
explicitly account for uncertainty and provide more precautionary advice,
and management likely will become more precautionary and risk averse.
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Risk averse management is most feasible where effective management
practices are in place, for example, the North Pacific. Recent advances in
management, such as the NPFMC quota tier system (Table 7), suggest that
under a risk adverse policy, greater uncertainty in important model pa-
rameters will generally result in lower quotas. Increasing complexity in
stock assessment models directly results from improved data collection
and modeling software, along with incorporation of ecosystem interac-
tions and uncertainty. Faced with increased complexity in the stock as-
sessment modeling, management agencies will rely increasingly on its
scientific advisors.
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Fish Stocks under Cyclic
Oceanographic Regimes: A Case
for Precaution and Gathering
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Marcelo Vasconcellos and Tony Pitcher
University of British Columbia, Vancouver, B.C., Canada

Abstract
This paper examines the influence of three aspects of the population dy-
namics of small pelagic fish stocks on fisheries harvest control: (1) the
non-stationarity in productivity driven by cyclic environmental regimes;
(2) the collapse in distribution range following stock collapse; and (3) the
consequent change in catchability with stock size. The suitability of three
harvest control options, including effort limitation, minimum age in the
catch, and constant escapement, was evaluated with a simulation model
and according to contrasting levels of uncertainty on population parame-
ters. Harvest control by constant effort is particularly inadequate in avoid-
ing catchability-lead stock collapse for populations which exhibit cyclic
annual production. Overall, minimum escapement policies offer the best
tradeoff between mean catch, catch variability, and rebuilding capacity of
the stock. In cases of highly uncertain production rates, the estimation of
harvest control measures can be hampered by the non-stationarity of pop-
ulation parameters and by the lack of contrast in catch rates. Resolution
of complications from variable catchability requires auxiliary information
on abundance trends and, more important, demands the adoption of more
cautious harvest control policies. For pelagic stocks dominated by envi-
ronmental regimes, the protection of the first spawning age classes seems
to be an appropriate measure to increase resilience to overfishing.

Introduction
The notion of regimes in marine ecosystems has become increasingly
important for fisheries management advice as evidence of inter-decade
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changes in fish stock productivity and species switches accumulates (Lluch-
Belda et al. 1989, Bakun 1996, Steele 1996). In the case of small pelagic
fish populations, such as anchovies and sardines inhabiting major up-
welling systems of the world, cyclic “boom and bust” dynamics is an wide-
ly recognized characteristic (Caddy and Gulland 1983, Csirke 1995) that
may be explained by alternative non-exclusive hypotheses concerning cli-
matic effects on recruitment, trophic interactions, and overfishing (Ra-
dovich 1982, Lluch-Belda et al. 1989, Bakun 1996).

Fisheries assessment research has based advice on yields and the risk
of overfishing based on species life history characteristics, population
dynamics parameters, and associated observation and process errors. Al-
ternative harvest policies are normally evaluated in simulation models
where average yield, catch variability, and the risk of crossing biological
thresholds are compared using the best estimates of key population pa-
rameters (Punt and Hilborn 1997). However, little attention has been given
to uncertainties on the degree of control over the harvest accompanying a
particular management decision, i.e., on the implementation of harvest
policies. Nevertheless, harvest control constitutes most of the regulatory
work, demands a good proportion of management resources, and can
ultimately determine the probabilities of stock collapse. Fisheries for small
pelagic schooling fish stocks, for instance, are characterized by an in-
crease in catchability with decrease in biomass as a result of shoaling
behavior (Clark 1974), range collapse and highly efficient fishing fleets
(Pitcher 1995, 1997). For such species the lack of control on effort and
harvest rates alone can generate a pathological response in catches and
bio-economics (Mackinson et al. 1997), and lead to stock collapse. These
two sets of factors, loosely described as environmental and behavioral,
have rarely been considered together.

In this paper we analyze the likely benefits of different harvest con-
trol policies for small pelagic schooling fish stocks in a cyclic ocean re-
gime affecting recruitment. Specifically, we explore the case where changes
in catchability with stock size following range collapse make harvest con-
trol by effort limitation potentially difficult. In this context we discuss the
role that auxiliary information may have in developing more efficient fish-
ing control systems, and the precautionary measures that should be adopt-
ed in the face of uncertainties associated with cyclic environmental
regimes.

Methods
The Population Model
A deterministic age-structured model was used to simulate the number,
biomass, and catches from a population with dynamics determined by the
equations:



Symposium on Fishery Stock Assessment Models 855

    

N R

N N e

Z F M

F f qV

V
i

A i

C
F

Z
e N

Y C W

t t

i t i t
Z

i t i t

i t t t i

i

b

b b

i t
i t

i t

Z
i t

t i t i
i

i t

i t

0 5

0 5

50

0 5

3 5

1

. ,

, . ,

, ,

,

%

,
,

,
,

,
.

.

,

,[ ]

=

=

= +

=

=
+

= −

= ∑

+
−

−

=

(1)

where Ni,t is the number of individuals of age i in year t, Zi,t is the total
instantaneous annual base mortality rate of fish of age i in year t, Fi,t is the
instantaneous annual fishing mortality rate. Fi,t is a function of the fishing
effort f in year t, the catchability coefficient q and Vi, the age-specific
vulnerability to the fishery. Vi is a function of the age at 50% vulnerability
(A50%) and a concentration parameter (b = 10). M is the constant instanta-
neous annual natural mortality rate set as 1.0 year–1, Ci,t is the catch of the
number of fish of age i in year t and Yt the total annual yield in weight, Wi.

N0.5,t represents the number of recruiting fish of age 0.5 in year t.
Recruitment was made a function of spawning stock biomass using a Bev-
erton and Holt type function:
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where a is the maximum recruits per spawning biomass S when S is very
small and b is the maximum number of recruits when S is very large. To
reflect a population with high intrinsic rate of growth (k = 0.55) the param-
eter a was adjusted to 0.2 and b scaled to reflect the recruitment history of
a known stock, Sardinella brasiliensis (Cergole 1993). To simulate cyclic
changes in recruitment, a was varied as a sine function of time with period
of 20 years (Fig. 1). Data on mean body weight (Wi) and the percentage of
individuals mature at age for Sardinella brasiliensis (Cergole 1993) (Table 1)
was incorporated into the model to represent growth and maturity process-
es. Table 1 also lists the estimated reproductive output A of a given age
class. The reproductive output was used to weight the relative reproductive
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Figure 1. Simulation of population with a cycle regime in productivity (period 20
years). BMSY is the biomass at the maximum sustainable yield in equilibri-
um conditions. Time difference (t1 – t0) is the time it takes for the stock to
recover to BMSY after the end of a “bust” phase.

contribution of an age class by accounting for differences in relative fecun-
dity and frequency of spawning. Parameter A was calculated using the equa-
tion proposed for the northern anchovy stock, Engraulis mordax (Parrish et
al. 1986). These parameters were used in the analysis of spawning per re-
cruit:

    
SPR l m AA E i i i

i50 0

3 5

%,

.
( )= ∑

=

where SPRA50%,E is the spawning per recruit value for a given combination
of age at first capture (A50%) and exploitation rate [E = F/Z;(0,1)], li is the
survivorship to age i [li = l0s(1 – ViE)], l0 is the survivorship to age 0(=1), s =
exp(–Mi), M is the instantaneous natural mortality rate, Vi is the age specific
vulnerability from equation (1), and Ai the age-specific reproductive out-
put. SPR is expected to decrease with E, and is expressed as the percent-
age of the value calculated for an unfished stock (%SPR) (Goodyear 1993).

Three classes of harvest strategies were tested: constant effort (= con-
stant harvest rate with constant catchability), constant escapement, and
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minimum age in the catch. Two harvest rate targets were tested under
constant effort: the fishing mortality rate (FPatterson) that produces an ex-
ploitation rate (F/Z) of 0.4, suggested for pelagics by Patterson (1992),
and the fishing mortality rate (Fopt) that produces the maximum sustain-
able yield in equilibrium conditions. The later was calculated by running
the model for a period long enough to stabilize yield and biomass at each
of a range of F values, and then finding the maximum yield across F val-
ues. Constant escapement policies include the thresholds of 20% and 40%
of the virgin stock biomass (Binf ) (Goodyear 1989), and assume that the
stock is exploited at Fopt when biomass is above this threshold. The mini-
mum age in the catch strategy considered the age at first capture (A50%) as
the age at first maturity (1.5 years), and assume that the stock is exploited
at high constant fishing rates.

To evaluate harvest control options we perform three analyses, in or-
der of decreasing amount of information and increasing uncertainty:

1. First we evaluate the performance of the different management strat-
egies when production parameters (a, b, and M) are known and har-
vest is efficiently controlled. Strategies are compared in terms of mean
catch, catch variance, and the proportion of years with no catch in a
50-year period. Also, we analyze the time it takes for the stock to
recover to BMSY (biomass level that would produce the maximum sus-
tainable yield in equilibrium conditions) after a bust phase (Fig. 1).
Recovery time is considered a key aspect for managing spasmodic
populations that have evolved in systems with periodic disturbances
(Beddington and May 1977, Hilborn and Walters 1992).

2. Second we evaluate the effect of implementation uncertainties, due to
changes in catchability with stock size, on the performance of the dif-
ferent harvest strategies. Production parameters are assumed known,
and harvest is controlled by maintaining effort at the level that would
produce the optimal harvest rates in situations of constant catchabili-
ty. Shoaling and schooling behavior makes small pelagic fishes more

Table 1. Mean body weight, mature percentage and reproductive output
(A) at age for a small pelagic stock.

Age 0 0.5 1 1.5 2 2.5 3 3.5

W (g) 8 32 42 45 58 70 84 110

% Mature 0 0 50 75 100 100 100 100

A 0 0 0.83 1.00 1.95 3.21 5.19 10.58

The reproductive output (A) was calculated using the equation proposed by Parrish et al. (1986) to E.
mordax. The equation was adjusted so that the relationship Ai = 0.0000432Wi

2.64 generates a factor
A = 1 when W = 45g, the approximate mean weight at first maturity.



858 Vasconcellos & Pitcher — Harvest Control for Schooling Fish Stocks

easily detected by modern purse seiners, and almost equally vulnera-
ble to fishing gear regardless of stock density (Pitcher 1995). For these
species, the catchability (q) can increase in inverse proportion to abun-
dance:

q = q1B
–q2 (2)

where q1 is a proportionality constant and q2 is the degree to which
catchability increases with declining stock size. Two values of q2 were
used to describe the pattern of change in catchability with stock size:
0.4, the value estimated by MacCall (1976) for the California sardine;
and 1.0, approximately the value estimated by Csirke (1989) for the
Peruvian anchoveta. The latter produces a more drastic scenario where
catch rates in the fishery remain constant regardless of the actual fish
stock size (Pitcher 1995, Mackinson et al. 1997).

3. Finally, we evaluate a situation where production parameters are not
well known, and historical data on catch and effort are used to make
inferences about the productivity parameters of the stock (k and Binf )
and the harvest control measures (optimum effort and escapement
levels). An estimation procedure was designed to infer the population
dynamics parameters of a Schaefer surplus production model of the
type:

    
B B kB

B
B

B q ft t t
t

inf
t t t+ = + − −1 1( ) (3)

where Bt is the population biomass at time t, k is the intrinsic rate of
growth, Binf is the virgin stock biomass, qt is the catchability coeffi-
cient at time t and ft the fishing effort at time t. Catch and catch per
unit of effort (Ut) data obtained from the age structured population
model in a 20-year period of increasing effort (Fig. 5) were used to
estimate the parameters k and Binf with a maximum likelihood statisti-
cal procedure (Polacheck et al. 1993, Walters and Ludwig 1994). From
initial inferences of Binf and k, and the observed catches, the differ-
ence equation in (3) is used to produce predicted stock biomass val-
ues (Bt) for each year. With the predicted biomass values and the
observed catch rates (Ut), from the simulation model with a lognormal
error (i.e., Ut = qtBteε, e ~ N[0;σ2]), a maximum likelihood estimator of
q is calculated from
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A time series of estimated catch rates Ut′ is obtained assuming Ut′=

    ̂qBt. The likelihood of a given combination of parameters Binf and k is
then calculated by

    

L
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This expression provides the likelihood of Binf and k by treating the
variance term and the catchability (q) as nuisance parameters (Walters
and Ludwig 1994). Bayesian posterior probability calculations were
carried out assuming a uniform prior probability distribution for both
parameters. The posterior probability distribution of a given parame-
ter combination was then calculated as the corresponding LBinf, k value
divided by the sum of LBinf,ks for a grid of parameter combinations.
Marginal posterior probability density for a single parameter was com-
puted by integrating out the complementary parameter, i.e., by sum-
ming posterior probabilities for one parameter across all values of the
other parameter. Two types of harvest control measures can be esti-
mated from the surplus production model: optimal escapement lev-
els (20 or 40% Binf ), and the optimal fishing effort fopt, estimated as
k/2q.

Results
Table 2 shows the performance of each strategy for a 50-year simulation
period. For the minimum age strategy, simulation was carried out arbi-
trarily under high fishing pressure (Effort = 200 ~ F = 2 year–1 when q is
constant). Protecting a minimum stock biomass by the constant escape-
ment strategy yields a higher average catch, and allows a rapid recovery
to BMSY levels when a favorable period prevails. Nonetheless, maintaining a
constant escapement produces a high probability of years with the fish-
ery closed (on average, catches are null in 25 out of 50 years). Constant
effort strategies considerably increase the time it takes for the stock to
recover and produce relatively high long-term yield. Protecting the age at
first maturity allows a relatively rapid stock recovery even under high
fishing pressure, and produces the lower variance in catches among the
strategies tested. Maintaining the stock under high fishing mortality, how-
ever, costs a noticeable decrease in mean catch.

When catchability changes with stock size (Table 3; Fig. 2), managing
the stock at the constant effort levels previously used (Table 2) lead to
collapse during the “bust” phase (Fig. 2c). The optimum constant fishing
effort that could be sustained is less than 10% of the value calculated for
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the constant catchability scenario (Table 2). In order to maintain a con-
stant harvest rate, effort has to dramatically change from the “boom” to
the “bust” phase so as to balance the increase in catchability (Fig. 3). For
the extreme situation described by Csirke (1989) (q2 = 1), where catch
rates are independent of population size, the required annual change in
effort to sustain the stock is proportional to the change in biomass be-
tween years, a dreadful scenario for any manager attempting to optimally
control harvest every year without previous information on stock biom-
ass. Higher average catches are obtained with the constant escapement
strategy, at the cost of high variability in catches and a consequent high
probability of years with the fishery closed (Table 3). The minimum age in
the catch strategy is robust to catchability changes with stock size (Table
3). Nevertheless, under high fishing pressure, the overfished stock takes
ca. 30% more time to recover to BMSY and the mean catch is reduced by
about 20%, compared to the same strategy in Table 2.

The robustness of minimum age policy to stock collapse is explained
by the life history characteristics of the population. Figure 4a shows the
reproductive potential of the stock (measured as %SPR) for different com-
binations of age at first capture (A50%) and exploitation rate (E ). When the
first spawning age class is effectively protected the total reproductive
potential of a cohort is only slightly reduced with increasing fishing pres-
sure. For A (reproductive output) constant with age (Fig. 4b), protecting
the first spawning age class considerably decreases the impact of fishing
mortality on the reproductive potential. The combination of high natural
mortality rate and early maturity makes the stock highly dependent on
the first spawning age classes, which make up the bulk of the reproduc-

Table 2. Performance of three harvest control strategies in a constant
catchability scenario (q = 0.01).

Strategies Targets Mean catch C.V. Recovery time P

Const. effort FPatterson 121.9 1.06 17.0 0

(66.0)

Fopt 122.0 1.11 17.5 0

(74.0)

Minimum age A50% 1.5 112.5 0.95 15.0 0

(200.0)

Const. escapement 20%Binf 134.7 1.03 14.0 0.46

40%Binf 131.3 1.11 12.0 0.53

The values in brackets are the fishing efforts used in the simulations. C.V. is the coefficient of varia-
tion in catches and P is the proportion of the 50 year period with no catches.  Recovery time measures
the time (years) it takes the stock to rebuild its biomass to BMSY levels after a “bust” phase (see Fig. 1
for explanation).
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tive capacity in many small pelagic stocks (Pauly and Soriano 1987) (Fig.
4c, Sardinella brasiliensis).

Parameter Uncertainties and Harvest Control
The estimation of population parameters and harvest control measures
was evaluated in four different scenarios (Fig. 5). In each scenario catch
rate data (cpue) was obtained with a simulated fishery consisting of 20
years of continuously increasing fishing effort. Scenarios A and B represent
situations where the population is not subject to long-term cycles in pro-
ductivity. In scenario B, catchability was considered a function of stock
biomass (q2 = 0.4; equation [2]). Scenarios C and D depict situations of
long-term cycles in productivity, being fishery data acquired respectively
at the declining (“bust”) and recovery (“boom”) phase of the cycle. In case
A, data seems to provide some information about the virgin stock size
(Binf ) and the population intrinsic growth rate (k) (Fig. 6), but, most impor-
tant, any attempt to estimate parameter values will show that the standard
deviation for each parameter is as large as the parameter estimate. The
effect of including a density-dependence response for catchability (sce-
nario B) and declining production rates (scenario C) cause a consistent
underestimation of k and an overestimation of the virgin stock size, i.e.,
the decline in catch rates is, in both cases, best described as the result of
a continuous depletion of a larger and unproductive stock. When the fishery
develops under a favorable period (“boom” cycle, scenario D) catch rate
data leads to an overestimation of both Binf and k, depicting a large and
very productive stock apparently not impacted at all by the continuous
increase in fishing rate. Harvest control targets calculated from these

Table 3. Performance of harvest control strategies in a variable catch-
ability scenario (q2 = 0.4 or 1.0, see equation 2).

Strategies Targets Mean catch C.V. Recovery time P

q2 q2 q2 q2

0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0

Const. effort Fopt 61.7 42.1 0.55 0.13 13.5 15.0 0.0 0.0

(6.0) (2.2)

Minimum age A50% 1.5 92.7 85.6 1.16 1.30 19.0 20.5 0.0 0.0

(200) (200)

Const. escapement 20%Binf 143.6 139.7 1.08 1.24 15.5 20.0 0.50 0.61

40%Binf 140.8 153.8 1.16 1.21 12.5 16.0 0.57 0.63

Values in brackets are the fishing efforts used in the simulations. C.V. is the coefficient of variation in
catches and P is the proportion of the 50 year period with no catches.  Recovery time measures the
time (years) it takes the stock to rebuild its biomass to BMSY levels after a bust phase (see Fig. 1 for ex-
planation).
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Figure 2. Catch and biomass for har-
vest control options when catchability
is a function of stock size (q2 = 0.4): (A)
constant escapement; interruptions in
catch history represent periods of fish-
ery closed because of policy; (B) con-
stant effort, age limit (A50% = 1.5); and
(C) constant effort, no age limit. Left
axis in arbitrary units.
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Figure 3. Adjustment in effort needed to balance the increase in catchability with
stock size and maintain a constant harvest rate. Effort was calculated as
(F/q1B

–q2) in the simulation of a “bust” and “boom” cycle, and expressed as
a percentage of the effort value at Binf . Biomass is expressed as the per-
centage of Binf .

parameters have therefore biases that involve, for instance, the overesti-
mation of virgin stock size (scenarios B, C, and D) and hence of manage-
ment escapement goals, and the underestimation (scenarios A, B, and C)
and overestimation (scenario D) of optimal harvest rates. For all situations
analyzed, the most useful information regarding harvest control measures
is that they are highly uncertain.

Discussion
This work examines the influence of three aspects of the population dy-
namics of small pelagic fish stocks on fisheries harvest control:

1. Small pelagic stocks undergo multi-year regimes in productivity driv-
en by environmental processes (Bakun 1996).

2. Schooling behavior mechanisms, presumably evolved to optimize
tradeoffs among feeding, predation avoidance, and spawning in the
pelagic environment, influence the mesoscale distribution of fish
schools, which tend to maintain their size and inter-school distance
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Figure 4. Percentage spawning per recruit (% SPR) for equilibrium ex-
ploitation rate (E) and age at first capture (A50%). (A) taking into
account the age specific reproductive output (A); (B) if repro-
ductive output were constant with age; (C) percentage contri-
bution of sardine, Sardinella brasiliensis, first spawning age
classes (ages 1 to 1.5) to the total reproductive potential of the
stock. Data compiled from 1979 to 1989 (Cergole 1993).
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Figure 4. (Continued.)

regardless of the abundance of the stock (Pitcher and Parrish 1993).
As a result, pelagic stocks concentrate their distribution range with
declining biomass.

3. The mismatch between behavior adaptations and modern fishing tech-
niques creates a pathological response of catch rates due to an in-
crease in catchability with range collapse (Clark 1974, Winters and
Wheeler 1985).

Each of the theories may have different consequences for fisheries
harvest control decisions (Table 4). The simulation exercise carried out
showed four general conclusions:

A. Controlling harvest by constant effort is particularly inadequate in avoid-
ing catchability lead stock collapse (CALSC) for populations with cyclic
productivity. The choice for harvest control by effort limitation in-
volves tradeoffs between substantial decrease in fishing harvest and
high monitoring and enforcement costs accompanying annual adjust-
ments in fishing effort.

B. Constant escapement policies offer the best tradeoff between mean
catch, catch variability, and rebuilding capacity of the stock. Manage-
ment of small pelagic stocks should be targeted to favor recoveries
when favorable environmental conditions prevail, rather than try to
prevent the natural depletion accompanying an unfavorable regime.
The objective of promoting stock rebuilding is intrinsic to manage-
ment thresholds, defined by Quinn et al. (1990) as the population
level below which the stock may be unable to rebuild its optimal level
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Figure 5. Fishing scenarios used in the estimation procedure for the Shaefer pro-
duction parameters. Scenarios A and B show data acquired in a situation
without cycles in productivity. Scenario B depicts a situation of catchabil-
ity change with stock size (q2 = 0.4). Scenarios C and D represent situa-
tions of long term cycles in productivity, being fishery data acquired
respectively at the declining and recovery phase of the cycle (inset graph).

over an acceptable period of time. Escapement thresholds are, howev-
er, very often difficult to define, because of the poor information con-
tent of fisheries data, costly to implement since it requires independent
biomass assessments, and further difficult to be accepted by fishery
stakeholders since it may involve multi-year closures of the fishery.

C. The estimation of population parameters and harvest control measures
can be hampered by: (1) non-stationarity of parameters; (2) relatively
short time series of data; (3) lack of independent abundance indices; and
(4) lack of contrast in catch rates. Because of concurrent changes in
management actions and the environmental variables controlling pro-
ductivity, it is often difficult to attribute causes of productivity chang-
es to particular disturbances, as well as to correctly assign probability
of population parameter values. Independent data on stock biomass
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Figure 6. Marginal posterior probability distributions of parameters Binf and k of a
Schaefer production model fitted to data acquired in different simulation
scenarios. The dashed line within each graph depicts the true values of
the simulated parameters (Binf = 1,300; k = 0.55). Data used for parame-
ter estimation is shown in Fig. 5. Scenario A (top): No cycles in production.
Scenario B (second from top): No cycles in production. Catchability change
with stock size (q2 – 0.4). Scenario C (second from bottom): cycles in pro-
duction. Fishery data acquired during a “bust” phase in stock production
cycle. Scenario D (bottom): Cycles in production. Fishery data acquired
during a “boom” phase in stock production cycle.
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and density can provide the necessary information needed to efficient-
ly control annual harvest. However, no prospect occurs that this infor-
mation can reduce uncertainties on production relationships in systems
markedly controlled by cyclic oscillations in the short term. For long-
term management in non-stationary systems the optimum policies to
reduce uncertainties may involve episodes of strong experimentation
alternated with periods of more cautious, stabilizing management ac-
tivity (Walters 1987). Or, alternatively, research should be focused on
identifying and improving forecast of the natural processes involved
in the generation of cyclic regimes in population dynamics, especially
for the large small pelagic stocks inhabiting coastal upwelling systems
(Bakun 1998). The biological, economical, and political impacts of such
policies still need to be evaluated.

D. Protecting the first spawning age classes can help prevent early col-
lapses of the stock, and encourage more rapid responses to favorable
environmental conditions. Mace and Sissenwine (1993) analysis of re-
placement thresholds indicated that to persist, i.e., for successive
generations replace each other on average, small pelagic populations
must maintain an average 40 to 60% of their unfished spawning per
recruit (%SPR). This relatively high %SPR led the authors to infer low
resilience of these stocks to fishing mortality, since a small reduction
in SPR would compromise the future replacement of the stock. Clear-
ly, exploitation must be lower in order to maintain the stock for lower
ages at first capture (see 40 to 60% bands, Fig. 4a,b). But protecting
the first spawning age class (1 to 1.5 years) provides the stock with
high resilience, in the sense that a broader range of fishing mortality
rates could be sustained without substantially diminishing the capac-
ity of the population to react to favorable oceanographic events. For
stocks with a dominant controlling influence by environmental re-
gimes, that seems to be the most appropriate strategy that could be
supported on biological grounds (Winters et al. 1985). Yet, such strat-
egy is probably untenable under most conditions for pelagic species
due to the difficulty in controlling the age at entry in the fishery.

It is common ground in fisheries research that the problem of harvest
strategies in stochastic environment can be adequately resolved with in-
formation on basic population parameters such as natural mortality,
growth, and the steepness of stock-recruitment relationship (the analog
of k in the Shaefer model) (Getz et al. 1987, Walters and Parma 1996,
Patterson 1992). The vast literature and databases (e.g., ICLARM 1995,
Myers et al. 1995) available today on fish life history and population pa-
rameters may offer at least prior information for the estimation of sus-
tainable exploitation rates for most commercially important taxonomic
groups. However, the prospect of reducing uncertainty in harvest control
and hence in the probabilities of stock collapse for fisheries controlled by



870 Vasconcellos & Pitcher — Harvest Control for Schooling Fish Stocks

effort limitation is still restricted by the proper understanding of stock
catchability (Arreguin-Sanchez 1996). Specifically for small pelagic school-
ing fish stocks, that will mean that more effort should be put on the anal-
ysis of stock spatial dynamics (spatial range) and its interaction with the
fishing activity.

In this context, two concurrent lines of thought are developing: Mac-
Call’s (1990) approach describes the spatial dynamic of pelagic stocks ac-
cording to a density dependent habitat selection model where a direct
relationship between stock abundance and stock area is created by differ-
ences in habitat suitability (environmental conditions). His hypothesis has
some corollaries useful for fisheries assessment, particularly that stock
area could be a good indicator of the population state and thus used to-
gether with catch rates in the stock assessment. This approach has been
successfully applied to the Pacific sardine, when the population was small
and difficult to measure with conventional techniques (Barnes et al. 1992).
A second approach (Pitcher 1997) suggests that shoaling behavior alone
can cause range collapse in the absence of significant environmental gra-
dients in space and time. If validated, this approach raises the prospect of
obtaining cost-effective diagnostics of range collapse by monitoring be-
havioral parameters of shoaling fish. The inclusion of stock spatial attributes
into conventional stock assessment research will require the gathering of
auxiliary information not only from surveys but also from the fishery ac-
tivity (e.g., time searching, school size, density of schools, etc.). We plan to
explore the value of this auxiliary information in a future analysis.
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Abstract
Management options for Pacific salmon (Oncorhynchus spp.) populations
are often analyzed using stochastic simulations that project spawner and
recruit abundances over time. These forward simulations are commonly
based on “best-fit” parameter estimates of the Ricker stock-recruitment
relationship, despite the fact that such estimates are often highly uncer-
tain. To examine if explicitly accounting for parameter uncertainty using
Bayesian methods would affect the results of forward simulations, we com-
pared simulations based on best-fit Ricker parameters to simulations where
parameter uncertainty was incorporated through a Bayesian formulation
with noninformative priors. Forward simulations using fixed harvest rates
were conducted using data for two stocks of Fraser River sockeye (O. nerka)
salmon. We found that expected values of spawner and recruit projections
for the Bayesian simulations were consistently larger than projections for
the best-fit case. Increases in the Bayes projections over those of the best-
fit case typically ranged from 5 to 15% for the Stellako stock, and 20 to
60% for the Late Stuart stock. However, these differences were largely at-
tributable to low values of the Ricker β parameter that were included in
the Bayesian prior distribution. Results of Bayesian simulations were found
to be highly sensitive to changes in the lower bound of the prior on β. We
conclude that the common approach of specifying noninformative priors
by extending uniform distributions across a broad range of parameter
values can be inappropriate for the Ricker model, and recommend the use
of informative priors whenever possible.
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Introduction
Management of Pacific salmon (Oncorhynchus spp.) populations has re-
lied heavily on stock-recruitment models relating abundances of spawn-
ers (escapements) to subsequent adult returns (recruits). Such models have
been used as a basis for setting harvest policies for many salmon stocks
(e.g., Minard and Meachem 1987) and for simulating salmon population
dynamics over time (e.g., Welch and Noakes 1991, Emlen 1995). For exam-
ple, Welch and Noakes (1991) used a form of the Ricker stock-recruitment
model to simulate future rebuilding trajectories of the Adams River sock-
eye (O. nerka) salmon stock under alternative fixed harvest-rate policies.
Similarly, Emlen (1995) used simulations based on the Ricker model and
fixed harvest rates to estimate the probability that the Snake River chi-
nook (O. tshawytscha) salmon stock would fall below some specified abun-
dance in the future. However, such “forward” simulations of salmon
population dynamics have been based almost exclusively on “best-fit” stock-
recruitment relationships, even though these relationships are typically
plagued with uncertainty.

Recently, Bayesian methods have been advocated for explicitly incor-
porating uncertainties inherent in fisheries models into stock assessments
and decision making (reviewed by Punt and Hilborn 1997). Bayesian meth-
ods allow for probabilities to be placed on alternative hypotheses, such as
different parameter combinations for stock-recruitment models (e.g., Ianelli
and Heifetz 1995, Adkison and Peterman 1996). Accounting for uncertain-
ties in fisheries models can have important implications for management
(Thompson 1992, Frederick and Peterman 1995); however, there have been
limited applications of Bayesian methods to analyses of stock-recruitment
data for salmon populations (e.g., Geiger and Koenings 1991, Adkison and
Peterman 1996, Robb and Peterman 1998). In particular, we are unaware
of any papers that examine how incorporating uncertainty in salmon stock-
recruitment relationships may affect results of forward simulations where
fixed harvest rates are used. It is unclear to what extent projections of
spawner and recruit abundances, like those of Welch and Noakes (1991)
and Emlen (1995), may be sensitive to such uncertainty. Intuitively, we
would expect results to differ somewhat when various, yet probable, shapes
of stock-recruitment curve are considered in the simulations rather than
just the best-fit relationship.

In this paper, we compare results of forward simulations based on the
best-fit parameters of the Ricker model to results of simulations where
uncertainty in the Ricker parameters is explicitly accounted for using Baye-
sian methods. In the Bayesian analyses, we use “noninformative” priors
for the Ricker parameters, which is a common approach used in Bayesian
formulations of fisheries models (e.g., Thompson 1992, Walters and Lud-
wig 1994, Ianelli and Heifetz 1995, Robb and Peterman 1998). Simulations
are conducted using fixed harvest rates and data for two stocks of Fraser
River sockeye salmon.
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Methods
Data
We used abundances for age-42 spawners and recruits for two stocks of
Fraser River sockeye salmon (the Stellako and Late Stuart stocks) over
brood years 1948-1990 (Pers. comm., Allan Cass, Department of Fisheries
and Oceans, Pacific Biological Station, Nanaimo, B.C.). We limited our anal-
yses to age-4 fish, which account for the majority of recruits for both the
Stellako and Late Stuart stocks (91% and 97%, respectively), to simplify the
forward simulations described below. As we later discuss, our general
findings are not affected by more complicated age structures.

Ricker Stock-Recruitment Model and Bayesian
Approach
When fitting stock-recruitment relationships such as the Ricker model
(Ricker 1975), two key statistical problems arise from (1) measurement
error in spawner abundances (Walters and Ludwig 1981), and (2) the lack
of independence between recruitment and future spawner abundances
(i.e., time-series bias; Walters 1985). In our analyses, we assume that spawn-
er and recruit abundances are measured accurately and we do not account
for possible time-series bias in parameter estimates; however, as we later
discuss, our general conclusions are not affected by either problem.

Given these caveats, the statistical properties of the Ricker stock-
recruitment parameters can best be understood when the relationship is
expressed as

    R S S v= − +exp( )α β , (1)

where R and S denote recruits and spawners, respectively, and (α, β) are
parameters. The stochastic error term ν is assumed to be normally distrib-
uted with standard deviation σ, reflecting the multiplicative, lognormal
error structure common in salmon recruitment data (Peterman 1981). We
refer to σ as the “process error.” Given this error structure, the Ricker
relationship (equation 1) can be conveniently expressed as a linear, nor-
mal error model:

    log( / )R S S v= − +α β , (2)

where α is the intercept, representing productivity (log[R/S ]) at low spawner
abundance, and β is the slope (with units 1/S ), representing density-
dependent effects on productivity. Note that the quantity 1/β (with units
S ) corresponds to the spawner abundance at which recruitment is maxi-
mized (i.e., the peak of the stock-recruitment curve).

The parameter vector (α, β, σ), denoted as θ, can be estimated by linear
regression or maximum likelihood (both methods yield the same estimates
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for [α,β]). In this paper, we refer to the linear regression estimates   ̂θ  as the
“best-fit” parameters. With (α,β) defined as the intercept and slope, the
statistical properties of their estimates   ( ,̂ ˆ)α β  are easy to interpret (Neter et
al. 1985). In some cases, the residual errors from the fit of the Ricker curve
will contain temporal autocorrelation, which may be important to model
in forward simulations (e.g., Welch and Noakes 1991, Emlen 1995). Howev-
er, there was little evidence of autocorrelation in the error residuals for
either the Stellako or Late Stuart sockeye stocks (e.g., lag-1 autocorrelation
estimates were 0.12 and –0.05, respectively).

Recruitment data for salmon populations can be highly variable and,
as a result, estimates of stock-recruitment parameters are often very im-
precise. In the Bayesian approach, this uncertainty can be incorporated
into the stock-recruitment analysis by computing probabilities for differ-
ent combinations of (α, β, σ), each of which defines a curve of different
shape. For a given parameter combination θi, the posterior probability of
θi given the observed stock-recruitment data D is determined using Bayes’
theorem:
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where L(D |θi) is the likelihood of the data given θi, P(θi ) is the prior prob-
ability assigned to θi, and 

  
∑
j
L(D |θj )P(θj ) is the sum of the likelihood-prior

products for all parameter combinations considered.
In our analyses, we used a “noninformative” prior for θ. Such a prior is

intended to convey little information about θ so that the posterior distri-
bution for θ is primarily determined by the data via the likelihood func-
tion. A noninformative prior recommended for the normal regression model
equation (2) consists of uniform priors for both (α, β) and a prior probabil-
ity on σ of 1/σ (Gelman et al. 1995, p. 236). To be consistent for both the
Stellako and Late Stuart stocks, we used simple rules—based on the best-
fit parameters   ( ,̂ ˆ)α β  and their standard errors (SE)—for initially setting
bounds on priors that would encompass most of the “biologically reason-
able” parameter combinations that were likely given the data.

Specifically, upper and lower bounds on α were set to   ̂α  + 3SE  ( )̂α  and
  ̂α  – 3SE  ( )̂α , respectively. Likewise, the upper bound on β was set to   ̂β  +
3SE  ( )̂β . However, this approach was not used for the lower bound on β
because negative values of β would have been considered for both sock-
eye stocks. Negative values of β imply density-independence or exponen-
tial population growth, and hence are not biologically reasonable. We
therefore initially set the lower bound for β equal to   ̂β /10, which implies
an upper limit for the spawner abundance that maximizes recruitment
(i.e., 1/ β) equal to 10 times that for the best-fit curve (i.e., for   ̂β ). For both
(α, β), we divided the prior range into 30 values, with each value assigned
equal probability (i.e., a uniform prior). For σ , we found that upper and
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lower bounds of 3  ̂σ  and   ̂σ /3, respectively, were sufficient to cover the
range of likely values. This prior range for σ was divided into 20 values.
Thus, we considered a total of 30 × 30 × 20 or 18,000 parameter combina-
tions (θi) for each stock.

For a given θi, we computed the likelihood of the stock-recruitment
data, across brood years t, using the normal likelihood function:
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where wt = log(Rt/St) – (αi – βiSt). The prior probabilities and likelihoods of
the various parameter combinations (θi) were then combined using Bayes’
theorem (equation 3) to generate the posterior distribution for θ.

Forward Simulations
To compare results of stochastic simulations of stock-recruitment dynamics
using only the best-fit Ricker parameters to results of simulations where
parameter uncertainty was incorporated via Bayesian methods, we con-
ducted the following baseline analyses for both the Stellako and Late Stu-
art sockeye stocks. For each stock, we used the Ricker model (equation 1)
to simulate 5 generations (i.e., 20 years into the future) of spawner and
recruit data using an initial escapement of 5,000 spawners and a fixed
harvest rate of 0.7. For simulations using the best-fit parameters   ̂θ , we
ran 500 Monte Carlo trials and computed the following performance mea-
sures using only data tabulated for the final (i.e., fifth) generation of each
simulation:

A. mean of the 500 escapements,   S ;

B. standard deviation of the 500 escapements, SD(S);

C. the proportion of the 500 escapements below (i) 5,000 spawners, (ii)
25,000 spawners, and (iii) 50,000 spawners; and

D. mean and standard deviation of the 500 catch values.

For the Bayesian case, we repeated the above procedure for each pa-
rameter combination (θi) considered in the Bayesian analysis. To allow for
an accurate comparison between the best-fit and Bayes cases, the same
sequence of random numbers that was used for the best-fit case was also
used for each θi. The Bayes expected value for a given performance mea-
sure (PM) was then calculated across all parameter combinations by sum-
ming the values of that performance measure for each θi, weighted by its
posterior probability, P (θi|D):

    
E PM PM P Di

i
i[ ] = ∑ ( | )θ . (5)
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In addition, to assess the potential influence of the prior probability dis-
tribution on the results, we also computed expected values for the various
performance measures using only the prior probability of each θi as the
weight in the summation (i.e., the stock-recruitment data was ignored in
this case).

We examined the sensitivity of the simulation results to the choice of
harvest rate, the number of generations simulated, the initial spawner
abundance, the number of Monte Carlo trials, and the sequence of random
numbers. In addition, for the Bayes case, we examined the sensitivity of
the results to the bounds placed on the prior distribution of each Ricker
parameter (α, β, σ), as well as the number of discrete values considered for
each parameter (i.e., grid fineness).

Results
The best-fit Ricker parameters for the Stellako and Late Stuart sockeye
stocks are shown in Table 1. Estimates of α were fairly precise for both
stocks (Table 1). However, estimates of β were less precise, particularly for
Late Stuart sockeye, which also had a much larger estimate of process
error σ. As indicated by the P values for the null hypothesis test of β = 0,
there is much weaker evidence of density-dependence in the stock-re-
cruitment data for Late Stuart sockeye than for Stellako sockeye (Table 1).

This weaker evidence of density-dependence for Late Stuart sockeye
is also reflected in the (marginal) posterior distributions of (α, β) for the
two stocks (Fig. 1). Recall that for both stocks, we placed a lower bound on
β equal to   ̂β /10. For Stellako sockeye, values of β near this lower bound
have quite small posterior probabilities for all α values (Fig. 1A). In con-
trast, for Late Stuart sockeye, there are relatively large probabilities for
many (α, β) combinations near the lower bound for β (Fig. 1B), where these
values of β imply little density-dependence in the stock-recruitment curve.
Aside from combinations of (α, β, σ) not considered for Late Stuart sockeye
due to the constraint placed on low β values, the posterior distributions of
each stock covered the majority of probable parameter combinations.

Table 1. Best-fit parameters of the Ricker stock-recruitment relationship
for the Stellako and Late Stuart sockeye stocks.

  β̂ SE  ( )̂β P value
Stock   ̂α SE  ( )̂α (10–6) (10–6) (Ho: β = 0)   ̂σ

Stellako 2.00 0.14 3.41 1.25 0.01 0.58

Late Stuart 2.11 0.23 1.56 1.34 0.25 1.29

P values are shown for a two-tailed t test. SE = standard error.
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Figure 1.  Marginal posterior distributions of (α, β), integrated over σ, for the
(A) Stellako and (B) Late Stuart sockeye salmon stocks.
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The effects of including parameter uncertainty in the forward simula-
tions differed for the two sockeye stocks (Tables 2 and 3). For Stellako
sockeye, the results of the baseline simulations, when integrated over the
Bayes posterior distribution for (α, β, σ), were very similar to those using
only the best-fit parameters (Table 2). For example, the expected value of
mean escapement (  S ) for the Bayes case was nearly identical to the best-
fit   S  (Table 2). In addition, the standard deviation in escapement (SD[S]),
as well as the proportions of escapements below 5,000, 25,000, and 50,000
spawners, were only slightly larger for the Bayes case (Table 2). In con-
trast, for Late Stuart sockeye, the Bayes   S  and SD(S) were larger than
those for the best-fit case by 27.8% and 32.4%, respectively. Again, howev-
er, the proportion of escapements below a specified level was only slight-
ly larger for the Bayes case (Table 3).

Note that we have not shown performance measures for catch in Tables
2 and 3 because the relative differences in these measures between the
best-fit and Bayes cases were identical to those for escapement. This oc-
curred because a fixed harvest rate (HR) was used in the simulations, so
the ratio between catch and escapement was always constant (catch =
escapement × HR/[1-HR]).

Results for simulations based on the Bayes prior distribution were
considerably different from the best-fit results for both sockeye stocks
(Tables 2 and 3). Values of   S  and SD(S ) were roughly 30-40% larger for the
Bayes priors. The proportion of escapements below a specified level also
increased markedly for both stocks when the Bayes priors were used (Tables
2 and 3).

Sensitivity Analyses
We found that differences in performance measures between the best-fit
and Bayes (posterior) cases were indeed sensitive to the harvest rate, the
initial spawner abundance, and in particular, the number of generations
used in the forward simulations. In all cases, however, values of   S  and
SD(S ) were larger for the Bayes case. For example, Fig. 2 shows percent
differences in   S  between the Bayes and best-fit cases for various combi-
nations of harvest rate and generations. For both stocks, the Bayes   S
became increasingly greater than the corresponding best-fit   S  as the num-
ber of simulated generations was increased, although the differences were
much larger for Late Stuart sockeye (Fig. 2B). There were similar trends for
differences in SD(S ). However, in contrast to the results for   S  and SD(S ),
the proportion of escapements below a specified level varied little be-
tween the Bayes and best-fit cases over the range of simulation conditions
we examined.

Changing the random number sequence or the number of Monte Car-
lo trails had little influence on the simulation results. Although the abso-
lute values of a given performance measure could change somewhat, the
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Table 3. Escapement-based performance measures computed for the base-
line forward simulations of the Late Stuart sockeye stock using
(i) the best-fit Ricker parameters, (ii) the Bayes posterior distri-
bution for the Ricker parameters, and (iii) the Bayes prior distri-
bution.

Bayesian simulations
Simulations using (% difference from best-fit case)

Performance measure best-fit parameters Posterior Prior only

Mean escapement (  S ) 518 661 (+27.8%) 665 (+28.5%)

SD(S ) 1394 1845 (+32.4%) 1801 (+29.2%)

Proportion < 5,000 0.074 0.087 0.145

Proportion < 25,000 0.194 0.217 0.304

Proportion < 50,000 0.288 0.301 0.408

Expected values are shown for the Bayes cases. Values of mean escapement     ( )S  and standard deviation
of escapement (SD[S ]) are in thousands.

Table 2. Escapement-based performance measures computed for the base-
line forward simulations of the Stellako sockeye stock using (i)
the best-fit Ricker parameters, (ii) the Bayes posterior distribu-
tion for the Ricker parameters, and (iii) the Bayes prior distribu-
tion.

Bayesian simulations
Simulations using (% difference from best-fit case)

Performance measure best-fit parameters Posterior Prior only

Mean escapement     ( )S 168.5 168.6 (+0.0%) 227.7 (+35.1%)

SD(S ) 148.1 153.0 (+3.3%) 213.8 (+44.4%)

Proportion < 5,000 0.004 0.005 0.015

Proportion < 25,000 0.056 0.073 0.132

Proportion < 50,000 0.156 0.182 0.261

Expected values are shown for the Bayes cases. Values of mean escapement     ( )S  and standard deviation
of escapement (SD[S ]) are in thousands.
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Figure 2. Percent differences between Bayes and best-fit estimates of mean
escapement (  S ) in the final generation for various combina-
tions of harvest rate and number of generations used in the
simulations.
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relative difference between the Bayes and best-fit cases remained quite
constant.

To examine if the simulation results for the Bayes cases were sensitive
to the limited number of discrete parameter combinations we considered,
we doubled the number of grid points for each parameter (α, β, σ), giving
a total of 60 × 60 × 40 combinations. This grid was used in the baseline
simulation described above; however, for both stocks, results were nearly
identical to those for the original grid.

Finally, we examined the sensitivity of the simulation results for the
Bayes cases to changes in the bounds placed on the priors for (α, β, σ). For
both stocks, results changed little for moderate increases or decreases in
the bounds used for α (e.g., using bounds of   ̂α  ± 4SE  [ ]̂α  or   ̂α  ± 2SE  [ ]̂α ).
Results were especially insensitive to changes in the bounds for σ . Like-
wise, moderate changes in the upper bound for β (values that convey high
density-dependence) had very little affect on the simulation results.

However, values of Bayes   S  and SD(S ) were often very sensitive to
changes in the lower bound for β (values that convey little density-depen-
dence), depending on the stock and simulation conditions. Although re-
sults for Stellako sockeye varied little when the baseline simulations were
used, results changed appreciably when simulations were conducted us-
ing 10 generations and a harvest rate of 0.5, for instance. In the latter
case, extending the lower bound on β (i.e., allowing for values of β to
approach zero) resulted in large increases in both the Bayes   S  and SD(S )
(as shown for S  in Fig. 3A). Values of Bayes S  and SD(S ) for Late Stuart
sockeye were considerably more sensitive to the lower bound on β across
all simulation conditions, as shown for   S  under the baseline conditions
(Fig. 3B).

Discussion
Our results suggest that incorporating uncertainty in parameter estimates
of the Ricker model can have profound effects on the results of forward
simulations. Specifically, using a Bayesian formulation with noninforma-
tive priors over biologically reasonable bounds, we found that projections
of future spawner abundances (and likewise for catch and recruitment)
typically increased by 5-15% for Stellako sockeye and 20-60% for Late Stu-
art sockeye (Fig. 2). At first glance, these differences might be interpreted
as strong evidence of the need to account for parameter uncertainty; how-
ever, the results of the Bayesian analyses may be misleading as they were
highly dependent on the specification of the prior.

In particular, the differences in results of simulations between the
Bayes and best-fit cases, or between the Stellako and Late Stuart stocks,
were largely due to the low values of β considered in the Bayes analyses.
For parameter combinations with low β values, which convey very little
density-dependence, projections of spawner and recruit abundances
typically increased over time to be 10 or more times greater than those of
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Figure 3. Effect of changes in lower bound of the prior distribution on
beta on Bayes expected mean escapement (  S ) for (A) the Stel-
lako stock and (B) the Late Stuart stock. Simulations were based
on 10 generations and a harvest rate of 0.5 for the Stellako
stock, and 5 generations and a harvest rate of 0.7 for the Late
Stuart stock.
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the best-fit case. Thus, for Late Stuart sockeye, the Bayes   S  was consider-
ably greater than the best-fit   S , especially when a large number of gener-
ations was simulated (Fig. 2B), because this stock had relatively large
posterior probabilities for low β values (Fig. 1B). Indeed, for either stock,
results for the Bayes case were highly sensitive to the lower bound placed
on the prior for β (Fig. 3).

Moreover, although the prior distribution was designed to convey little
information about the Ricker parameters themselves, the prior was quite
informative in terms of the spawner-recruit projections. Recall that for
both stocks, simulations based on only the prior distribution gave much
larger values of   S  and SD(S ) than the best-fit values (Table 2 and 3). Again,
these differences increased considerably when the lower bound on β was
extended. Note that extending this lower bound from   ̂β /10 to   ̂β /50 rep-
resents a relatively small change to the parameter grid, but in biological
terms, it represents a 5-fold increase in the upper limit for the spawner
abundance that maximizes recruitment (now 50 times that for the best-fit
case).

Based on the statistical properties of the Ricker model and the simula-
tion results for the prior distribution, we can generalize our findings to
other stock-recruitment data sets. With a uniform prior on (α, β), the joint
posterior will be a bivariate normal distribution (Gelman et al. 1995, p.
236). The Bayes expected value of recruits per spawner, when integrated
over this joint posterior or over the marginal posteriors for either α or β,
will always be greater than the best-fit value when liberal bounds on the
prior are used. Moreover, this difference will increase for less precise esti-
mates of α or β. Thus, we expect that spawner and recruit projections of
the Bayes case will tend to be larger than the best-fit case for any stock-
recruitment data set, with results that are often highly inconsistent with
past data.

Given this expectation, the use of a broad-scale uniform prior for (α,
β) appears to be inappropriate and potentially misleading. In the Bayesian
approach, the prior distribution is meant to reflect the true “degree of
belief” in alternative parameter combinations in the absence of stock-
recruitment data. Punt and Hilborn (1997) recommend that noninforma-
tive priors be avoided on the basis that such priors likely ignore relevant
biological information. It seems highly unlikely, for example, that a biolo-
gist would consider prior β values of   ̂β  and   ̂β /10 as equally probable
given information on habitat constraints for spawning or juvenile rearing.
Instead, a much more defensible and realistic approach would be to use
such auxiliary information to place “informative” priors on alternative pa-
rameter combinations (Punt and Hilborn 1997). We would expect that us-
ing informative priors would greatly restrict the influence of low β values,
in which case simulation results for the Bayes and best-fit cases would
likely be quite similar. Note, however, that analysts should interpret re-
sults cautiously when informative priors contradict the stock-recruitment
data (Adkison and Peterman 1996).
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Several factors were not considered in our analyses. First, we used
only a single age class of recruits. However, our general findings would
not be affected by using more complicated age structures because the
Ricker model relates spawner abundances to total recruits, regardless of
their age. Second, we not did consider potential sources of parameter bias
(Walters and Ludwig 1981, Walters 1985). Nevertheless, assuming that
corrections for bias made to best-fit parameters could also be incorporat-
ed into the Bayesian framework, we would still expect simulations for
Bayes and best-fit cases to show relative differences similar to those dis-
cussed above. Third, we did not consider other parameterizations of the
Ricker model for which noninformative priors have been used (Adkison
and Peterman 1996) or recommended (Schnute and Kronlund 1996). How-
ever, preliminary results (data not shown) suggest that these alternative
priors lead to even larger discrepancies between the Bayes and best-fit
cases. Finally, we did not consider uncertainty in the functional form of
the stock-recruitment model. For example, there are three-parameter mod-
els for which the Ricker curve is but one limiting form (e.g., Schnute and
Kronlund 1996). Again, however, we expect qualitatively similar results to
those shown here for Bayesian analyses of these models that are based on
noninformative priors which extend over parameter combinations that
convey little density-dependence.

In conclusion, we have shown that incorporating uncertainty in pa-
rameter estimates of the Ricker model using Bayesian methods with non-
informative priors can result in large increases in projections of spawner
and recruit abundances. Such increases, if taken at face value, could obvi-
ously have important management implications. However, we believe these
findings act more as a warning about the potential pitfalls of using non-
informative priors in Bayesian analyses than as evidence of the impor-
tance of including parameter uncertainty in forward simulations of salmon
dynamics.
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Abstract
Due to the complexity of Amazonian fisheries, the application of conven-
tional models of stock assessment and, especially, of fisheries manage-
ment do not work for Amazonian fisheries. Available information shows
that regional artisanal fisheries, in addition to multispecific, are highly
varied in their technology, geographically diffuse, and practiced with vary-
ing economic objectives. Two fisheries can be distinguished in the Middle
Amazon. The first is more professionalized and highly seasonal in charac-
ter, concentrates primarily on migratory catfish and operates primarily in
the main river channels. The second fishery is more diffuse, focusing on
smaller species in floodplain lakes, adapting gear, location and target spe-
cies to the ecological characteristics of the stock. Classical assessment
models indicate some stocks my be overfished, such as Colossoma macro-
pomum. Nevertheless, implementation of efficient regulatory measures is
almost impossible. Although there are measures regulating fisheries, these
regulations are not obeyed. As a result of the inability of the government
to regulate the fishery, conflicts and litigation have proliferated over the
right of access to local floodplain lake fisheries. In response to these ac-
tions, government institutions are changing their approach and their fish-
eries management policies. This is evident in increased government support
for research projects and is leading to changes in fisheries legislation.
Recently, a more decentralized approach to fisheries management has



890 Isaac et al. — Fisheries Management in the Middle Amazon

begun to take hold in government policy. In addition, social scientists
have complained of the lack of attention to social dimensions of the fish-
ery, questioning the validity of the bioeconomic paradigm for fisheries
management. As a result of these questions, the participation of commu-
nities of fishers in discussions of regulatory measures is becoming the
norm. Despite these changes, however, a mathematical model which takes
into account the ecological, cultural, and social characteristics of the re-
gion has not yet been developed. On the other hand, the search for solu-
tions cannot wait for the accumulation of data sets covering time periods
long enough to permit more sophisticated approaches. Practical needs are
imposing a system of resource evaluation which combines theoretical and
empirical, conventional and alternative methods, and the development of
multidisciplinary approaches, for the adoption of management measures.

Introduction
Fisheries of the Middle Amazonian region of Brazil (Fig. 1) have the char-
acteristics of a typical tropical artisanal freshwater fishery in the initial
stages of development. More than 200 species are captured utilizing a
diversity of gear types, ranging from the bow and arrow to large gillnets.
While the total catch may not be significant when compared to Brazil’s
industrial marine fisheries, this fishery does involve a large number of
people and plays an important role in the local diet and in the regional
economy (Isaac and Barthem 1995). Regional demand for fish is high. Stud-
ies indicate that consumption of fish is on the order of 360g per person
per day in the Middle Amazon (Cerdeira et al. 1997) and can reach 500g
per person per day in the Central Amazon (Batista et al., in press).

Dominant fishing techniques vary from region to region within the
Amazon Basin. In part, this variability is due to the fact that until recently
regulations of fishing gear varied from state to state and regionally, with-
in individual states in the Amazon basin. Seines were prohibited in the
inland waters of the state of Pará. However, they were permitted just up-
stream in the state of Amazonas. Trawls are only permitted offshore. These
regulations have recently been revised. However the situation in the Mid-
dle Amazon reflects this earlier management regime. Here, the operation-
al unit of fishing consists of small wooden canoes (3-5 meters) with one or
two fishers. Fishers may travel up to a thousand kilometers or more from
port to fish in the innumerable rivers and floodplain lakes of the region.
The catch is purchased from local fishers and transported to market in
larger vessels equipped with ice boxes of limited adequacy for preserving
fish.

In addition to fishing, the majority of fishers also engage in other
productive activities such as farming, animal husbandry, and temporary
employment. Some fishers fish for subsistence. However, the large major-
ity sell part of their catch in regional urban markets. A few in this latter
group are more specialized, live in the city, have more capital and larger
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vessels, which give them greater fishing capacity. This small group of
large-scale fishers is responsible for a disproportionately large share of
the total catch.

The lack of a continuous record of reliable information on fishing
effort, catch, age structure, and life history characteristics of many fish
stocks in the region makes it difficult to apply conventional methods for
stocks assessment and management. Only in the last four or five years
have research projects begun to systematically collect data. Although the
necessary data are becoming available, the high biological and technolog-
ical diversity of the fisheries makes it unlikely that conventional methods
for stock assessment and regulation will be sufficient to manage fisheries
in the Middle Amazon region.

As a consequence of this complexity, the evaluation of Middle Amazo-
nian fisheries resources and the formulation and implementation of fish-
eries management policies has followed two alternative paths: (1) a classic
scientific approach resulting from the analysis of catch and fishing effort
data, as well as biological data collected in the last few years; and (2) an
empirical approach, more social and almost anthropological in character,
which considers the user groups’ (residents and fishers) opinions, consid-
erations and perceptions of the environment and of the resource. This
paper summarizes existing information on the characteristics of Middle
Amazonian fisheries and describes the results of these two approaches
taken in the search for adequate methods for fisheries management.

Figure 1. Map of the Middle Amazon.
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Methods
Data on catch, fishing effort per species, characteristics of fisheries, and
marketing of catch have been collected daily at landing sites in Santarém
since 1992, through interviews with the person in charge of every boat
landing at the city. Santarém receives fish from the entire Middle Amazon,
a region extending from Parintins upstream to Prainha (Fig. 1). A descrip-
tion of the fisheries was done based on a review of a factor analysis of the
landing data undertaken in Isaac et al. (1996). Later a general linear model
(GLM) was calculated using as dependent variables the coefficients of the
factors estimated earlier and as independent variables the characteristics
of the fishery such as site, date, gear type, fishing effort, market, etc. In
addition, growth curves and mortality rates were calculated for three spe-
cies. Curves of yield per recruit were fitted in accordance with Beverton
and Holt’s (1957) model and compared with the similar result from the
literature.

Information on the number of fishers, and the geographic, socioeco-
nomic, and cultural characteristics of fishing communities was obtained
through surveys conducted in all the riverside communities of the region
surrounding Santarém. Observations regarding the causes and develop-
ment of fishing conflicts in these communities were recorded through
interviews with community residents, local leaders and others involved,
as well as from reports received by the federal environmental agency,
IBAMA (Instituto Brasileiro de Meio Ambiente e Recursos Renováveis).

Data on fishing strategies in community lake management were ob-
tained through a two year study of two floodplain fishing villages. The
fishing activity of approximately 25 households was monitored through
interviews conducted on a daily basis during the last week of each month.
Data on size and composition of the catch, fishing effort, consumption,
gear repair, and marketing were recorded.

Results and Discussion
Description of the Fishery
The use of multivariate techniques (PCA and GLM) in the analysis of data
on effort, catch, and marketing of fish in the city of Santarém made it
possible to establish that commercial fishing activity can be character-
ized according to fishing capacity, target species, and fishing technology
(Isaac et al. 1996).

The main commercial fishery has greater productivity and fishing ca-
pacity using longlines, and large drifting and fixed gillnets. The fishery
concentrates primarily on stocks of migratory catfish (Brachyplatystoma
flavicans, B. filamentosum, B. vaillantii, Pseudoplatystoma fasciatus, P. ti-
grinus, etc.) which move upstream in the main river channels during the
low water season (September-October). During the off season, fishers shift
to the floodplain lakes where they concentrate on the small catfish “ma-
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para,” Hypopthalmus spp. Most of the commercial catfish catch is pur-
chased by local processing plants and then transported to other states for
consumption.

Sedentary species such as the tucunaré-Cichla spp., pirarucu-Arapai-
ma gigas, and pescada-Pagioscion spp. or those which use lakes as trophic
habitat during a part of their life cycle, such as the tambaqui-Colossoma
macroponum and pacu-Myleus spp., are the focus of the less professional-
ized and smaller-scale fisheries undertaken by floodplain residents of the
region. Using similar gear, they exploit the lakes and local channels of the
floodplain near their homes. Fish derived from this lake fishery is des-
tined for household subsistence and sale in regional markets.

Stock Assessment
On the basis of length data we obtained estimates of growth and mortality
parameters for the period 1992-93. That permitted the calculation of a
yield-per-recruit model and conclusions on the status of some commer-
cially important fish species. The results (Table 1) indicate that Colossoma
macroponum (Isaac and Ruffino 1996), Pseudoplatystoma tigrinum, and
Pseudoplatystoma fasciatum are overexploited, being caught at very small
sizes. In the same fashion, research on Brachyplatystoma vaillantii, based
on data from the industrial trawl fishery in the Amazon estuary, indicated
growth overfishing for this species (Barthem 1990, Barthem and Petrere
1995). Considering its long life cycle, its reproductive and parental care
behavior (Neves 1995), and its intense exploitation for more than a centu-
ry (Veríssimo 1895), we assume that Arapaima gigas, one of the largest
species in the basin, also suffers growth overfishing. On the other hand,
in species with more opportunistic (“r”) life strategies, such as the pesca-
da, (Plagioscion spp.) of the family Sciaenidae, it seems that environmen-
tal factors, such as the velocity and intensity of floods, explain the success
or failure of recruitment, and consequently the total catch, better than the
intensity of fishing effort (Annibal 1982, Merona 1993). Many authors ar-
gue that other impacts of human activity such as the construction of hy-
droelectric dams, deforestation of the margins of rivers and lakes, and
pollution by heavy metals have a more devastating effect on fish stocks
than does fishing activity itself, which in general can still be considered
fairly moderate when one takes into account the great diversity of Amazo-
nian fishes (Goulding 1983, Bayley and Petrere 1989, Pfeiffer et al. 1990,
Leite 1993, Ribeiro et al. 1995).

Conventional Management Measures
Fisheries management in the Middle Amazon has until recently been con-
ducted in the conventional centralized manner. The federal government
instituted decrees, though not always based on scientific research, which
regulated fishing activity on the basis of classic methods such as prohibi-
tion of fishing during reproductive migrations, limits on mesh size, minimum
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Table 1. Populational parameters and stock assessment for some com-
mercial exploited fish species in the Middle Amazon.

L
∞

K M F Z L′
Species Year (cm) (1/yr) (1/yr) (1/yr) (1/yr)  (cm) E Emax

Colossoma 1992 121.2 0.229 0.45 0.95 1.40 32.5 0.68 0.47
macropomum a 1993 118.5 0.226 0.44 0.93 1.37 41.5 0.68 0.48

Pseudoplatystoma 1992 181.0 0.260 0.43 1.76 2.19 76.0 0.80 0.59
tigrinum b 1993 184.0 0.300 0.47 1.51 1.98 74.5 0.76 0.52

Pseudoplatystoma 1992 178.0 0.330 0.51 1.89 2.40 77.5 0.79 0.60
fasciatum b 1993 169.0 0.270 0.45 1.45 1.90 83.5 0.76 0.66

Brachyplatystoma 1992 161.0 0.220 0.40 0.47 0.87 73.5 0.54 0.60
flavicans b 1993 167.5 0.204 0.38 0.84 1.22 82.5 0.69 0.66

Source: a Isaac and Ruffino 1996; b Present study.

L∞ = von Bertalanffy’s asymptotic length

K = von Bertalanffy’s growth constant

M = instantaneous rate of natural mortality

F = instantaneous rate of fishing mortality

Z = instantaneous rate of total mortality

L′ = smallest length of fish fully recruited

E = observed explotation rate

Emax = optimum explotation rate, estimated according Beverton and Holt (1957)

t0 = von Bertalanffy parameter for “age at 0 length”

Note: t0 was fixed as 0

sizes, and the prohibition of especially noxious gear such as explosives and
poisons (Isaac et al. 1993). The enforcement of this great variety of mea-
sures was not effective.

Based on the results of biological studies (Ruffino and Isaac 1995,
Isaac and Ruffino 1997) and yield-per-recruit models, the legislation regu-
lating fisheries has begun to be simplified and systematized, correcting
inconsistencies and eliminating unnecessary measures (Isaac et al. 1993,
Isaac and Barthem 1995). At present, legislation regulating minimum size
of capture exists for only four species: Arapaima gigas, Pseudoplatystoma
tigrinus, P. fasciatus, and Colossoma macroponum. In addition, fishing for
certain species of characins is prohibited during the period of upstream
reproductive migration, December through February. There are also re-
strictions on the number of vessels and the mesh size used in the indus-
trial piramutaba (Brachyplatystoma vaillantii) fishery.

Informal Fisheries Management by Communities
Despite the existence of these regulations, government agencies have nei-
ther sufficient personnel, nor resources, to enforce compliance, so that
commercial fisheries have largely developed in a regulatory vacuum. As a
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result, fishing conflicts between floodplain communities and outside com-
mercial fishers have proliferated in the last two decades. Due to the limit-
ed presence of the state, many floodplain communities have begun to
develop and implement their own management regulations, referred to as
“fishing accords” (acordos de pesca), to serve their own interests. Rules
regulating fishing activity are usually defined in regional meetings involv-
ing local residents who share the same lake system, usually without the
participation of the state. In some cases, municipal fishers unions have
taken an active role in support of community management initiatives.

A variety of different measures can be employed in the accords. Fre-
quently, the lake system is divided into zones with different types of use
(no fishing, subsistence, or commercial fishing). Local fishers may, in this
case, restrict access to the lakes, which they consider private or common
property (Ruffino, in press). In other cases, some gear types, such as gill-
nets, are prohibited, permanently or seasonally. Another measure concen-
trates on storage capacity and may involve restrictions on use of ice or
limitations on the size of ice boxes.

Local management regulations tend to differ from those of IBAMA. For
example, seasonal restrictions on fishing effort focus on the low water
season, October through December, rather than the spawning season,
December through February. The intent is to reduce pressure during the
period when fish in the lakes are concentrated in small bodies of water
and are therefore most vulnerable. Fishers know that rising water, from
November on, provides natural protection during the spawning season.

Fishing accords are publicized locally by informal means. Enforce-
ment is undertaken by local residents, and varies considerably in effec-
tiveness. In some cases, due to the erratic often arbitrary nature of
enforcement, fishing accords, which were created to reduce conflicts, can
lead to higher levels of conflicts between floodplain communities and
outside fishers. In these cases, the intervention of local governmental au-
thorities is sought to mediate conflicts.

Over the last three years, IBAMA has come to recognize that the regu-
latory process developed by the local communities can be a useful tool for
managing fisheries in the Amazon basin. Fishing accords are now consid-
ered potentially “legalizable.” Criteria for the integration of fishing ac-
cords into the formal regulatory framework have been defined. These
criteria prohibit the establishment of accords which exclude outsiders
and favor local residents only, but promotes the adoption of measures
which must be respected by both local and outside fishers.

The efficacy of this management model for lake fish stocks, though
little studied, is questionable, since many commercially important species
have complex migratory cycles, and use a variety of environments through-
out their life cycle, some protected by “lake reserves” and others not. How-
ever, a comparison of fishing productivity in two lake systems near the
city of Santarém, one with a system of community management and the
other without it, demonstrated that the managed lake was approximately
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twice as productive as the unmanaged lake for all gear types used in com-
mon (McGrath et al. 1994).

The problem of the efficacy of lake fishing accords is exacerbated by
their lack of legal legitimacy. Because most lake accords contradict the
concept of “open access,” which is the basis of existing fisheries legisla-
tion, and impose restrictions on fishing activity, such as the prohibition of
gillnets, which are not supported by existing legislation, most “lake ac-
cords” cannot be legally recognized under the existing criteria.

In Search of a More Adequate Approach for Fisheries
Management

Fisheries science and the classic methods of fisheries management are
marked by uncertainty. This is a consequence of the variability of natural
and social phenomena, be it spatio-temporal or economic. The sources of
uncertainty are not always predictable and in many cases constitute “sur-
prises” in models (Hilborn and Walters 1992).

The process of managing fisheries is essentially different from “pure
science.” Factors such as political interests, economic convenience, and
the acceptability of certain measures are important factors. In the case of
the artisanal fisheries of the Amazon, implementation of measures to reg-
ulate fisheries is a difficult task, due to the size of the basin, the difficul-
ties of transport and communication, and the isolation of fishing
communities. From interviews with fishers and community members it is
apparent that the lack of participation of users in the process of planning
and monitoring management, traditionally undertaken by the state, is a
major factor in the lack of compliance with existing regulations. Through
fishing accords civil society is developing alternatives to the conventional
management model and its priorities in regulating fishing activity.

Taking into account the absence of historical data, the uncertainties
of classic evaluation models, and the existence of traditional forms of
management that have been implemented informally in regulating the
fisheries, one of the most important conclusions of our work is the dem-
onstration that any management policy can only be successful if created
and implemented by the government, but with the active participation of
the actors involved in utilizing the resource.

Despite the fact that communities are not allowed to impose sanctions
on infractors, the recognition of fishing accords is an important landmark
in the history of Brazilian fisheries management. Sen and Nielsen (1996)
define a continuum of management approaches which ranges from instruc-
tive to informative depending on the relative roles of the state and user
groups (Fig. 2). Until 1992, when the Program for Management of River
Basins (Fischer et al. 1992) was implemented, existing management was
based on the Instructive Model, in which the government simply informed
users of the decisions that had been made. Since 1993, management has
changed to the Consultive Model, where IBAMA consults users (municipal
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fishers unions) and researchers regarding the species to be included in the
three-month spawning season prohibition on fishing activity. Finally, with
the recent publication of an internal document (IBAMA 1997), government
managers and user groups are beginning to cooperate in developing man-
agement strategies, although not yet as equal partners (Fig. 2).

This new management structure involves decentralizing decision-
making from federal to state, municipal, and community levels. At the
local level, inter-community councils (Conselhos Regionais de Pesca) are
being organized which are composed of representatives of all communi-
ties that are located around the margins of individual lake systems. These
councils are responsible for developing and implementing fisheries man-
agement policies in the form of “fishing accords.” While most councils do
not include local ranchers or outside commercial fishers, these stakehold-
ers are usually represented in the meetings where local fishing accords
are hammered out. (The support of local ranchers is critical to the success
of these fishing accords, since they frequently claim ownership of much
of the land surrounding floodplain lake systems.) Once the fishing ac-
cords have been approved by the fishing council, they are submitted to
IBAMA for evaluation. If they meet IBAMA’s criteria, they are formalized in
a “portaria” or administrative law.

Figure 2. Development of the fisheries management in the Middle Amazon in
the last years, according to the degree of involvement of user groups.
(Adapted from Sen and Nielsen 1996.)
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To assist in the enforcement of lake accords, IBAMA is training com-
munity environmental agents. These agents have the authority to cite, but
not to arrest, infractors, and must call upon IBAMA or local police to make
arrests or impose sanctions specified in local fishing regulations. In this
fashion, IBAMA is incorporating local users groups and community insti-
tutions into the formal structure of fisheries management. At the same
time, these grassroots management organizations are making possible
more effective control of fishing activity throughout the Middle Amazo-
nian floodplain.

Through this process, fisheries management is evolving toward the
substitution of a centralized model with a new model in which both fish-
ers and fisheries administrators will jointly manage the resource (Fig. 2).
Communities are also being made aware that fishing accords must com-
ply with existing legislation, conserving the resource, but without exclud-
ing use by some or privileging use by others. This new approach is based
on the supposition that sustainability is possible if the resource is man-
aged as a common property resource involving all local fishers and not as
a resource for exclusive use.

Figure 3. Proposed management strategies for the Middle Amazon fisheries, com-
bining conventional (bio-economics studies) and alternative approaches
(community values). (Adapted from Bormann et al. 1994.)
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At the same time, social scientists have been intensively engaged in
strengthening organizations representing fishers, so that they will be pre-
pared to assume greater responsibility in the process of comanagement.
One example of this is the increase in the number of active members in
the three most important municipal fishers unions in the region (San-
tarém, Alenquer, and Monte Alegre) which increased from 1,400 to 5,000
members.

Conclusions
The development of Amazonia over the last thirty years has been charac-
terized by a high rate of demographic growth and the acceleration of ex-
tractive activities, especially logging, fishing, and hunting, combined with
deforestation for farming and ranching. However, traditional extractive
activities and farming on the floodplain are in crisis, threatening the eco-
nomic base of the Middle Amazonian floodplain population (McGrath et al.
1993). These factors have caused floodplain smallholders to become in-
creasingly dependent on fishing for income and subsistence (Furtado 1988).

Stock evaluation models and classic management measures focus at-
tention on the biology and population dynamics of fisheries. The fisher, in
this case, the “exploiter,” is considered the principal threat to fisheries re-
sources. In the development of a new perspective the environment that the
fish use is a fundamental element for the maintenance of the resource (Goul-
ding and Ferreira 1996). For the majority of fish species inundated areas
play a key role in maintaining the productivity of the fishery. The flood-
plains provide food for fish growth, habitats for reproduction, and refuges
for protection from predators (Junk 1984a,b; Goulding 1983; Bayley and
Petrere 1989, Petrere 1989). In this case, the principal cause of the environ-
mental transformations is associated with powerful economic interests
(ranchers and loggers) generally unconcerned with the local population.
Fishers who are floodplain residents understand the importance of flood-
plain habitat for fisheries production and seek to develop appropriate forms
of control, but do not have the power to combat external influences.

Reconciling environmental conservation with development has been
a constant in the environmental discourse of governments and Brazilian
civic organizations in recent years. However, an acceptable scientific model
has not yet been formulated which can take into account ecological, cul-
tural, and situational dimensions of regional fisheries, or which provides
a quantitative base for making predictions that can contribute to the pro-
cess of developing more effective management policies and regulatory
measures. Our evolving efforts are leading to the development of a multi-
disciplinary proposal which takes into account both the results of the
application of classic methods (bio-economic studies), as well as the expe-
rience and perceptions of fishing communities (social values). At the mo-
ment the work concentrates on implanting measures for monitoring the
process, through an iterative management system of the “adaptive” type,
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in which the correction of possible errors follows experimental attempts
at consensus (Fig. 3).

The search for solutions cannot wait for the development of complex
models of evaluation, nor the need to collect data over long periods. Prac-
tical necessity is imposing a system of resource evaluation which involves
the combination of theoretical and empirical models, conventional and
alternative, and the development of multidisciplinary approaches.

The Amazon floodplain ecosystem is based on the energy trilogy: For-
est-Fish-Man. The close relations between them do not permit us to treat
the problem of management from only one perspective. Understanding
the relations between ecosystems and human activities seems to be the
only way to achieve a process of development that reconciles the needs of
human populations with those of environmental conservation. Resource
use and its consequences need to be predicted and policies modified so
that ecologically sound management strategies can be developed which
seek to optimize returns from the fishery in the face of different and fre-
quently competing interests (May 1995). Our path is uncertain, but this
seems to the only viable option under the present circumstances.
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Abstract
The translation of fisheries assessment uncertainty to a risk analysis for
immediate management actions in relation to established harvest strate-
gies has influenced the development of recent management plans in At-
lantic Canada. Graphics depicting the risk of failing to achieve exploitation
and biomass targets for a range of quotas were included with the scientif-
ic resource evaluations for Gulf of St. Lawrence cod and eastern Georges
Bank haddock. The risk analysis framework for providing advice on fore-
cast scenarios changed the emphasis from recommending the “best” ac-
tion consistent with the harvest strategy to measuring the performance of
alternate actions relative to the harvest strategy. Evolution away from a
single option promoted communication between stakeholders and scien-
tists and provided the opportunity for stakeholders to effectively partici-
pate in the decision process. Success was dependent on management
institutions to cope with implementing a range of actions, timely use of
current information, deliberate and thorough presentation of risk results,
and previous exposure to risk analysis.

Introduction
There is a growing demand in fisheries management for information about
uncertainties. Modern fish stock assessment methods can complement
estimates of population state variables with statistics for those estimates.
These statistics are increasingly being used for diagnostic purposes during
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resource evaluation. For fisheries management, however, the consequences
of specific management actions are desired. For example, with the increased
attention to the Precautionary Approach, fisheries managers need to know
what the chances are that a specified management action might result in a
fishing mortality rate exceeding that associated with maximum sustain-
able yield. The uncertainty in the results of fishery stock assessments
propagates as risk for management actions. The decision process can be
more effective when informed of these risks.

Risk analysis has received considerable attention in fisheries recently
(Smith et al. 1993, Cordue and Francis 1994, McAllister et al. 1994, Megrey
et al. 1994, Rosenberg and Restrepo 1994). Much of the attention has con-
centrated on risk analyses to assess harvest strategies while considering
the uncertainties about population dynamics (e.g., Ianelli and Heifetz 1995a,
1995b). This approach may be used to conduct comprehensive probabi-
listic evaluations, generally through simulation, of the comparative per-
formance of alternative strategies with respect to achieving stated long-term
objectives. The strategies must be translated into well-defined manage-
ment rules for determining actions and acceptable risk levels must be
specified. Some fisheries management forums however, including those
in Atlantic Canada, do not employ rigid management rules and permit
variation in the acceptable level of risk for achieving harvest targets from
year to year based on consideration of the prevailing circumstances. These
management regimes do not lend themselves readily to evaluation of how
well they perform in achieving long-term objectives, though the estab-
lished harvest strategies have generally evolved from experience with the
fishery dynamics. These regimes would benefit from quantification of the
risk that contemplated actions might not achieve the established harvest
strategies. This topic has received limited attention (Restrepo et al. 1992)
and its application has not been well developed or promoted.

We present how the uncertainty in fisheries stock assessments was
used to derive risk analysis for immediate management actions using two
case studies, the southern Gulf of St. Lawrence cod and eastern Georges
Bank haddock, to illustrate the approach. We highlight the important fea-
tures of those risk analyses and how the results were communicated graph-
ically for a range of actions. Finally, we discuss how this information was
received and how it influenced the fisheries management decision process.

Methods
Risk analysis for immediate management decisions involves three com-
ponents, a set of well defined actions, identification of one or more fore-
cast event parameters, e.g. projected biomass, to be used as performance
measures and harvest strategy targets for those forecast event parame-
ters. We adopt a simple definition of risk as the probability that a forecast
event parameter is less than or equal to the harvest strategy target for a
given action, Pr{forecast event ≤ harvest strategy target | action}. Forecast
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event parameters are derived from the assessed fishery population state
parameters, e.g. abundance or fishing mortality rate. Therefore, uncer-
tainty in the stock assessment is accounted for as uncertainty in the state
of the forecast event parameter. Given a harvest strategy then, the uncer-
tainty in fisheries stock assessments may be translated into the risk asso-
ciated with immediate fisheries management actions.

Harvest strategies may contain several elements. In Atlantic Canada,
the customary target fishing mortality rate is equivalent to F0.1 (Gulland
and Boerema 1973), a yield per recruit strategy largely aimed at prevent-
ing growth overfishing. We capitalized on the general acceptance of this
reference and thus included a fishing mortality rate of F0.1 as one of the
targets for the harvest strategy. The Atlantic Groundfish Management Plan
has also recognized that recruitment overfishing considerations may at
times be paramount, and espouses lower exploitation in these circum-
stances to promote rebuilding of resources. The two resources we exam-
ined were considered to be in a depleted state relative to historic levels
and there has been concern regarding how this might impact their repro-
ductive capacity. Accordingly, we included as a second element of the
harvest strategy the requirement that the biomass should increase from
current levels. For both the cod and haddock cases, probabilistic results
were developed for these two forecast event parameters. The fishery for
southern Gulf of St. Lawrence cod was closed to directed fishing in 1993
due to low stock biomass. The Fisheries Resource Conservation Council
(FRCC) which advises the Canadian Minister of Fisheries and Oceans on
fishery management measures, suggested in their discussion paper that a
stock biomass of 115,000 t for ages 5 to 15 was as an appropriate reopen-
ing threshold for this stock (FRCC 1996). A third element of the harvest
strategy for the cod stock then, was that the stock biomass should exceed
the threshold.

In Atlantic Canada, management involves a variety of measures in-
cluding catch quotas, gear regulations, area/season closures, and other
tactics. Typically, most measures are established and retained indefinite-
ly but catch quotas are adjusted annually. Consequently, management
deliberations are dominated by discussion on the consequences of vary-
ing the catch quota. Accordingly, the risk analyses focused on the proba-
bility of satisfying the elements of the harvest strategy for a range of
catch quotas.

Risk analysis follows from an evaluation of the uncertainty in the es-
timates of the forecast event parameters. The translation of assessment
uncertainty to management risk is depicted by the graphical representa-
tion of the procedure (Fig. 1). A three dimensional graph of probability as
a function of values of the forecast event parameter, projected fishing
mortality in this example, and of management actions, quota in this ex-
ample, can be constructed from the cumulative frequency distributions of
the fishing mortality over the range of quota options examined. The inter-
section of this probability surface with an orthogonal plane at the harvest
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Figure 1. A graphical depiction of how a risk profile is derived from the probability
surface that is obtained by assembling the complement of the cumulative
frequency distributions for projected fishing mortality over a range of
quotas. The intersection of the risk surface with an orthogonal plane at a
fishing mortality rate corresponding to the harvest strategy target de-
fines the risk profile.

strategy target, F0.1 = 0.25 in this example, on the forecast event parameter
axis defines the risk profile. Though the risk graphic has the appearance
of a cumulative frequency distribution, it conveys different information.
On a cumulative frequency distribution graph, the ordinate represents
the probability that the statistic is less than or equal to the value of the
statistic at that point on the abscissa. On this risk graph, the ordinate
represents the probability that the statistic is less than or equal to a har-
vest strategy target for the action specified by that point on the abscissa.
These characteristics make the risk graph readily useable in the decision
process.

Cumulative frequency distributions of forecast event parameters are
derived from the statistical properties of the population state variables.
The adaptive framework, ADAPT, (Gavaris 1988) was used to calibrate a
sequential population analysis with independent abundance indices. For
both stocks, the model formulation employed assumed that the error in
the catch at age was negligible, the errors in the abundance indices were
independent and identically distributed after taking natural logarithms of
the values, and the annual natural mortality rate, M, was constant and
equal to 0.2 over all years and ages. A model formulation using as param-
eters the natural logarithm of population abundance, θa,t ′ for specified
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ages a at time t′, where t′ = beginning of year 1997 for the haddock case
and beginning of year 1996 for the cod case, was considered because of
close to linear behavior for such a parameterization (Gavaris 1993). The
additional parameters in the model, κs,a, are associated with the catchabil-
ity relationship between population abundance and each of the index
sources, s. Further specific details on each of the assessments are provid-
ed in Sinclair et al. (1996) and in Gavaris and Van Eeckhaute (1997).

ADAPT employs a Marquardt algorithm to solve for the parameters of
the nonlinear least squares objective function. The covariance matrix of
the parameters was estimated using the common linear approximation
(Kennedy and Gentle 1980, p. 476)

    
Cov( ,̂ )̂ ˆ ( ,̂ )̂ ( ,̂ )̂θ κ σ θ κ θ κ= [ ]−

2
1

J JT (1)

where   ̂σ 2 is the mean square residual and     J( ,̂ )̂θ κ  is the Jacobian matrix.
The bias of the parameters was estimated using Box’s (1971) approxima-
tion that assumes the errors are normally distributed
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where     Js a t, , ( ,̂ )̂θ κ  are vectors of the first derivatives and     Hs a t, , ( ,̂ )̂θ κ  are the
Hessian matrices of second derivatives for each element of the objective
function with respect to the parameters. The superscript T denotes trans-
pose and the expression tr represents the trace of the matrix.

Population quantities of interest for management are functions of the
estimated parameters. The variance and bias for an arbitrary function of
estimated parameters,     ̂ ( ,̂ )̂α θ κ= g , where g is the transformation function,
were obtained using the methods described in Ratkowsky (1983)

    
Var ˆ cov ,̂ˆα θ κ( ) = ( )[ ]tr GGT (3)

    
Bias Biasˆ ,̂ˆ cov ,̂ˆα θ κ θ κ( ) = ( ) + ( )[ ]G tr WT 2 (4)

where G is the vector of first derivatives of g with respect to parameters
and W is the matrix of second derivatives of g with respect to parameters.

For the cod stock, cumulative frequency distributions of the forecast
event parameters were obtained from a parametric Monte Carlo experiment.
Statistics for the population abundance, Na,t ′, at time t ′ were derived from



908 Gavaris & Sinclair — Assessment Uncertainty and Risk Analysis

the parameter estimates using equations (3) and (4) where the transforma-
tion function is simply     N ea t

a t
,

ˆ ,
′ = ′θ . Replicate population abundance values

were generated from a lognormal distribution characterized by the calcu-
lated variance and centered about the bias adjusted mean. The simulated
population abundance replicates were used in standard fisheries projec-
tion procedures to obtain results of the three identified forecast event
parameters. These were projected fishing mortality rate, F, projected change
in ages 5 to 15 biomass, ∆B, and projected absolute biomass for ages 5 to
15, B. The outcomes of 300 generated replicates for each quota option
over the range of 0 to 25,000 t in 1,000 t increments were used to con-
struct the cumulative frequency distributions.

For the haddock stock, the forecast event parameters were defined as
the projected inverse exploitation rate, 1/ut ′, on ages 4 to 8 and the pro-
jected change in the beginning of year biomass, ∆Bt ′+1, for ages 3 to 9.
Inverse exploitation rate was used rather than fishing mortality rate because
inverse exploitation rate is a linear function of the population abundance
and avoids complications of interpretation caused by transformation bias.
For a range of catch quotas in 1997 from 1,000 t to 10,000 t, equations (3)
and (4) were used to obtain statistics of these forecast event parameters
directly from the model parameter estimates where the transformation
functions were based on standard fishery projection procedures. Cumula-
tive frequency distributions characterized by Var(1/ut ′) and Var(∆Bt ′+1) and
centered about (1/ut ′ – Bias1/ut ′

) and 
    
( )∆ −′+ ∆ ′+

Bt Bt1 1
Bias  respectively were

constructed assuming a normal distribution.
The uncertainty characterized by the cumulative frequency distribu-

tions was translated into risk by evaluating the probability that the identi-
fied forecast event parameters were less than the strategic references for
each quota option in the range examined. For cod, the Pr {Ft ′ ≤ 0.2}, the
Pr{Bt ′+1 ≤ 115,000 t} and the Pr{∆Bt ′+1 ≤ 0 t} were computed while for had-
dock, the Pr{(1/ut ′ – Bias1/ut′

) ≤ 4.5} and the Pr{(∆Bt ′+1 – 
    
Bias∆ ′+Bt 1

) ≤ 0 t} were
computed. Recall that for cod, the population abundance estimates were
adjusted for bias prior to calculating projections.

The method used to derive the risk analysis from the assessment re-
sults differed somewhat for cod and haddock but Sinclair and Gavaris
(1996) considered that both approaches led to similar conclusions. The
method used for cod makes assumptions about the distribution of cur-
rent bias adjusted population abundance estimates and projects those
distributional qualities forward using Monte Carlo replicates. The method
used for haddock projects the uncertainty of current model parameters to
forecast event parameters using analytical approximations and then makes
assumptions about the distributions of those forecast event parameters.

The utility of the risk analysis relies on adequate modeling of the
uncertainties. The quantification of uncertainty involves various assump-
tions and approximations. The approach used here captured some of the
uncertainty in the estimates of population abundance but did not include
stochastic aspects of forecast weight at age, exploitation pattern by age,
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and natural mortality. Neither was uncertainty arising from systematic
errors in data reporting or model misspecification considered. In addi-
tion, assumptions about the distributions of population abundance or fore-
cast event parameters were invoked to derive probabilities. Further research
is needed to investigate practical approaches for incorporating additional
stochastic elements and to explore the impacts of relaxing distributional
assumptions, for example by using modern bootstrap techniques to de-
rive empirical cumulative frequency distributions.

Results
The 1997 management advice for cod was based on an assessment con-
ducted in the spring of 1996 (Sinclair et al. 1996). Forecast projections
were computed for 1997 assuming a 1996 catch of 2,000 t to account for
the catches by the sentinel survey, selectivity experiments, and bycatches
in other fisheries. The probability that the 1998 biomass would be less
than the 1996 biomass increased from 7% for a quota of 0 t in 1997 to
about 50% for an 8,000 t quota and to 90% for a quota of 22,000 t (Fig. 2).
There was a 50% probability that the 1998 biomass would be below the
FRCC reopening threshold of 115,000 t for a 1997 catch of 3,000 t. The

Figure 2. Risk analysis of 1997 quota options for southern Gulf of St. Lawrence
cod using three harvest strategy targets indicated that, though fish-
ing mortality rate is not likely to exceed the F0.1 reference for yields
less than about 17,000 t, the biomass rebuilding objectives dictat-
ed considerably lower yields.
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Figure 3. Risk analysis of 1997 quota options for eastern Georges Bank had-
dock indicated that, for yields less than about 3,000 to 4,000 t,
fishing mortality rate was not likely to exceed the F0.1 reference and
there was a high probability for an increase in biomass.

probability that the 1997 F would be greater than 0.2 increased from 0% at
14,000 t to 50% at 17,000 t, and to 100% at 21,000 t.

The 1997 management advice for haddock was based on an assess-
ment conducted in the spring of 1997 (Gavaris and Van Eeckhaute 1997).
This was possible because the fishery was not opened until June of that
year. Below about a 4,000 t quota there was virtually negligible probability
that the inverse exploitation rate would be less than 4.5 (corresponding to
an exploitation rate of 22% and F0.1 of 0.27) and above about an 8,000 t
quota there was virtual certainty that the inverse exploitation rate would
be less than 4.5 (Fig. 3). On the other hand, the probability that the differ-
ence in biomass between 1998 and 1997 would be less than 0 t only in-
creased from about 30% to about 80% over the same range of quotas. The
quota corresponding to 50% probability that the inverse exploitation rate
would be greater than 4.5 was about 6,200 t while the quota correspond-
ing to 50% probability that the biomass would increase between 1997 and
1998 was about 5,500 t.

The risk profiles for exploitation rate were steeper and provided a
relatively narrow range of quotas that satisfied the harvest strategy for
forecast exploitation while the risk profiles for biomass were shallower
and covered a larger range of quota options. This implies a higher degree
of certainty in the range of quotas that would achieve the harvest strategy
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targets than those that would achieve the biomass objectives. Most of the
difference in the steepness of the slopes is due to the age ranges used in
the calculations. For haddock, the inverse exploitation rate did not in-
clude age 3 and for cod the fishing mortality did not include ages 5 and 6.
The estimates for these younger ages are very imprecise and inflate the
variance of biomass. Further, when considering biomass change, the cor-
relation between the estimates from one year to the next can influence
results.

Discussion
Prior to 1996, management consultations about the scientific evaluations
for Atlantic Canadian groundfish generally focused on the acceptability to
industry of quotas estimated from deterministic projections at F0.1. With
typically only one option to consider, stakeholders and managers felt dis-
enfranchised in the decision process. The only perceived avenue for in-
volvement was to question the validity of the scientific results. Attempts
during the early 1990s to provide estimates of uncertainty for the F0.1

projections only served to attract further criticism about the reliability of
the advice. The desire by stakeholders and managers to participate in the
decision process eventually led to the request that advice be provided for
a range of options.

The request for advice over a range of options gave rise to consider-
able confusion. DFO scientists had been accustomed to providing advice
for the “best” quota consistent with an F0.1 strategy. It was natural to inter-
pret the new request for advice as asking for provision of results on the
“best” quota consistent with a range of options for F. This interpretation
implied a departure from the established harvest strategy of F0.1. Provid-
ing quota projections for a range of fishing mortality led to annual de-
bates about the merits of alternative harvest strategies. This was an
unproductive development as there was no basis to vary the harvest strat-
egy from year to year.

In hindsight, clearly distinguishing between decisions about immedi-
ate actions and decisions about harvest strategy targets might have pre-
vented the confusion. Although deterministic F0.1 projections had come
under criticism, the issue was not the suitability of F0.1 as a harvest strat-
egy target. Despite the lack of consistent and clearly defined conserva-
tion, social and economic objectives, and of associated rigorous risk
analyses of alternate harvest strategies, there seemed to be general accep-
tance for an F0.1 harvest strategy, which implied an exploitation rate in the
range of 15% to 20% for most groundfish. The issue was how well alternate
actions fared in achieving the strategy. It was necessary to develop a new
view of projections as a tool for measuring performance of alternate ac-
tions relative to a strategy rather than as a tool for providing the “best”
action for the strategy. This new interpretation led directly to risk analysis
of immediate management decisions as measured against an established
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harvest strategy. The role of science was to quantify the consequences of
alternate actions. It was incumbent on managers and stakeholders to con-
sider these risks in the context of prevailing conditions. The choice of any
particular quota option reflects their risk tolerance. Risk neutral strate-
gies might be favored when the population abundance and recent exploi-
tation rates are about average and would follow the deterministic catch
projection results where the probability of achieving the harvest strategy
target is 50%, assuming a symmetric distribution. Risk-averse strategies
may be favored during rebuilding periods and would lean toward lower
catches to lower the probability of exceeding exploitation reference levels
and of not achieving desired biomass levels or increases. Risk prone strat-
egies would tolerate higher quotas and accept probabilities lower than
50% of achieving harvest strategy objectives.

The three components of risk analyses, clear identification of avail-
able actions, establishment of suitable harvest strategies, and derivation
of cumulative frequency distributions for forecast event parameters, need-
ed to be refined and packaged for implementation. In the short period
following the request to provide advice for a range of options, it had be-
come customary to portray the consequences of alternate choices of fish-
ing mortality rate. Explicitly recognizing that in Atlantic Canada the
regulatory measure was catch quotas and not fishing mortality rate was a
simple yet fundamental paradigm change which laid the foundation for
subsequent development. In this paradigm, performance had to be mea-
sured against alternate management actions, therefore we evaluated the
consequences for choices of catch quota. We capitalized on the existence
of the established reference fishing mortality rate, F0.1, as the harvest strat-
egy target but recognized that this did not encompass recruitment over-
fishing concerns. Establishment of credible stock-recruit relationships for
marine fish have been elusive and even agreement on minimum biomass
levels have not been generally achieved. The generally accepted percep-
tion that the cod and haddock resources were in a depleted state offered
the opportunity to introduce biomass increase as a useful harvest strate-
gy target. Also, for cod, where the directed fishery was closed, the FRCC
had already defined a threshold biomass as a reopening criterion and we
advantageously included this aspect in the risk analysis. With growing
acceptance of integrated statistical estimation procedures for fisheries
assessment models, it was natural to extend results by applying available
statistical practices to obtain cumulative frequency distributions for de-
sired quantities. Recognizing that further refinements were required to
incorporate all of the uncertainties, these methods attempted to encom-
pass the most important sources of uncertainty.

The final required ingredient was to devise a succinct summary of
complex probabilistic analyses. We used a graphic that depicted the rela-
tive performance measures against alternate actions. This risk analysis
graphic proved to be easily interpreted and was quickly adopted by stake-
holders and managers in their deliberations. Two or three performance
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measures can be included on the same graph. Consideration of the merits
of alternative actions was enhanced by a companion graphic which dis-
played the expected value of forecast exploitation rate and forecast change
in biomass from the projections (Fig. 4). These two graphics appeared to
encapsulate the information required to make informed fisheries man-
agement decisions. Such risk analysis graphics are practical for actions on
a continuous scale or categorical actions that can be naturally ordered. It
would also be possible to show a risk surface when decisions for two
types of actions, for example quotas and gear mesh size, were contem-
plated. Examining the three-dimensional surface rather than marginal or
conditional results could reveal interesting results. Considering decisions
on more than two types of actions simultaneously greatly increases the
complexity of the problem and may make complete graphical representa-
tion difficult.

The specific situation and environment may influence how readily
stakeholders and managers embrace the risk analysis. There was a nota-
ble difference in the acceptance of the risk analysis results for the two
cases examined here. During the FRCC public consultations, industry rep-
resentatives contended that cod appeared to be more abundant than the
stock assessment indicated and there were no specific discussions of the
risk analysis, though it was included in the Stock Status Report (DFO 1996).

Figure 4. The graph of expected values of the forecast events for a range of
quotas complemented the risk analysis and indicated that quotas
in the range of 3,000 to 4,000 t should result in an exploitation
rate of about half that corresponding to F0.1 and an increase in
biomass of almost 2,000 t. The F0.1 and the zero growth harvest
strategy references are indicated.
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The FRCC recommended that the cod fishery be reopened in 1997 with a
quota of 6,000 t and that the fishery be strictly controlled. In subsequent
consultations between DFO and the fishing industry, there were serious
difficulties reaching consensus and a sharing arrangement among user
groups for this limited quota. At that time, the industry also indicated
concern that the stock had not recovered sufficiently to support a re-
opened fishery. The Minister of Fisheries and Oceans decided that the
directed fishery should remain closed during 1997 and provision was made
to allow a catch of 2,000 t in sentinel surveys, experimental fisheries, and
bycatch. In this case the risk analysis had limited influence on the re-
source management decision.

There was careful consideration of the risk analysis included in the
Stock Status Report for eastern Georges Bank haddock (DFO 1997), and
because of the depleted state of the resource, attention focused on the
consequences of quota options for biomass rebuilding. In general, indus-
try recommended quota options in the range of 3,500 t to 4,500 t on the
basis of a low probability that this would lead to a fishing mortality rate in
excess of F0.1 and a high probability that the biomass for ages 3 and older
would increase. The advice submitted to the Minister by the FRCC (FRCC
1997a) highlighted four criteria to rebuild the Georges Bank groundfish
resources. These were setting quotas below F0.1, targeting an increase in
biomass of 5% or more, keeping the risk of decline in biomass to 20% or
less and maintaining an appropriate quota ratio of cod to haddock. For
haddock specifically, the FRCC recommended a Canadian quota of 3,200
t, and with the expected U.S. catch, this quota would give a 73% probabil-
ity of growth in biomass for ages 3 and older. The expected biomass in-
crease was 7-8%. This quota level resulted in a probability greater than
95% that the inverse exploitation rate would exceed that associated with
F0.1 with the expected exploitation rate being about half that associated
with F0.1. The risk analysis, along with the evidence supporting rebuilding
and the considerations regarding ratio of cod to haddock quota, were the
essential factors forming the basis of the advice.

Technical enhancements in the construction of cumulative frequency
distributions, such as investigations of bootstrap techniques which are
under way, and advances in identification of suitable harvest strategy tar-
gets through comprehensive simulation studies will improve the risk anal-
ysis toolbox. However, this framework for translating assessment
uncertainty to management risk has received acceptance and the results
that can be obtained with existing technology can offer useful guidelines
if the limitations are adequately qualified. In its consideration of re-open-
ing criteria, the FRCC recognized the role of such risk analyses in the
decision process (FRCC 1996). The latest report from the FRCC to the Min-
ister titled “A Groundfish Conservation Framework for Atlantic Canada”
(FRCC 1997b) endorsed the evaluation of uncertainty and recommended
that “risk analyses should be carried out when feasible.”
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Abstract
This paper looks at the actual catches of eight European demersal fish
stocks back to 1983 in reference to the annual assessment and recom-
mendations issued by the European Community management system. We
used all estimates obtained at all steps of the process (catch data for any
year n, VPA assessment, TACs for any (n+1) year, and respective actual
catches). From this, we calculated ratios linking expected and actual values
of demographic parameters of stocks. These ratios highlight discrepan-
cies along the TAC setting process and their induced outcomes for exploi-
tation and management. The scientific diagnoses obviously are pessimistic
for saithe in West Scotland but not always pessimistic enough given the
actual state of the stocks. Conversely, for whiting, the assessment and
recommendations lead to an optimistic diagnosis but not optimistic
enough. Additive uncertainty together with too much trust in sophistica-
tion of assessment methods, associated with bargaining along the whole
process, may explain a low performance of the management system of
some European fish stocks.

Introduction
During recent decades, the scientific assessments and the management
framework that was set up within the European Union were unable to stop
the decline of most fish stocks. Today, many stocks are overexploited,
sometimes very heavily, in spite of technical measures taken for many
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years such as total allowable catches (TACs) and quotas (Biais 1993). By
scrutinizing the history of the decision-making process, it seems possible
to identify some reasons for this failure, to improve the assessment pro-
cess, and to design more efficient management tools.

Northeastern Atlantic fish stocks are exploited by European Commu-
nity fishing fleets. Many stocks are scientifically assessed on an annual
basis by working groups of the ICES (International Council for the Explora-
tion of the Sea). The assessment stage leads to management recommenda-
tions that are converted into TACs and fishing quotas through a complex
process, which was described by Gueguen (1988). Our working assump-
tion is that part of failure may come from this long and complicated pro-
cess. Then, by using a retrospective analysis applied to some stocks
exploited by Brittany fleets from 1983 to 1994, this paper evaluates the
reliability of diagnoses issued from the ICES assessment groups, the dis-
crepancies between proposed management recommendations, the adopt-
ed levels, and the recommendations that were implemented. The
subsequent impact of actual catches on the stocks is also considered.

Material and Methods
Status of the Fish Stocks
High-seas French fleets based in Southern Brittany (Lorient, Concarneau,
Guilvinec, Douarnenez, and Audierne) are composed of about 350 trawl-
ers (artisanal, semi-industrial, and industrial) based in different harbors.
They mainly exploit West Scotland zones (industrial trawlers from Lorient
and semi-industrial from Concarneau), the Celtic Sea zone (semi-industri-
al from Lorient and artisanal fleet from Concarneau), and Bay of Biscaye
(artisanal fleet). A fishing vessel is defined as a high-seas vessel if it makes
more than one 96-hour fishing trip during a given year.

All quoted data come from Maguer (1996) and were extracted from
databases held by the Administrative Center of Marine Affairs at St. Malo,
France, and by IFREMER (Fishery Laboratory located at Lorient, France). As
assessment refers to stock concept which associates a species with an
ICES area, some species may include two distinct stocks. Thus, of the ten
main species exploited by high-seas fishing fleets from southern Brittany,
only eight are under scrutiny of the ICES and managed under TACs; this
corresponds to nine stocks. Monkfish stocks (Lophius piscatorius and L.
budegassa) are not considered in this paper because of their low level
catch within West Scotland zone.

As a whole, catches of species under TACs decreased by a factor of
two. During the mid-1980s, the total catch of the main eight species was
about 100,000 metric tons from a total of 150,000 t caught by those fleets.
Since 1989, overfishing and the decline of the industrial fishery led to a
very severe depression in catch and spawning stock biomass. In 1994,
they represent only 50,000 t (Fig. 1a). Similar patterns are observed for
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Table 1. The eight main stocks exploited by high-seas fishing fleet based
in Southern Brittany, under annual ICES working groups assess-
ment.

Geographical ICES Stock level
Species Name zone zones in 1995

Saithe Pollachius virens West Scotland VI Overexploited and
biomass lower
than MBAL

Cod Gadus morhua West Scotland VIa Overexploited and
biomass lower than
MBAL

Cod Gadus morhua Celtic Sea VIIfgh Overexploited and
biomass close to
MBAL

Hake Merluccius North Atlantic IIIa IV VI Overexploited and
merluccius VII VIIIab biomass lower than

MBAL

Whiting Merlangius Celtic Sea VIIbk Growth overfishing
merlangus

Megrim Lepidorhombus sp. Celtic Sea and VIIbk + Growth overfishing
Bay of Biscaye VIIIab

Norway Nephrops Celtic Sea and VIIIab Growth overfishing
lobster norvegicus Bay of Biscaye (evaluation in 1992)

Haddock Melanogrammus West Scotland VIa Growth overfishing
aeglefinus

The status level of exploitation is given for 1995 (from ICES 1996).

their relative spawning stock biomass which suggest a decline of some
stocks (hake, saithe, and haddock) for the considered area. All these stocks
are currently considered overexploited (Table 1) and three of them dis-
play biomass levels lower than the minimum considered under a precau-
tionary approach (ICES 1996).

The MBAL (Minimum Biological Acceptable Level) is a critical empiri-
cal threshold which defines a precautionary approach. MBALs aim at avoid-
ing overexploitation on recruitment by conserving a minimum biomass
and spawning stock biomass to allow the stock to perpetuate in the long
term. MBALs are estimated by referring to a fishing mortality, Fhigh, which
corresponds to the mortality level inducing the decline of the biomass
from one brood year to the next one for 90% of chance, if applied for the
previous years (i.e., when the spawning biomass and recruitment would
have been known).
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Figure 1. Evolution of (a) catches and (b) spawning stock biomass (in
thousand metric tons) of the top eight species (12 ICES stocks)
exploited within four ICES zones by high-seas fishing fleets based
in Southern Brittany from 1983 to 1994. WS: West Scotland;
CS: Celtic Sea; Nat: North Atlantic; BB: Bay of Biscaye.
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A Backward Analysis of the Reliability of Diagnoses
Virtual population analysis (VPA) constitutes the basic tool used by the
ICES working groups to elaborate their diagnoses. For any stock, this method
leads to the estimation of fishing mortalities F, the biomass B, the spawn-
ing stock biomass SSB, and the recruitment R. For each year n, this evalu-
ation applies for all years before up to (n–1). Because of the mathematical
convergent properties of the VPA, the results can be considered more reli-
able for old data and more uncertain for recent data (Pope and Shepherd
1985). Results of the most recent period are also used to predict future
catches. These results are subsequently used as input variables into simu-
lation processes which constitute the basis of the management recommen-
dations issued by the ACFM (Advisory Committee on Fishery Management).
The crucial importance of recent year estimates to future predictions ex-
plains why the calibration process of VPA needs scrutiny. Calibration aims
at refining the reliability of diagnoses after considering fishing effort data.
However, this reliability can be appreciated only afterward.

Uncertainty of recent years’ estimates remain a basic drawback of the
VPAs. But for any past year, this is the most recent estimate that can be
considered as the most probable value. Based on this background, we
estimated the reliability of the scientific diagnoses with a retrospective
analysis. As a convention in this paper, the parameters calculated in 1995
for the entire assessment period (back to 1983) served as the reference,
and are considered as the “actual” values. Then, we compared estimates of
fishing mortality (F ), spawning stock biomass (SSB), and recruitment (R)
made in each year prior to 1995 with estimates of the same parameters
made using 1995 data (F*, SSB*, and R*). The reliability for year n was
estimated with three ratios of prior year estimates: the fishing mortality
(average on main exploited age groups), the spawning stock biomass and
the recruitment, which for year n–1 are noted as Fn–1, SSBn–1, and Rn–1.

Given the estimate made in 1995 concerning any (n–1): F*n–1, SSB*n–1,
R*n–1, the reliability of the diagnosis made the year n is appraised by calcu-
lating three ratios:
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If greater than 1, each parameter is overestimated; if less than 1, it is
underestimated.

From the Diagnosis to the Management Decisions and
Implementation
The annual estimations by ICES working groups are followed by simula-
tions which give, for some fishing mortality values, the expected catch
and biomass for the next years. Hence, a fishing mortality is recommended
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for the following year (n+1). In principle, this is the mortality that would
allow the spawning stock to rebuild or at least to stop a declining trend. In
order to reply to the European Commission’s request, whose management
system mainly lies on catch allocations, the proposed recommendation
issued by the ACFM, implicitly and often explicitly, lies on defining a catch
volume based on the “desired mortality.” These scientific recommenda-
tions are noted:     Fn

r
+1,     SSBn

r
+1, and     Rn

r
+1.

From the recommendations, the European Commission’s Fishing Office
(DG-XIV) sets up a TAC proposal. This proposal is conveyed to the Council
of European Union through a complex administrative process in which
various commissions are involved to consider social, economic, and polit-
ical issues. Then, for the following year, the council adopts a TAC, so-
called “approved TAC” noted as: TACn+1. We quantified the discrepancy
between the scientific recommendation and the political choice by calcu-
lating the ratio:

    

TAC
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n
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+

+

1

1

A ratio greater than 1 means the “approved TAC” exceeds the scientific
recommendation

The implemented management measures can be more or less abided
by, which leads to a discrepancy between actual catches (or landings) and
the approved TACs. The catches made during the year n+1 are estimated
by the working groups during the subsequent years. In particular, for the
1995 assessment, we have catch estimations for every year from 1983 to
1994. We calculated two ratios:
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which measures the lag between the management “approved TAC” by the
Council and the “actual catch.” A ratio greater than 1 means the TAC was
exceeded, and:
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which measures the lag between the initial scientific recommendation and
the actual catch. A ratio greater than 1 means the recommendation was
exceeded. Finally, we translated the catch into fishing mortality. This mor-
tality also implies a given level of the surviving spawning stock biomass.
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So, we compared the impact of actual catches on the stock with the recom-
mended effect by calculating the two ratios:
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These ratios account for the efficiency of the scientific work about limit-
ing fishing pressure and preserving spawning potential. The closer to the
value 1 they are, the closer to the biologist’s advice the fishing practices
are.

Results
Reliability of Diagnoses
The ratios between estimated fishing mortality and “actual” mortality range
from 0.6 to 1.8, carrying errors through the whole process. Errors may
sometimes be very important in estimates (Table 2 and Fig. 2). On aver-
age, for the considered period, the mortality is overestimated for three
among nine stocks: the Norway lobster in Bay of Biscaye (but too few
years are available for this species), haddock in West Scotland, and whit-
ing in the Celtic Sea. In the three cases, they are considered as “moderate-
ly overexploited,” but with a biomass greater than precautionary thresholds.

Table 2. Mean ratios (period 1983-1993) between estimated and actual
values (*) of fishing mortality (F ), spawning stock biomass (SSB)
and recruitment for eight fish stocks in four ICES zones

Stock Geographic zone
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n

−

−

1

1
*

    

SSB

SSB
n

n

−
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1*
    

R

R
n

n

−

−
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1
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Saithe West Scotland 0.88 1.18 1.45

Cod West Scotland 0.88 1.06 1.37

Cod Celtic Sea 0.92 0.81 0.81

Hake North Atlantic 0.99 1.52 1.22

Whiting Celtic Sea 1.33 0.65 0.64

Megrim Celtic Sea and Bay of Biscaye 0.69 1.26 0.98

Norway lobster Bay of Biscaye 1.43 0.87 0.97

Haddock West Scotland 1.20 0.90 0.88
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Figure 2. Evolution of ratios between estimated and actual annual fishing
mortality values from 1983 to 1993 for ICES stocks exploited within
four ICES zones. WS: West Scotland; CS: Celtic sea; Nat: North At-
lantic; BB: Bay of Biscaye.

For most cases, however, the fishing mortality is underestimated. This is
particularly true for the three stocks that are considered as heavily ex-
ploited (i.e., biomass lower than MBAL): hake in North Atlantic, saithe and
cod in West Scotland. To sum up, diagnoses tend to underestimate the
seriousness of the most critical situations. Moreover, this underestima-
tion seems especially pronounced when fishing mortality is growing. For
instance, this is the case for saithe in 1989 and for cod in the Celtic Sea in
1986.

Regarding the spawning stock biomass and recruitment, the ratios
between estimated and actual values range from 0.4 to 2.4. The average
values for the period strengthen the above results and lead to opposite
situations:

• For the most exploited stocks such as saithe and cod in West Scot-
land, the diagnoses got more pessimistic as the stock declined. But
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because the fishing mortality was steadily underestimated, where-
as the spawning stock and recruitment were overestimated, the di-
agnoses remained not pessimistic enough.

• Conversely, the whiting stock in the Celtic Sea seems in a much
better situation: the catches grew while mortality dropped. Here,
the mortality remained overestimated whereas the spawning bio-
mass and the recruitment were underestimated. The diagnoses be-
came more and more optimistic, but not enough given the actual
state of the stocks.

From the Recommended Catch to the Actual Catch
Through all the cases studied in this paper, the approved catches by the
Council of Europe are higher than the scientific recommendations (Table
3 and Fig. 3). For the cod and the whiting in the Celtic Sea, the approved
TACs reach about three times the recommendations (!). Such a result is
misleading insofar as the recommendation deals with the only Celtic Sea
zone (ICES zone VIIfgh), whereas the TACs concern a much wider area
(ICES zone VII as a whole). Such a gap illustrates a lag between the assess-
ment and the management stage which are set up for different spatial
scales. The situation is different when they apply to the same zone, as the
gaps between scientific recommendations and approved TACs often re-
main narrow; this is the case for the Norway lobster and the monkfish.

Table 3. Average ratios (1983-93) between recommended yield (Yr), ap-
proved catches (TAC), and actual catches (Y*) for nine fish stocks
in four ICES zones.

Stock Geographic zone     

TAC
Y

n

n
r

+

+

1

1     

Y

TAC
n

n

+

+

1
*

1     

Y

Y
n

n

r

+

+

1

1

*

Saithe West Scotland 1.37 0.95 1.24

Cod West Scotland 1.17 0.78 0.90

Cod Celtic sea 3.27 0.50 1.53

Hake North Atlantic 1.25 0.94 1.31

Whiting Celtic Sea 2.83 0.47 1.34

Megrim Celtic Sea and Bay of Biscaye 1.03 0.98 0.80

Norway lobster Bay Biscaye 1.04 0.77 –

Norway lobster Celtic sea 1.19 0.18 0.25

Haddock West Scotland 1.50 0.65 0.95
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Figure 3. Evolution of ratios between annual recommended yields and approved
catch for ICES stocks within four ICES zones from 1983 to 1996. WS: West
Scotland; CS: Celtic sea; Nat: North Atlantic; BB: Bay of Biscaye.

However, wide gaps can be observed systematically when the working
groups tend to recommend drastic decreasing catches for depleted stocks.
This is the case for West Scotland stocks: haddock through years 1987-
1990, saithe and cod through 1993-1995. Even when the approved catches
are diminishing, they still exceed the values recommended by the ACFM.
In other words, the political decisions follow rather well the biologists’
recommendations but with a longer delay as the recommendations in-
volve difficult choices. The ratios of actual catches vs. the “approved catch-
es” are systematically lower than 1: i.e., quotas were never reached during
the investigated 10-year period. Thus, for the studied stocks, the catch
level was limited by fish availability, not by quotas; this is particularly
obvious when the TACs exceed the scientific recommendations for cod
and whiting in the Celtic Sea; the actual status of the stock (potential har-
vestable biomass) counterbalances the excessive optimism of the political
decision. We see this pattern when TACs are close to recommendations
(e.g., cod in West Scotland). In the latter case, the desirable regulation of
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catches seems to depend more on the weakness of the potential biomass
than on wise political decisions with respect to scientific diagnoses. Final-
ly, in many cases, the observed catch is greater than the recommendation.
This pattern can be seen for overexploited stocks (saithe and hake) as well
as for the stock of whiting in the Celtic Sea which might support more
exploitation.

From the Real Catch to the Impact on the Stock
Because most of the actual catches were higher than the scientific recom-
mendations, they were translated into a fishing mortality often higher
than the initially recommended mortality (Table 4). The resulting spawn-
ing stock biomass became lower than the expected level. This situation
can be observed for two of the most exploited stocks: saithe and cod in
West Scotland. The too optimistic diagnoses were associated with failures
in reaching the initially recommended objectives, which may have induced
higher risks for the stocks to decline. Inversely, the less overexploited
stock, whiting in the Celtic Sea, had lower mortality levels and higher
spawning biomasses than the recommended levels. But if the actual catches
were higher than the recommendations (as estimated in Table 3), they
induced mortalities lower than expected because the initial diagnosis was
too pessimistic. In short, the recommendation seems to have been too
restrictive. In part, reducing the recommendation is warranted in this case.
Indeed, catch limits of whiting in the Celtic Sea are proposed in order to
protect the more fragile cod stock which is exploited together with whit-
ing (ICES 1996).

Table 4. Average ratios (1983-1993) between actual (*) and rec-
ommended values of fishing mortality (F ) and spawn-
ing stock biomass (SSB) for fish stocks in four ICES
zones.

Stock Geographic zone
    

F

F
n

n

r

+

+

1

1

*

    

SSB

SSB
n

n

r

+

+

1

1

*

Saithe West Scotland 1.60 0.78

Cod West Scotland 1.44 0.71

Cod Celtic Sea 1.37 1.21

Hake North Atlantic 1.03 1.19

Whiting Celtic Sea 0.83 2.39

Megrim Celtic Sea and Bay of Biscaye 0.80 0.71

Haddock West Scotland 1.07 1.28
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Discussion and Conclusion
The lag between scientific evaluations and the real status of stocks are
often addressed by assessment groups themselves (ICES 1996, 1997), as
well as by specific studies on some stocks (e.g., Ould El Kettab 1993, for
gadoids in the Celtic Sea). Our paper shows that the evaluations are delayed
from the real status of a stock, and much more when changes in stock
status are fast. They lead to overlay optimistic diagnoses in the most de-
graded situations. Moreover, the adopted TACs, often higher than biolo-
gists’ recommendations, do not constrain the fishers enough and do not
lead to expected lower mortalities.

For increasing overexploitation, the entire process from the assess-
ment step to the catch step is questionable. Saithe and cod in West Scot-
land illustrate those situations. Neither the evaluation, nor the implemented
management rules were able to prevent the declining of stocks from 1983
to 1992. Conversely, this degradation of the available resource can also
explain the economic difficulties that the industrial fishing fleet from south
Brittany is facing. Since the late 1980s, these difficulties have induced a
strong decline in the industrial fishery. The related drop in fishing effort
led to lower mortalities which we have noticed since 1990 for saithe and
1992 for cod. Recently the stock of saithe seems to be recovering with
very recent increasing biomasses (ICES 1997). We may wonder if economic
regulations, mainly declining rents for fishing companies, played a role
over biological and statutory regulations by decreasing targeting on such
depleted stocks. The successive lags that occur through the chain “assess-
ment-decision-implementation-impact” have consequences on the stocks
and decision makers must realize they have some responsibilities not to
be minimized.

Exceeding the recommended catches can only partially explain the
too high fishing mortality values. For instance, the actual fishing mortali-
ty for saithe was 60% higher than the recommended level whereas the
excess was only 24% for catches. For cod in West Scotland, the recom-
mended mortality was exceeded by 44% while the catches were 10% lower
than recommendations. These differences may be linked to uncertainty of
the diagnosis, in particular during the VPA stage. In both cases, the uncer-
tainty led to an underestimation of past mortalities, and to an overestima-
tion of available biomasses. Hence, even a strict implementation of scientific
recommendations would not have induced the expected drop in mortali-
ties. On the contrary, most of the biomass of cod and whiting in the Celtic
Sea seem underestimated. When recommendations for catches were high-
ly exceeded (+53% and +34% respectively), the effect on the related mor-
talities were slightly higher for cod (+37%) or lower than recommended
for whiting (–17%).

The efficiency of scientific recommendations, to reduce fishing effort
and conserve stock biomass, appears to depend as much on the reliability
of stock assessments as on the way the administrative and political powers
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interpret them. The reliability of the scientific diagnosis relies on the VPA;
however, we know that this method cannot be used to reliably estimate
the actual status of stocks for recent years (Laurec and Shepherd 1983).
This drawback is well acknowledged by scientists involved in assessment
tasks (Ulltang 1977, Sampson 1988, ICES 1991). From this point of view,
our analysis emphasizes that even the most powerful methods, as the
ones used by ICES experts, cannot solve this difficulty. There has been
much progress in the recent past to improve VPA methods (Sinclair et al.
1991, Angel et al. 1994). The growing sophistication of processes and
software for VPAs (including statistical optimization processes of calibra-
tion, shrinkage, and others) were supposed to increase the reliability of
estimations. So far, this improvement still remains to be demonstrated.
Nevertheless, we wonder whether the more complex statistical processes
do not lead scientists in charge of assessment to be set aside from the full
methodological mastering of the evaluation. In spite of a rigorous proce-
dure, there is a high risk that computing power may mask an oversimpli-
fication of some underlying assumptions, by minimizing the necessary
critical analysis of methods and results. As an example, and without say-
ing it could be the only or main causes of errors in evaluations, we suggest
three methodological issues to address:

i. The commonly used calibration method known as XSA (eXtented Sur-
vivor Analysis, Darby and Flatman 1993, Laurec 1993) relies on the
assumption that catchability for each age should be constant over the
years; even if this assumption is routinely analyzed, we can some-
times wonder about its potential impacts, notably when fast changes
in biomass induce changes in fishing strategies, and consequently in
fishing power of vessels (Biseau 1996, Millischer and Gascuel 1997).

ii. The estimated fishing mortalities for the past year (n–1) and exploita-
tion diagrams which are deduced for the last three years (from n–3 to
n–1), are often used in the simulation process for the ongoing year n
and the following year (n+1); which leads to the recommendation of
catches. Of course, this process can contribute to all observed lags
when the fishing effort gets higher.

iii. The impact of recruitment input for forecasting can also be important
for some stocks. As an example, for whiting in the Celtic Sea, almost
40% of catches and more than 50% of spawning stock biomass that are
predicted come from the recruitment input value.

Obviously, the prediction is the most uncertain operation. As a whole,
the diagnoses on the past are very reliable; the deviations from reality are
the most sensitive for the most recent years and often do not question the
main stock trend. These deviations seem magnified through the predic-
tion process the recommendation is based on. Of course, our paper does
not aim at condemning the scientific assessment. Instead, we emphasize
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the major scientist’s responsibility, the importance of the reliability of
diagnoses, and the need for critical analyses given that sophisticated meth-
ods are not sufficiently reliable. This major issue has been raised by sci-
entists Cadrin and Vaughan (1997) for the Atlantic menhaden and Starr et
al. (1998), who ask for a more cooperative approach among players within
the whole management process from revisited scientific assessments.
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Abstract
Catch-age analysis is a powerful tool for assessing the status of fisheries
resources and catch-age analyses are routinely conducted for many com-
mercially exploited fish stocks around the world. In this paper, we illus-
trate a general approach for making short-term stochastic projections from
the ADAPT age-structured assessment model. Our approach uses the stan-
dard statistical techniques of bootstrapping and Monte Carlo simulation
to project performance measures such as landings, discards, spawning
biomass, and recruitment under alternative management policies. The key
idea is to propagate variability in estimates of initial stock size forward in
stochastic projections of future possibilities. We use bootstrap replicates
of current population size from an age-structured ADAPT model combined
with a stochastic stock-recruitment relationship to simulate population
trajectories through the projection horizon. The approach is illustrated
for a commercially important New England groundfish, Georges Bank yel-
lowtail flounder, Pleuronectes ferrugineus. Although hypothetical, this il-
lustration provides some general insight for the rebuilding of the Georges
Bank yellowtail flounder stock.
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Introduction
Catch-age analysis is a powerful tool for assessing the status of fisheries
resources and catch-age analyses are routinely conducted for many com-
mercially exploited fish stocks around the world. Diverse methods of catch-
age analysis exist (Megrey 1989) and these include, but are not limited to,
tuned virtual population analysis (Laurec and Shepherd 1983, Parrack 1986,
Gavaris 1988), statistical catch-at-age analysis (Fournier and Archibald 1982,
Deriso et al. 1985, Hilborn and Walters 1992), stock synthesis (Methot
1989, 1990), as well as state-space (Mendelssohn 1988, Schnute 1994) and
Bayesian approaches (Hilborn et al. 1994, McAllister and Ianelli 1997).
Despite underlying differences in model assumptions and statistical frame-
work, these diverse approaches to age-structured assessment generally
provide estimates of fishing mortality and stock size at age through the
assessment time horizon. To provide quantitative advice to fisheries man-
agers, these estimates of fishing mortality and stock size are often com-
pared to biological reference points or to threshold stock sizes to evaluate
whether current exploitation rates exceed target or limit reference points
and whether stock size has been maintained above threshold levels (Cad-
dy and Mahon 1995). However, while such analyses provide historic and
current estimates of stock size and fishing mortality to evaluate previous
harvest policies, they do not address the management question of pro-
jecting what would happen in the future under alternative harvest poli-
cies.

In this paper, we illustrate a general approach for making short-term
stochastic projections from the ADAPT age-structured assessment model.
Our approach extends the work of Mohn (1993), who used bootstrapping
and simulation to project uncertainties in catch projections from ADAPT,
and Smith and Gavaris (1993), who compared several methods of evaluat-
ing the accuracy of projected catch estimates from ADAPT, in several ways.
First, in our approach, simulation is systematically applied to the entire
bootstrap distribution of initial population sizes to propagate uncertain-
ty. Second, our approach permits several types of future harvest policies
to be evaluated including quota policies, target fishing mortality rate pol-
icies, or any mixture of these two. Third, we provide a standard set of
performance measures, including spawning biomass, recruitment, land-
ings, discards, and the probability of achieving spawning biomass thresh-
olds, to evaluate the potential benefits of alternative harvest policies. Since
1994, this approach has been used to project the consequences of alterna-
tive management measures for several age-structured assessments in the
northwest Atlantic including Atlantic mackerel, Georges Bank cod, had-
dock, and yellowtail flounder.

Our approach uses the standard statistical techniques of bootstrap-
ping and Monte Carlo simulation to project performance measures such
as landings, discards, spawning biomass, and recruitment under alterna-
tive management policies. The key idea is to propagate variability in esti-
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mates of initial stock size forward in stochastic projections of future pos-
sibilities. We use bootstrap replicates of current population size from an
age-structured ADAPT model combined with a stochastic stock-recruit-
ment relationship to simulate population trajectories through the projec-
tion horizon. As a consequence, uncertainties in both initial population
abundance and future recruitment are directly incorporated into manage-
ment advice. The implications of management decisions can be quanti-
fied and compared using empirically derived sampling distributions of
catch, landings, discards, spawning biomass, recruitment, and, in the case
of management under fixed catch quotas, fishing mortality. Estimates of
the probability of exceeding biological reference points or achieving man-
agement targets are also quantified. The approach is illustrated for a com-
mercially important New England groundfish, Georges Bank yellowtail
flounder, Pleuronectes ferrugineus. This example is based on analyses of
Amendment 7 to the Northeast Multispecies Fishery Management Plan (New
England Fishery Management Council 1996) which was implemented to
rebuild depleted New England groundfish stocks.

Materials and Methods
Initial Population Abundance
Initial population abundance is the first of two key sources of random-
ness in this approach to making stochastic projections, where N(1) is the
vector of stock size at age in the current year which is also the first year of
the projection horizon. Regardless of the age-structured assessment model
used to estimate N(1), it is common practice to determine the sampling
distribution of model estimates of current population size and other key
outputs such as fishing mortality and spawning biomass. Uncertainties in
key model outputs are often described with confidence intervals or prob-
ability profiles which express the chance that an output falls below a bio-
logical reference point (Rosenberg and Restrepo 1994).

The ADAPT method of sequential population analysis provides the
initial abundance estimates for the projection approach described in this
paper (Parrack 1986, Gavaris 1988, Conser and Powers 1990, Mohn and
Cook 1993). This age-structured assessment approach combines deter-
ministic virtual population analysis with a nonlinear least squares (NLS)
objective function to estimate model parameters (θ ) such as stock size at
age through time. As generally implemented, the ADAPT method is a mea-
surement error model in which observed indices of relative abundance
(Iiy) are modeled as random deviations from the true values of the abun-
dance indices. In particular, it is often assumed that the log-transformed
measurement errors are independent and identically distributed random
variables with zero mean and constant variance. The NLS objective func-
tion [SS(θ)] typically consists of the weighted sum of squared differences
between model predictions of indices of stock size at age and observed
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survey indices of stock size at age in natural logarithmic scale. That is, the
objective function SS(θ) commonly has the form

    
SS I Iiy

y

Y

e iy e iy
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where Iiy is the observed value of the ith survey index in year y, I*iy is the
predicted value of the ith survey index in year y, K is the number of age-
specific survey indices, Yi is the number of years of abundance data for
the ith survey index, and λiy is the relative weighting factor for the ith
survey and yth year term. In the absence of prior information on the accu-
racy and precision of survey indices, the λiy are often set to 1. Given initial
estimates of model parameters and fixed weighting factors, an iterative
minimization algorithm, such as the Marquardt algorithm, is used to com-
pute the NLS estimate of model parameters, θNLS; this NLS estimate can be
interpreted as a maximum likelihood estimate (conditioned on the rela-
tive weighting factors) if the measurement errors are independent and
identically distributed lognormal random variables with zero mean and
constant variance.

We use the nonparametric bootstrap (Efron 1982) to empirically deter-
mine the sampling distribution for the estimator of N(1). To accomplish
this, the set of residuals {εiy} from the observed and predicted values of
survey indices of the best ADAPT model formulation are generated for
resampling

    εiy e iy e iyI I= −log log * (2)

The set of residuals is randomly resampled with replacement a large num-
ber of times (B) to create a family of new input data sets of relative abun-
dance indices. In particular, the bth bootstrap data set {Iiy

(b)} is constructed
from the bth set of resampled residuals {ε iy

(b)} as

    log log *( ) ( )
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This resampling is conditioned on the correctness of the fitted model
(Punt and Butterworth 1993) where it is assumed that residuals are inde-
pendent and identically distributed. Parameters of the age-structured as-
sessment model are re-estimated for each of the new data sets to generate
a set of bootstrap replicates of initial population abundance, {N (1)(1), N (2)(1),
…, N (B)(1)}. This set gives the empirical (bootstrap) distribution function
of the estimator of N(1) conditioned on the model. Bootstrap confidence
intervals are derived from percentiles of the bootstrap distribution of N(1)
(see Efron and Tibshirani 1993, Chapter 13) and point estimates of param-
eter bias can also be computed (Efron 1982, Smith and Gavaris 1993).
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Age-Structured Population Model
An age-structured population model is the basis for making short-term
projections. The model describes the dynamics of a closed, iteroparous
fish population whose abundance changes due to recruitment, natural
mortality, and fishing mortality. Recruitment to the population is mea-
sured at the beginning of each year. Population abundance changes through-
out the year due to the concurrent forces of natural and fishing mortality
so that the fishery is classified as a type-2 fishery (Ricker 1975).

Population Abundance, Survival, and
Spawning Biomass

Population abundance is measured by the number of survivors within
each recruited age class at the beginning of the year and is denoted by the
vector N(t) with elements Na(t) where “a” indexes age class and “t” indexes
year in the projection horizon. The youngest age class comprises the re-
cruits and the age of recruitment (R) is typically age-1 or age-2. The oldest
age class is a plus-group comprised of all fish that are at least as old as a
chosen cutoff age (A).

Population survival at age from year to year is calculated in the stan-
dard manner using instantaneous mortality rates. To describe annual sur-
vival through mortality, Ma(t) is the instantaneous natural mortality rate
and Fa(t) is the instantaneous fishing mortality rate on age-a fish. Popula-
tion size at age changes according to
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and (4)

Typically, age-specific values of natural mortality are not estimable due to
a lack of data and natural mortality is parsimoniously modeled as a con-
stant value across age classes. We adopt this convention and assume that
natural mortality (M ) is constant in what follows. Recruitment is modeled
as a stochastic process and is not determined by equation (4).

Annual spawning biomass is determined from the population size
vector N(t) and mortality rates as well as additional information concern-
ing fish maturity and size at age. Population abundance at the start of the
spawning season depends on the level of fishing and natural mortality
prior to spawning; the number of age-a fish alive at the start of spawning
(NS,a) is

    N t N t eS a a
T t M F ta

,
( )[ ( )]( ) ( )= − + (5)

where T(t) is the fraction of total annual mortality that occurs from Janu-
ary 1 to the start of the spawning season. This fraction may need to be
modeled as time-varying if seasonal patterns in fishing effort are altered
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by management measures. Because this approach focuses on short-term
projections, growth and maturation rates are assumed to be independent
of stock density during the projection horizon. Spawning biomass [SB (t)]
is the sum over all age classes of the weight of mature female and male
fish at the start of the spawning season
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where Pa is the average fraction of age-a fish that are mature and WS,a is the
average spawning weight of an age-a fish.

Catch, Landings, and Discards
In this model, the entire population is available to the fishery. Annual
catch at age [Ca(t)] is given by the standard catch equation (Baranov 1918)
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To account for age-specific discarding of fish, let Da(t) be the annual frac-
tion of age-a fish that are discarded and die and WL,a and WD,a are the
average weights of age-a fish that are landed and discarded, respectively.
Here the age-specific discarding pattern may vary if fishery regulations
are expected to change during the projection horizon. Total landed weight
[L (t)] is
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and the total discarded weight [D (t)] is
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Population Harvest
There are three options for determining the level of population harvest in
each year of the projection horizon. The first option is a time series of
annual fishing mortality rates (F-based management) and the second is a
time series of annual landings quotas (quota-based management). Any
mixture of the F-based and quota-based options can be combined so that
F-based management is applied in some years and quota-based manage-
ment in the other years. This mixed option can be useful for projecting
stock status in periods between assessments. For example, if a full stock
assessment is only conducted every 2 years while catch biomass data are
updated annually, then population status can be monitored in years be-
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tween assessments using the quota-based option to project the effects of
an additional year of catch data.

Under F-based management, catch at age is determined by setting
Fa(t) in equation (7). Separability is assumed and fishing mortality for age-
a fish is the product of fully recruited fishing mortality [F(t)] and partial
recruitment for age-a fish [Sa(t)].

    F t F t S ta a( ) ( ) ( )= (10)

Typically, values of partial recruitment are based on recent estimates from
the assessment and are modeled as constant unless fishery regulations
are expected to change during the projection horizon.

Under quota-based management, the landings quota [Q (t)] corresponds
to a fully recruited fishing mortality rate that depends on population size,
partial recruitment pattern, and discard pattern, if applicable. This quota
depends on the level of fully recruited fishing mortality, Q = L (F ), where L
is given by equation (8), and the solution to Q – L (F ) = 0 is determined
numerically. After solving for the F that produces the landings quota, total
catch at age and discard biomass are determined from equations (7), (9),
and (10).

Stock-Recruitment Relationship
In many fisheries, stock-recruitment data are highly variable due to intrin-
sic variability in factors governing survival and measurement error in es-
timates of recruitment and spawning biomass. In our approach, the
stock-recruitment relationship is the second key source of randomness
for population projections because it ultimately defines the sustainable
level of harvest and its variability over time. This follows from the model
assumption that growth, maturation, and natural mortality are density-
independent and adequately represented by expected (e.g., constant) val-
ues through the projection horizon.

In the application of this approach, several stochastic recruitment
models have been used and two commonly used models are briefly de-
scribed below. Because no single model will be suitable in all applications,
we recommend that alternative stock-recruitment relationships be explored
by the assessment practitioner. The first model is the empirical recruits
per spawning biomass model. This is a non-parametric, density-depen-
dent approach. In this model, random values of recruits per spawning
biomass are generated from a uniform (0,1) variate by applying the prob-
ability integral transform to the empirical cumulative distribution func-
tion of recruits per spawning biomass from an appropriate time period.
Here the choice of time period is important because this model requires
stationarity in the distribution of recruits per spawning biomass. Recruit-
ment is modeled as the product of spawning biomass and the random
level of recruits per spawning biomass. That is, NR(t) = SB (t – R)ξ where ξ
is a randomly chosen value of recruits per spawning biomass taken from
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the distribution of estimates of recruit per spawning biomass during the
chosen period. This model exhibits no compensatory population response
because average recruitment does not eventually decline as spawning bio-
mass increases. The second model is the stock-recruitment curve with
multiplicative lognormal error term. In this model, recruitment is deter-
mined as the output of a stock-recruitment curve multiplied by a random
realization from a lognormal distribution. That is, NR(t) = g[SB (t – R )]exp(ξ)
where g[] is a parametric stock-recruitment curve (typically a Beverton-
Holt, Ricker, or Shepherd curve) and ξ is a normal random variable with
zero mean and constant variance. This parametric model is stochastic,
density-dependent, and exhibits compensatory population response due
to the choice of stock-recruitment curve.

The age of recruitment determines whether additional information is
needed to begin the projections with a density-dependent recruitment
model. In particular, if R ≥ 2, then assessment estimates of spawning biomass
in the R–1 years prior to the first year of the projection horizon are needed
for input to the recruitment model. These lagged estimates of spawning
biomass must be available for each bootstrap replicate of initial popula-
tion size, N (b)(1) to use this approach to making stochastic projections.

Application to Georges Bank Yellowtail Flounder
Georges Bank yellowtail flounder (Pleuronectes ferrugineus) is a highly
productive flatfish stock with a long-term potential yield of 16,000 t at a
spawning biomass level of about 65,000 t (NEFSC 1995). This stock is
currently at a low level of abundance due to overfishing (Fogarty and Mu-
rawski 1998). Based on the most recent assessment (NEFSC 1997), fishing
mortality rates on Georges Bank yellowtail flounder exceeded the over-
fishing level (F20% = 0.64) during 1980-1994 (Fig. 1). Reductions in fishing
effort achieved under Amendment 7 have reduced fishing mortality in
recent years and spawning biomass levels have increased. A threshold
level of spawning biomass of 10,000 t has been established as an interim
rebuilding target for Georges Bank yellowtail flounder (New England Fish-
ery Management Council 1996).

Georges Bank yellowtail flounder has been assessed with the ADAPT
age-structured assessment model since 1991 (Conser et al. 1991). In the
1997 assessment (Cadrin et al. 1997), relative abundance indices taken
from four research surveys on Georges Bank were used to calibrate a vir-
tual population analysis for estimating population size at age for 6 age
groups (A = 6) consisting of ages 1 to 5 and age 6+. The four surveys were
the Northeast Fisheries Science Center (NEFSC) spring (age 1 to age 5+,
1968-1996) and autumn (age 1 to age 5+, 1963-1996) bottom trawl sur-
veys, the NEFSC scallop survey (age 1 to age 4+, 1982-1996), and the Cana-
dian spring bottom trawl survey (age 2 to age 5+, 1987-1996). Given the
eighteen time series of age-specific indices of relative abundance, the ob-
jective function for the ADAPT assessment model was the sum of the
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Figure 1. Fishing mortality (open square) and spawning biomass (solid circle) of
Georges Bank yellowtail flounder, 1973-1996. Data from NEFSC (1997).

squared differences between predicted and observed survey indices as in
equation (1) with λiy = 1 (NEFSC 1997). The non-parametric bootstrap was
applied to resample the residuals of the fitted indices with replacement to
generate a set of 200 bootstrap replicates of population abundance in
1996. This set determined the bootstrap distribution of population abun-
dance and was used to characterize the sampling distribution of fishing
mortality and spawning biomass in 1996. Bootstrap results gave 80% con-
fidence intervals (CI) for F (1996) of 0.08 to 0.14 (Fig. 2A) and for SB (1996)
of 9,800 to 14,600 t (Fig. 2B). In addition, bootstrap results indicated there
was zero probability that F (1996) exceeded the overfishing level of 0.64.
Further the probability that SB (1996) was below the interim rebuilding
threshold of 10,000 t was about 0.12 (see Fig. 4) while the probability that
SB(1996) was below the long-term spawning biomass target of 65,000 t
was 1.

A stochastic stock-recruitment relationship has been derived for Georg-
es Bank yellowtail flounder based on a Beverton-Holt curve with a multi-
plicative lognormal error term (Beverton and Holt 1957). In this parametric
model, survival to recruitment age is density independent and recruit-
ment is subject to stochastic variation through

    
N t

a SB t R
b SB t R

eR
w( )

( )
( )

= × −
+ −

× (11)
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(A) Bootstrap distribution of fishing mortality in 1996

(B) Bootstrap distribution of spawning biomass in 1996

Figure 2. Bootstrap distributions of estimated fishing mortality and spawning
biomass of Georges Bank yellowtail flounder in 1996.



Symposium on Fishery Stock Assessment Models 943

where a and b are model parameters and where w is a normal random
variable with zero mean and variance σw

2. Based on the most recent assess-
ment of Georges Bank yellowtail flounder, Overholtz et al. (1997) estimat-
ed parameters of equation (11) with nonlinear regression and tested model
residuals for normality and autocorrelation. Results indicated that an as-
sumption of normally distributed errors could not be rejected and that
autocorrelation was not significantly different from 0 for lags of 1 to 6
years. Point estimates of the parameters a and b were 50,090 and 10,737
while the residual variance σw

2 was 0.42.
Projections were conducted for 1997-2001 under three F-based man-

agement scenarios to illustrate the general approach to making stochastic
projections. The three F-based scenarios were: constant F equal to the
point estimate of fully recruited fishing mortality in 1996 (F1996), constant
F equal to F0.1 (Gulland and Borema 1973), and constant F equal to FMAX

(Beverton and Holt 1957). These three alternative harvest policies repre-
sent a status quo scenario (F1996), a target reference point scenario (F0.1),
and a limit reference point scenario (FMAX). Values of F1996, F0.1, and FMAX for
yellowtail flounder were 0.10, 0.24, and 0.61, respectively. The three pro-
jections for 1997-2001 used biological and fishery parameters reported in
Cadrin et al. (1997), and Overholtz et al. (1997). A total of 100 simulations
were conducted for each of the 200 bootstrap replicates of initial popula-
tion abundance to characterize the empirical distribution of spawning bio-
mass, the probability of achieving the threshold level of spawning biomass,
and the empirical distributions of recruitment, landings, and discards.

Projection results indicated that under the status quo scenario, medi-
an spawning biomass of Georges Bank yellowtail flounder in the year 2001
and its 80% CI would be 34,300 t with an 80% CI of 25,200 to 49,900 t (Fig.
3A). Under the target reference point scenario, median spawning biomass
in 2001 would be 22% lower than under the status quo (Fig. 3B). In con-
trast, under the limit reference point scenario, median spawning biomass
in 2001 would be 55% lower than under the status quo (Fig. 3C). Overall,
levels of spawning biomass would likely be higher in 2001 under the sta-
tus quo and target reference point scenarios in comparison to the limit
reference point scenario, although the uncertainty in spawning biomass,
as measured by its 80% CI, would also be greater. Further, the spawning
biomass threshold of 10,000 t would be reached in 2001 under both the
status quo and the target reference point scenarios and would have a
good chance of being achieved under the limit reference point scenario
(Fig. 4). In contrast, it was unlikely that the long-term spawning biomass
target would be achieved in 2001 under any scenario. In particular, the
probabilities of achieving the long-term spawning biomass target under
the status quo, the target reference point, and the limit reference point
scenarios were 0.02, 0.004, and 0, respectively.

In terms of recruitment, landings and discards, the status quo scenar-
io would lead to median recruitment of about 38 million age-1 fish with an
80% CI of 16 to 88 million age fish (Fig. 5A). Median recruitment in 2001
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Figure 3. Projections of median spawning biomass of Georges Bank yel-
lowtail flounder and its 80% confidence interval during 1997-
2001 under (A) F1996, (B) F0.1, and (C) FMAX management scenarios.
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Figure 3. (Continued.)

Figure 4. Probabilities of reaching the interim spawning biomass threshold for
Georges Bank yellowtail flounder during 1996-2001 under F1996, F0.1, and
FMAX management scenarios.
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Figure 5. Projections of median recruitment of Georges Bank yellowtail
flounder and its 80% confidence interval during 1997-2001
under (A) F1996, (B) F0.1, and (C) FMAX management scenarios.
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Figure 5. (Continued.)

would be about 6% lower under the target reference point (Fig. 5B) and
23% lower under the limit reference point (Fig. 5C). The status quo scenar-
io would lead to median landings of 2,500 t in the year 2001 with an 80%
CI of 1,900 to 3,500 t for yellowtail flounder (Fig. 6A). In comparison,
median landings in 2001 under the target reference point would be 72%
higher (Fig. 6B). Under the limit reference point scenario, median landings
in 2001 would be 128% higher (Fig. 6C). Median discards of Georges Bank
yellowtail flounder in 2001 would be 50 t under the status quo scenario
with 80% CI of 30 to 80 t (Fig. 7A). In comparison, median discards in 2001
would be 114% and 314% higher under the target (Fig. 7B) and limit refer-
ence point scenarios (Fig. 7C), respectively. Overall, levels of landings and
discards would likely be greater under the limit reference point scenario,
but the uncertainty in these outputs, as measured by the 80% CI, would
also be greater than under the status quo and target reference point sce-
narios. In contrast, recruitment would likely be lower under the limit ref-
erence point scenario but would have less uncertainty than under the
status quo or target reference point scenarios.

Discussion
Although hypothetical, this illustration of the projection approach provides
some general insight for the rebuilding of the Georges Bank yellowtail floun-
der stock. First, application of the limit reference point FMAX as a harvest rate
target is not precautionary for stock rebuilding in the short term and would
not likely improve the reproductive potential of this depressed stock. Second,
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Figure 6. Projections of median landings of Georges Bank yellowtail floun-
der and its 80% confidence interval during 1997-2001 under
(A) F1996, (B) F0.1, and (C) FMAX management scenarios.
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Figure 6. (Continued.)

projections showed that the expected level of variability in spawning biom-
ass would be higher under the status quo scenario but variability in land-
ings would be lower. Conversely, uncertainty in spawning biomass would
be lower under the limit reference scenario but uncertainty in landings
would be higher. Third, loss of yield due to discarding would be lowest
under the status quo scenario and highest under the limit reference point
scenario. Last, status quo levels of fishing effort appear sufficient to achieve
the interim rebuilding target for Georges Bank yellowtail flounder during
1997-2001. Nonetheless, it is highly unlikely that the long-term target spawn-
ing biomass target would be achieved during the projection horizon, al-
though the status quo scenario would lead to the greatest increase in
spawning potential. Rebuilding the spawning potential of Georges Bank
yellowtail flounder and other depressed New England groundfish stocks
through effort control or other conservation measures is an important man-
agement consideration because rebuilding would lead to increased bene-
fits (Edwards and Murawski 1993, Overholtz et al. 1995).

The projection approach presented here is not completely general
because it does not consider model uncertainty or implementation uncer-
tainty which may be important considerations in developing harvest pol-
icy (Rosenberg and Restrepo 1994). In some cases, for example, the model
assumption that growth and maturation rates are constant through the
projection horizon may not be tenable and density-dependence in growth,
maturation, and natural mortality rates may need to be explicitly modeled
(Overholtz 1993; Helser and Brodziak 1998). However, whether additional
sources of uncertainty will affect the determination of harvest policy is
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Figure 7. Projections of median discards of Georges Bank yellowtail floun-
der and its 80% confidence interval during 1997-2001 under
(A) F1996, (B) F0.1, and (C) FMAX management scenarios.
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application specific and dependent upon management objectives (Freder-
ick and Peterman 1995). Although additional sources of random variation
can readily be incorporated into this approach, uncertainty in initial pop-
ulation abundance and future recruitment will generally be primary fac-
tors to characterize for management advice.

Nonetheless, our approach to making short-term projections is a rela-
tively simple algorithm based on the computationally intensive techniques
of bootstrapping and Monte Carlo simulation. Others have used similar
approaches to include uncertainty in initial conditions in projections (Mohn
1993, Smith and Gavaris 1993) and our purpose here is to emphasize the
generality and flexibility of the approach as a way to evaluate the poten-
tial consequences of future management actions. In practice, this approach
can readily be applied in any situation where residuals are independent
and identically distributed (IID) errors conditioned on model structure or
have a relatively simple composite error structure consisting of several
IID components (cf. Mohn 1993). Furthermore, the approach is not re-
stricted to age-structured assessment models. For example, this approach
has been applied to analytical assessments of surf clams in the northwest
Atlantic based on the modified DeLury assessment model (Conser 1994,
Weinberg et al. 1995).

Parametric approaches to projecting the consequences of uncertainty
in initial population abundance are, of course, also appropriate (Gavaris 1993)
and may be computationally expedient in comparison to our resampling
approach. However, any parametric approach requires an additional assump-
tion to define the statistical distribution of errors and such assumptions are

Figure 7. (Continued.)
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another potential source of error in projecting the consequences of alterna-
tive harvest policies. In many applications, the nonparametric bootstrap
can be recommended because it is flexible and parsimonious and also be-
cause it has the desirable theoretical property of providing exact inference
for nonparametric maximum likelihood estimation (Efron and Tibshirani
1993).
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Abstract
A Monte Carlo simulation model of an exploited age-structured fish popu-
lation was constructed to evaluate the effects of sampling and aging the
catch on estimates of population parameters from catch-age analysis and
resultant estimates of sustained yield. Aging error, error in the annual
catch estimates, and error in the annual survey exploitable abundance
estimates were included in the simulation. Three sets of simulation runs
were conducted among small (100), medium (300), and large (900) sample
sizes to estimate the catch-at-age composition. The simulation included
five reader types with differing aging abilities resulting in a total of five
catch-at-age compositions evaluated for each program replication. Sus-
tained yield estimates from 1,000 replications of each reader type were
compared to true sustained yield. Aging bias and imprecision had dramat-
ic effects on estimated sustained yield: positive aging bias and impreci-
sion generally caused underestimation of sustained yield, while negative
aging bias caused overestimation of sustained yield. These results sug-
gest that this component in stock assessment deserves greater attention
in planning and practice. In addition, increases in sample size resulted in
increased precision in sustained yield estimates only if the catch-at-age
composition was estimated using a precise and unbiased reader type. While
this evaluation was based on the Arctic grayling (Thymallus arcticus) pop-
ulation within the Gulkana River in Alaska, the simulation model can be
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used for a variety of sport fish populations; a diskette and user manual
are available.

Introduction
Fisheries management should be rooted in sound knowledge of all factors
contributing to the dynamics of the exploited fish population (Summer-
felt 1987). These factors include, but are not limited to, understanding the
basic life history of the species, exploitation patterns of the prosecuting
fisheries, and environmental factors that influence the abundance and
distribution of the species. Once these basic biological parameters have
been uncovered, various mathematical constructs to model population
dynamics exist which can be used to define patterns and levels of exploi-
tation to achieve management objectives. One model of particular utility
in estimating sustained yield was proposed by Quinn and Szarzi (1993).
Quinn and Szarzi’s model (QS) assumes a constant fishing mortality har-
vest policy and relies on the results of catch-age analysis with auxiliary
information (Deriso et al. 1985, 1989) to generate estimates of sustained
fishing mortality and subsequent estimates of sustained yield in a Leslie
matrix (Getz and Haight 1989) framework.

The concept of managing fisheries to achieve sustained yield is a
management goal that is widely embraced but rarely explicitly defined.
Various management objectives can result in a sustained yield policy but
can have different implications with regard to the productivity of the stock,
the expected age composition of the catch, and many other population
parameters (Deriso 1987, Sissenwine and Shepard 1987, Clark 1991). Our
study addressed one of the many management objectives which result in
sustained yield, that is, the sustained yield (SYST) that results from apply-
ing a constant fishing mortality rate (FST) that tends to force the popula-
tion to a steady long-term equilibrium abundance and age composition
(Quinn and Szarzi 1993). This specific objective, conceptually equivalent
to Frep (Sissenwine and Shepard 1987), is applicable for many sport fishery
management programs where the prevailing goal is “to maintain the his-
toric size and age composition of the exploited population.” Translating
this broad goal into a specific management objective that is both quantifi-
able and defensible allows for evaluation of the successes and failures
associated with management policies aimed at maintaining fish stocks in
equilibrium. The QS model provides a structure to estimate FST and result-
ant SYST associated with a specific exploited fish population.

Like many complex age-structured analyses, the QS model relies on
catch-at-age data which are subject to introduced error from sampling
and age determination (aging error). Aging error occurs when a reader
responsible for estimating the age of a structure assigns an age, called an
age reading, that is different from the true age. Aging error can occur as a
result of aging imprecision, defined as the variability among multiple read-
ings of a single structure, aging bias, defined as the difference between
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the expected value of the observed age and the true age, or a combination
of these two (Kimura and Lyons 1991).

Catch-age analysis with auxiliary information (CAGEAN) is the corner-
stone to the QS model. CAGEAN belongs to a class of models generally
known as age-structured stock assessment models (ASA; Megrey 1989).
The effects of sample size and aging error on model estimates have been
dealt with by various researchers in both ASA type models and in yield-
per-recruit or biomass based models (Lai and Gunderson 1987, Bradford
1991). However, the effect of sample size and aging error has not been
examined as related to sustained yield estimates from a combined ASA
and Leslie matrix model like the QS model. The intent of this paper is to
investigate the performance of the QS model given various sample sizes
and types of aging error.

Methods
A FORTRAN computer program was constructed to model an exploited
age-structured fish population and evaluate the effect of the processes of
sampling and aging the catch on estimates of population parameters from
catch-age analysis and resultant estimates of sustained yield. The pro-
gram (AGEERR) contains four procedures: (1) generation of an exploited
age-structured fish population with associated true catch- and abundance-
at-age; (2) construction of observed catch-at-age data by incorporating
measurement error due to sampling, aging error, and variability in the
total catch; (3) estimation of population parameters through catch-age
analysis with auxiliary information based on observed catch-at-age and
survey data; and (4) estimation of sustained yield using the population
parameter estimates from catch-age analysis with auxiliary information.
Descriptions of the formulations of each of the procedures as well as the
methods used to conduct the case study using Gulkana River grayling, an
important sport fish population in Alaska, are presented in the following
sections. The program can be used for a variety of sport fish populations;
a diskette and user manual are available (Coggins 1997).

Generation of the True Population
To simulate the population under investigation, a time series of true catch-
and abundance-at-age was generated using the typical recursion and Bara-
nov catch equations (Baranov 1918). The relevant formulae are given as:
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where Na,t is the true abundance of age a fish in year t, Za,t is the total
instantaneous mortality rate, A+ is an aggregate age group, Ca,t is the true
catch, µa,t is the true exploitation rate, M is the true instantaneous natural
mortality rate, Fa,t is the true fishing mortality rate, sa is the true gear
selectivity coefficient, and ft is the true full recruitment fishing mortality
(Deriso et al. 1985, 1989). Equation (2) is a generalization of (1) appropri-
ate when an aggregate age class (A+) is used. The common assumption of
separable fishing mortality (Doubleday 1976, Pope 1977, Fournier and
Archibald 1982, Pope and Shepherd 1982, Deriso et al. 1985) is implicit in
equation (6).

Observed Catch-at-Age Data
Observed catch-at-age was calculated as the product of the observed catch-
at-age proportion and the observed total catch as:

    ′ = ′ ′C Ca t t a t, , θ , (7)

where C ′a,t is the observed catch of age a fish during year t, C ′t is the ob-
served total catch, and θ ′a,t is the observed catch-at-age proportion. Vari-
ability was included in both the observed total catch and the observed
catch-at-age composition. To mimic the uncertainty in the estimates of
total catch, it was assumed that the observed total catch followed a nor-
mal distribution with expected value equal to the true total catch and a
constant coefficient of variation (cvC):

    
′ ( )C N Ct t C t~ , ( )σ 2

, (8)

    σC t C tcv C( )
2 = ( )2

, (9)

where Ct is the true total catch in year t, σC(t)
2 is the variance of the ob-

served total catch, and cvC is the constant coefficient of variation of the
observed catch. This formulation allows one to specify the precision of
the observed catch simply by an assumed constant coefficient of varia-
tion. Other forms of variance based on empirical sampling results could
also be considered (Crone and Sampson 1998).
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The observed age composition of the catch was generated by sam-
pling and aging the true catch and incorporating error in the aging pro-
cess. Catch sampling was conducted randomly without replacement such
that the probability of selecting a fish of a particular age was equal to the
true proportion of that age remaining in the catch.

Modeling Aging Error
The simulation uses multiple reader types to generate a set of aging error
distributions that can be compared objectively. If a is the observed age, b
is the true age, c is the constant bias of the inaccurate reader, σ is the
constant standard deviation (SD), and σ(b) is the SD as a function of true
age, the five reader types are described as follows. Reader 0 (R0) is a per-
fect reader without aging error [a = b]. Reader 1 (R1) is characterized as
the ideal “real life” reader, being both accurate (no bias) and precise (low
variability) [a ~ N(b, σ)]. Reader 2 (R2) is accurate but less precise than
reader R1 {a ~ N[b, σ (b)], σ ≤ σ (b)}. Reader 3 (R3) is inaccurate but precise
[a ~ N(b+c, σ)]. Reader 4 (R4) is inaccurate and imprecise {a ~ N[b+c,
σ (b)]}. Readers R1 and R3 always have identical constant and high preci-
sion relative to readers R2 and R4. Readers R2 and R4 have identical and
variable low precision as a function of true age that is always defined to be
less than or equal to the constant precision of readers R1 and R3.

Classification matrices were used to specify aging precision for each
reader type. Richards et al. (1992) present the following formulation for
constructing a classification matrix that is central to modeling aging error
in this study. The classification matrix is a function of the parameter vec-
tor Φ = (σr,σA,α) and specified as:
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where σr is the SD associated with recruit-age fish, σA is the SD associated
with the oldest age fish, α is a parameter that governs the non-linearity of
σ (b), and χab(Φ) is the discrete normal probability density function of a
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given b. The preceding three equations define the classification matrix
[Q(Φ)] made up of the row vectors q, which are probabilities that a fish of
true age b is assigned an observed age a.

There are two assumptions regarding the formulation of the classifi-
cation matrix. The first assumption is:

    q b b q a b a b( | , ) ( | , ),Φ Φ≥ ≠ .

This is the “modal” probability assumption and asserts that fish of true
age b are assigned an observed age a equal to b with higher probability
than any other observed age. The second assumption is:

    
q a b

a r

A
( | , )Φ =∑

=
1 for each b.

This assumption assures that the probabilities of all the possible observed
ages for any given true age sum to one.

Although the modal assumption assures that observed age a equals
true age b with highest probability, observed age a cannot be said to be
unbiased. This is because the observed age must lie within the lifespan of
the species (or the true age range recruited to a fishery) and truncation of
the observed age distribution occurs near the bounds of the true age range.
For example, if the youngest fish of a given species ever captured had a
true age of 3, the probability of assigning an observed age a < 3 would be
zero. Therefore, the age of fish with a true age of 3 would tend to be
overestimated. A similar argument can be made regarding the underesti-
mation of the age of older fish.

Therefore, the simulation also allows for the inclusion of systematic
bias by specifying a constant bias c. This was accomplished by adding the
bias after the true age was modified with imprecision so that the impreci-
sion was specified based on the true age. A negative value of the bias c
caused under-aging of a structure while a positive value caused over-ag-
ing. It should be noted however, that the bias will not cause the observed
age to traverse the true age range. For example, application of a negative
bias will still result in an observed age no smaller than 2 if the lower
bound of true age is equal to 2. Alternate formulations such as including
bias as a function of true age may also be appropriate to consider in future
investigations.

Catch-Age Analysis with Auxiliary Information
Catch-age analysis with auxiliary information was performed using a vari-
ant of CAGEAN (Deriso et al. 1985) called CAGEM. In CAGEM, a multinomi-
al-like measurement error structure is assumed, appropriate given aging
error in the observed catch-at-age data. We refer to measurement error as
the deviation of an observed quantity from its true value in the course of
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sampling and aging, as is common in stock assessment (Deriso et al. 1985).
The relevant formulae for the objective function for parameter estimation
and survey exploitable abundance are:
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where C′a,t is the observed catch of age a fish in year t,     
ˆ

,Ca t  is the estimated
catch, SURt is the total exploitable abundance from an independent sur-
vey,     ÊNt  is the estimated total exploitable abundance, λs is a weighting
factor for the auxiliary survey information,     

ˆ
,Na t  is the estimated abun-

dance, and     ̂sa  is the estimated selectivity-at-age. The catch     
ˆ

,Ca t , abun-
dance     

ˆ
,Na t , and selectivity     ̂sa  were estimated within program CAGEM using

equations (1)-(6).
For the simulation model, variability in the survey exploitable abun-

dance was specified with a coefficient of variation as:

    
SUR N ENt t S t~ 2, ( )σ[ ], (15)

    
σS t S tcv EN( )
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, (16)

where ENt is the true exploitable abundance of age a fish in year t, σS(t)
2 is

the variance of the survey total exploitable abundance around the true
exploitable abundance, and cvS is the assumed constant coefficient of vari-
ation of the survey total exploitable abundance.

Estimation of Sustained Yield
The estimation of sustained yield (SYST) assumes that the population is
exploited with a constant fishing mortality (FST) and that early life surviv-
al, natural mortality and fecundity-at-age are constant. The management
objective associated with SYST seeks to find FST that will take the popula-
tion to its steady long-term equilibrium abundance and age composition.
This was accomplished by finding FST that caused the net reproductive
value of an r year-old fish (age at recruitment to the fishery) to equal 1. A
simple interpretation of this equilibrium condition is that every fish re-
cruited to the fishery must on average produce 1 recruit at age r. In the
course of finding FST , it is necessary to estimate early life survival. This
was accomplished by taking the mean of the annual estimates of early life
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survival. Once FST was found, SYST in the year following the last year of the
analysis was estimated by projecting the abundance using fecundity-at-
age, average early life survival, and survival-at-age. The relevant formulae
for the estimation of FST and SYST are found in Quinn and Szarzi (1993).

Gulkana River Grayling Case Study
To examine the effect of sample size and aging error on estimates of sus-
tained yield, AGEERR was used to simulate the estimation of sustained
yield for the Arctic grayling (Thymallus arcticus) population of the main-
stem Gulkana River (Bosch 1995). The population parameters estimated
by Bosch (1995) were used to simulate the population among 24 runs of
AGEERR, performed according to a factorial design with three sample sizes
and eight levels of aging error (Table 1). Each of the runs from AGEERR
used 1,000 Monte Carlo replications.

Bosch (1995) estimated sustained fishing mortality and yield (FST, SYST)
using the QS model. The estimates of SYST, FST, and fecundity-at-age esti-
mated by Bosch are reported in Table 2. Note that since Bosch used an
aggregate age group of 7+ but considered the population to have a longev-
ity of age 10, the plus group abundance was apportioned to the contribut-
ing age classes and the fecundity of the plus group was estimated (Coggins
1997). The parameter cvS was set equal to the average annual coefficient
of variation (22%) of the exploitable abundance estimates from mark-
recapture studies of Gulkana River grayling (Bosch 1995). An estimate of
cvC was not available so an arbitrary value of 5% was used.

For the purposes of this study, we assumed that it was possible to
select a single perfectly random sample of fish from the entire catch. Fur-
thermore, three sample sizes (100, 300, and 900) were used to evaluate
the effect of sample size on the sustained yield estimates from the QS
model. The sample sizes were picked to generally reflect sampling rates
which would be below, approximately equal to, or above acceptable limits
to achieve age-class proportion estimates that were within 5% of the true
value with 80% confidence assuming a strict multinomial error structure
(Thompson 1987).

Two levels of aging precision (low and high cases) and 4 levels of bias
were used to incorporate aging error in the simulations (Table 1). To spec-
ify aging precision germane to the R2 and R4 type readers [σ (b)] in what
we call the low precision case, a data set was constructed containing esti-
mated ages of scales collected from grayling before and after a known
time-at-large ( i.e., after capture and recapture in a mark-recapture exper-
iment). These data were from grayling collected at Fielding Lake, and the
Chatanika, Chena, Salcha, and Gulkana rivers in Alaska (Merritt and Flem-
ing 1991, Bosch 1995). To estimate the standard deviation of observed
age given a true age, we assumed that the first reading (at initial capture)
was correct and the expected age of the second reading (at recapture) was
the sum of the first reading and the time-at-large. The data were then
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Table 1. Input parameters for each simulation run of AGEERR.

Age Age at full
Sample Aging Aging at full maturity Pooling

Run size precision bias (c) σr
a σA

b α c σd cvs
e cvc

f selectivity  (m) age

1 100 High –1 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

2 100 High –2 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

3 100 High 1 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

4 100 High 2 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

5 100 Low –1 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

6 100 Low –2 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

7 100 Low 1 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

8 100 Low 2 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

9 300 High –1 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

10 300 High –2 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

11 300 High 1 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

12 300 High 2 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

13 300 Low –1 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

14 300 Low –2 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

15 300 Low 1 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

16 300 Low 2 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

17 900 High –1 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

18 900 High –2 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

19 900 High 1 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

20 900 High 2 0.41 0.64 –0.25 0.41 0.22 0.05 3 6 7

21 900 Low –1 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

22 900 Low –2 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

23 900 Low 1 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

24 900 Low 2 0.82 1.28 –0.25 0.82 0.22 0.05 3 6 7

a σr = Standard deviation of observed age given recruit age fish.
b σA = Standard deviation of observed age given oldest age fish.
c α = Parameter governing the non–linearity of observed age as a function of true age.
d σ = Constant standard deviation of reader types R1 and R3.
e cvs = Coefficient of variation of the survey data.
f cvc = Coefficient of variation of the total catch data.

sorted by expected age and the standard deviation of observed age was
estimated for each expected age class. Both formulations of equation (10)
were then fit to the data to estimate σr, σA, and α. Although the three pa-
rameter case was not found to have a significantly better fit than the two
parameter case (p = 0.57) using an F-test proposed by Schnute (1981), the
three parameter case was used throughout the simulations so that preci-
sion of readers R2 and R4 could be specified non-linearly. The constant
aging precision of readers R1 and R3 (σ) in the low precision case was set
equal to the parameter estimate for σr.

As described above, the parameters of the function σ(b) in equation
(10) in the low precision case were estimated from available data, and the
low precision case of σ set equal to the estimated σr . For the high preci-
sion case, the σr and σA parameters of the function σ(b) were set equal to
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Table 2. Estimated sustained yield (SYST), sustained fishing mortality (FST),
and population parameters for the grayling stock of the Gulka-
na River in Alaska either contained in, or estimated from, Bosch
(1995). Selectivity and fecundity are assumed to be constant over
the time of the simulation.

Sustained fishing mortality FST = 0.402

Sustained yield (number of fish) SYST = 29,867

Projected abundance in 1992 Proj. Abu. = 153,133
(number of fish)

Age

2 3 4 5 6 7+

Selectivity 0.187 1 1 1 1 1

Net fecundity 124 469 975 1,616 2,739 4,140
(eggs)

Abundance (number of fish)

Age

Year 2 3 4 5 6 7+

1986 34,253 30,311 23,874 4,540 2,331 81

1987 41,271 23,852 16,127 12,702 2,416 1,283

1988 22,390 29,274 14,007 9,471 7,459 2,172

1989 46,004 16,010 17,946 8,587 5,806 5,905

1990 90,218 33,117 10,175 11,405 5,457 7,443

1991 16,940 66,100 23,125 7,105 7,964 9,008

Fishing mortality

Year ft

1986 0.330

1987 0.232

1988 0.190

1989 0.154

1990 0.059

1991 0.081
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one half the values in the low precision case, and the constant value of σ
was set equal to σr (Table 1 and Fig. 1). The bias levels were set equal to –1,
–2, 1, and 2.

Lambda (λs), the weighting parameter that specifies the amount of
influence the survey data has in parameter estimation (equation 13), was
specified as 1,300 based on simulations of CAGEM during its develop-
ment. To test the performance of λs = 1,300, a simulation set was run with
no specified error in any of the input parameters. The parameter esti-
mates given the R0 reader type and a sample size of 1,000 differed from
the true parameter estimates by a negligible amount.

To evaluate the process of estimating sustained yield with the QS model
and the variable input data detailed above, two statistics were examined.
The first was the relative error, an indicator of bias, between the parame-
ter estimate and the true value of that parameter. Relative error is calcu-
lated as:

    
RE = −θ̂ θ

θ
, (17)

where RE is the relative error, θ is the true value of the parameter, and   ̂θ  is
the parameter estimate. In a Monte Carlo framework, the parameter estimate

Figure 1. Standard deviation (SD) of observed age a given true age b for both
the high and low precision cases of variable [σ (b)] and (σ) constant SD.
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is equal to the mean of the estimates of that parameter among the Monte
Carlo replications.

Following Hightower (1996), the second statistic was the proportion
of replicate parameter estimates among Monte Carlo replications that were
within 10% of the true value. This statistic, like relative error, is an indica-
tor of bias but has the additional property of revealing the precision of the
process by estimating the probability of obtaining an “accurate” estimate
(relative error < 10%).

Results
Overview of Sustained Yield Estimation
The estimation of sustained yield relies directly on estimates of sustained
fishing mortality, projected abundance, and selectivity of age-2 fish. In
general, an increase in any one of these parameters caused an increase in
sustained yield. Moreover, negatively biased estimates of sustained fish-
ing mortality and projected abundance resulted in negatively biased esti-
mates of sustained yield. The exceptions occurred when negative aging
bias caused extreme overestimation (relative error > 750%) of the selectiv-
ity of age-2 fish and offset the effect of underestimation from sustained
fishing mortality and projected abundance. To show these general results,
we averaged over all scenarios and expressed results in terms of relative
error (Fig. 2).

The R0 reader type produced highly accurate (relative error < 5%) but
slightly negatively biased estimates of SYST, FST, and projected abundance,
as well as positively biased estimates of the selectivity of age-2 fish (rela-
tive error < 10%; Fig. 2). Under high aging precision, the R1 and R2 reader
types produced accurate estimates of SYST (relative error < 10%), and fairly
inaccurate estimates of SYST (relative error < 40%) under low aging preci-
sion. In all cases of the R1 and R2 reader types, FST and projected abun-
dance were negatively biased while the selectivity of age-2 fish was
positively biased.

Under both the high and low cases of aging precision, positive aging
bias resulted in extreme underestimation of SYST (nearly 100% relative er-
ror) from both the R3 and R4 reader types. This was primarily a result of
extreme underestimation of FST (roughly 100%), but also a result of under-
estimation of projected abundance. In addition, the positive aging bias
caused the exclusion of age-2 (+1 bias) and age-2 and age-3 fish (+2 bias)
from the analyses and therefore, selectivity of age-2 fish was not estimat-
ed. Under negative aging bias, SYST was overestimated for both high and
low aging precision using the R3 and R4 reader types. This was a result of
moderate overestimation of FST (relative error < 12%) and huge overestima-
tion of the selectivity of age-2 fish (relative error > 750%). The low preci-
sion case produced more accurate estimates of SYST than the high precision
case from the R3 and R4 reader types under negative aging bias.
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Figure 2. Average relative error in estimates of sustained yield (SYST), sus-
tained fishing mortality (FST), projected abundance, and selectiv-
ity of age-2 fish under high and low aging precision and negative
(two upper panels) and positive (two lower panels) aging bias,
among all samples sizes and reader types (see Modeling Aging
Error for descriptions of reader types R0-R4).
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Sustained Yield by Reader Types and Sample Size
In this section, detailed examination of sustained yield estimates by

reader type and sample size is described. The estimated replacement sus-
tained yield in 1992 ranged from a low of 0 fish to a high of 42,959 fish
corresponding to relative errors of –100% and 44%, respectively (Fig. 3).
The R0 reader type produced estimates of SYST nearly identical to the true
sustained yield but biased slightly low. This slight underestimate was due
to the method of back transformation of the lognormal distribution used
in AGEERR; which does not use the classic back-transformation defined as

  
ˆ exp( )θ µ σ= + 2

2 , but instead conducts the back-transformation as

  
ˆ expθ µ= ( ) . This method of back transformation inherently leads to slightly
biased estimates, but is justified because there is one fewer parameters to
be estimated. Under high precision, the SYST estimates from the R1 and R2
reader types are essentially equal to the R0 reader type and therefore,
only slightly negatively biased. Under low precision, the R1 and R2 esti-
mates of SYST are more negatively biased (relative error ≅ 35%) than under
the high precision case. The R3 and R4 reader types produced estimates
of SYST that are positively biased under negative aging bias and negatively
biased under positive aging bias, regardless of aging precision. However,
under low aging precision and negative aging bias, the magnitude of the
bias in SYST is less than under high aging precision. Finally, the level of bias
(i.e., relative error) is essentially unchanged for each reader type, level of
aging precision, and direction/magnitude of aging bias among the three
sample sizes.

While sample size did not affect the bias in estimates of sustained
yield, it did influence the variability of the sustained yield estimates. This
is shown by the proportion of replicate sustained yield estimates that are
within 10% of the true sustained yield and is essentially the probability of
obtaining an “accurate” estimate. The average proportion of replicate esti-
mates of SYST that were within 10% of the true value ranged between 0%
and 36% among all levels of specified aging error, reader types, and sam-
ple sizes (Fig. 4). As expected, the highest proportions were obtained with
reader R0, with proportions ranging from approximately 24%, 31%, and
35% among sample sizes of 100, 300, and 900, respectively. For readers
R1 and R2, the proportions were essentially identical to the R0 reader type
under high aging precision, but dropped substantially under low aging
precision. The proportions of accurate replicate estimates from the R3
and R4 reader types were uniformly less than or equal to the R0 reader
type, identically equal to zero under positive aging bias, and greater than
the R1 and R2 reader types only under low aging precision and negative
bias. The general trend supported by the results is that increasing sample
size results in increasing the probability of obtaining an accurate estimate
only if the catch sample is aged by an accurate and precise reader.
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Figure 3. Estimated value of sustained yield (SYST) among reader types R0-R4 as
compared to true sustained yield under different combinations of aging
precision and bias for sample sizes of 100, 300, and 900 (see Modeling
Aging Error for descriptions of reader types R0-R4).



970 Coggins & Quinn — Aging Error and Sample Size

Figure 4. Proportion of Monte Carlo replicates that produced estimates of sus-
tained yield (SYST) that were within 10% of the true value under differ-
ent combinations of aging precision and bias for sample sizes of 100,
300, and 900 (see Modeling Aging Error for descriptions of reader
types R0-R4).
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Discussion
Effects of Sample Size on Estimates of Sustained Yield
The effect of sample size on estimates of SYST was of little consequence as
demonstrated by the observation that estimates by reader type and aging
error combination varied little among different sample sizes. This result
suggests that attempting to mitigate bias in sustained yield estimates re-
sulting from poor reader performance by increasing sample size is not an
effective tactic.

In contrast, sample size does play a major role in determining the
variability of sustained yield estimates. The probability of obtaining an
estimate of sustained yield that is within 10% of the true value given a
particular Monte Carlo replicate generally increases with increasing sam-
ple size. Kimura (1990) reported a similar trend in the precision of bio-
mass estimates from ASA models as a function of sample size. This result
was uniformly true among the R0 reader type and the R1 and R2 reader
types under the high aging precision case. However, for the R1 and R2
reader types under the low precision case, the probability is either un-
changed or decreasing as a function of increasing sample size. Similarly
for the biased R3 and R4 reader types, an increasing sample size tended to
have either no effect or a degrading effect on the probability of obtaining
an accurate estimate.

The unexpected result that increasing sample size does not always
increase the probability of obtaining an accurate estimate is probably also
due to the influence other types of information have in catch-age analysis,
namely estimates of relative or absolute abundance. The weighting proce-
dures used for this other information can have a large effect on abun-
dance estimation and, hence, obviate the influence of the aging information.
Furthermore, the more imprecise the aging information is, the more dele-
terious an effect it may have with larger sample size, being in competition
with the other abundance information.

Effects of Aging Error on Estimates of Sustained Yield
In comparison to the effects of sample size on the estimated value of SYST,
the effects of aging error are more pronounced. Furthermore, aging bias
tends to have greater effect on estimates of sustained yield than aging
precision. In general, negative aging bias tended to produce positively
biased estimates of SYST and positive aging bias tended to produce nega-
tively biased estimates of sustained yield. This result is similar to the
findings published by other researchers studying the effects of aging er-
ror on ASA and yield-per-recruit models (Rivard 1983, Lai and Gunderson
1987, Tyler et al. 1989, Kimura 1990). Also, this suggests that using bony
structures that have a demonstrated tendency to negatively bias the age
of fish (i.e. scales, whole otoliths; Pikitich and Demory 1988, Wilson and
Boehlert 1990, Secor et al. 1995), could lead to ostensibly optimistic esti-
mates of SYST. Furthermore, species that are extremely long lived and tend
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to approach asymptotic growth in mid-life, may also be subject to sub-
stantial negative aging bias.

The effect of decreasing aging precision on the expected value of SYST

was to decrease the expected value of SYST. This result was particularly
evident given the unbiased R1 and R2 reader types among all scenarios.
This is a heartening result for fisheries managers, since it suggests that
decreasing aging precision results in more conservative management strat-
egies. Furthermore, in the case of the biased R3 and R4 reader types, the
effect of aging imprecision caused the estimated value of SYST to be less
biased given negative aging bias in the low precision case versus the high
precision case, because of the offsetting trends of negative aging bias and
low aging precision. However, these results should not be used to imply
that managing fisheries with imprecise data is desirable.

Effects of Model Structure
By definition, the structure of a model affects output and, hence, implica-
tions drawn from its use. Recall that in AGEERR the introduction of aging
error was a two step process: (1) incorporating imprecision as a function
of true age using a classification matrix and (2) given a biased reader type,
adding a constant bias. When incorporating aging error due to impreci-
sion, the process prohibited the resultant observed age from traversing
the true age range. Furthermore, when subsequently incorporating aging
bias, the resultant observed age was again restricted to the true age range.

As a result, under negative aging bias, the biased R3 and R4 reader
types produced age compositions ranging from 2 to 9 (bias of –1) or 2 to 8
(bias of –2). After the incorporation of the plus group, the age ranges con-
sidered in the catch-age analysis were 2 to 7+ for both –1 and –2 biases,
and the resultant catch-at-age was highly skewed towards age-2 fish. The
net effect on parameter estimates was to grossly overestimate the selec-
tivity of age-2 fish (relative error > 750%), and to underestimate the pro-
jected abundance.

Under positive aging bias, the biased R3 and R4 reader types pro-
duced age compositions ranging from 3 to 10 (bias of +1) or 4 to 10 (bias
of +2). After the incorporation of the plus group, the age ranges consid-
ered in the catch-age analysis were 3 to 7+ (+1 bias) and 4 to 7+ (+2 bias).
Furthermore, since the simulation assumed that all ages > 2 were fully
recruited, the catch-age analysis did not estimate any selectivity coeffi-
cients. The net effect was to cause even larger underestimation in the
projected abundance than generated under negative aging bias.

Other strategies to incorporate aging bias could also be used, and we
encourage their investigation. An alternative method for modeling aging
bias is to specify bias directly in the transition matrix (Rivard 1983, Tyler
et al. 1989, Bradford 1991). In addition, one could specify a bias as a
function of age. A third strategy could be to specify a constant bias through-
out the age range but allow observed age to traverse the age range. One
could then disregard all observed ages outside the true age range. We
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suspect that all these methods would produce similar trends in the rela-
tive error of sustained yield, because the same changes in the distribution
of ages would occur. The results using the methods incorporated in our
study may be more dramatic than what would be found using alternate
methods of modeling aging error. However, the focus of our study is to
point out the relative trends caused by sampling and aging error rather
than to predict absolute error. Indeed, to model all the vagaries found in
estimating the age of fishes is nearly impossible. Moreover, the conclu-
sions drawn from our study do provide fishery resource managers base-
line information regarding how the inherent variability (uncertainty)
surrounding age-composition data can influence fishery-related parame-
ters routinely estimated in fish stock assessments.

Our study emphasizes the importance of careful validation of aging
techniques. Common problems encountered in determining the age of
fish are: (1) measurement error due to imprecision caused by poor aging
judgment and ability (e.g. readers failing to recognize all the extant annuli
in structures collected from older fish); and (2) process error due to annuli
not being formed (e.g. missing first year annuli in some rainbow trout
[Lentsch and Griffith 1987]). Since imprecision and bias can act in differ-
ent directions, the resultant effect on estimates of sustained yield may be
unclear. Careful age validation and development of aging protocols is need-
ed to validate estimates of sustained yield when aging error is present.
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Abstract
In the Gulf of Mexico, exploitation of the three main commercial penaeid
species (brown shrimp Penaeus aztecus, white shrimp P. setiferus and pink
shrimp P. duorarum) by artisanal fisheries is carried out in the nursery
areas inside coastal lagoons. In addition, a new artisanal fishery on adult
white shrimp has been developed. Present data on the offshore industrial
fishery for white and pink shrimp shows a strong decrease to less than
20% of the mean maximum yield attained during 1970-1980 (1,700 and
7,000 metric tons whole weight, respectively). The sustained increase of
artisanal fishing effort is one of the main factors that affected shrimp
production. Available fishery catch-effort data of offshore fisheries showed
a normal decline in catch associated with decreasing effort. However, this
does not consider artisanal fishing effort on shrimp stocks causing growth
overfishing on the three penaeid shrimp and recruitment overfishing on
white shrimp. The lack of adequate artisanal fishing effort records does
not allow assessment of its magnitude correctly. Both artisanal and indus-
trial fisheries, besides affecting yield, may reduce shrimp reproductive
potential and lead stocks to a collapse. Simulation exercises based on age-
structured models are used to assess the effect of different fisheries and
define management strategies. A multistage model connecting a series of
stock-recruitment curves over main life-history stages could be adequate
for defining broad strategies to keep penaeid shrimp stocks in good con-
dition.
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Introduction
Penaeid shrimp is a valuable resource, exploited mostly in tropical seas
over a wide range of species (García 1989). Worldwide demand of this
product is high and not satisfied. On the contrary, its demand has been
growing steadily in the last decades. Due to the high price per unit of
weight and the consumption of different sizes and ages, wild penaeid
shrimp populations have been subjected to high exploitation in their ju-
venile and adult stages.

The worldwide shrimp industry, which started in the 1950s, devel-
oped very quickly and is presently at its maximal production limits, as
wild shrimp populations seem to have reached their maximal production
stage, and unexploited shrimp stocks are not likely to be found. Shrimp
aquaculture has been considered a viable and important alternative to
meet the demand deficit, and at the same time relieve some of the pres-
sure exerted on the wild populations. However, sometimes shrimp aqua-
culture has exerted an additional pressure on life cycle stages not
traditionally exploited due to the postlarval demand for pond stocking.
Postlarval extraction plus sequential fishing of juvenile and adults has
caused some species, such as the Pacific white shrimp Penaeus vannamei,
to be exploited during almost their whole life cycle. The future of shrimp
populations subjected to such intense fishing pressure seems uncertain
(Gracia and Vázquez Bader, in press).

The objectives of our study are to examine the interactions of artisan-
al and industrial fisheries for white (P. setiferus) and pink shrimp (P. duo-
rarum) in the Gulf of Mexico. We also examine the potential implications
of exploitation of shrimp postlarvae for use in aquaculture. In our analy-
sis we consider the diverse stages of the shrimp life cycle and examine the
implications on the recruitment process and reproductive potential.

Catch History
The shrimp fishery in Mexican waters of the Gulf of Mexico (Fig. 1) started
in the 1950s and, just as most penaeid fisheries, developed quickly, reach-
ing its peak production in the 1970s. During this period, catches of over
30,000 t (total weight) per year, with a maximum of 39,500 t in 1972, were
obtained with an associated fishery effort of 1,100 trawler boats (Fig. 2).
Later on, in the 1980s, total annual production of shrimp declined to al-
most 20,000 t (Gracia and Vázquez Bader, in press). Coincidentally, during
this period the fishing effort of trawler boats also declined approximately
40%; however, an increase of inshore artisanal fishing occurred. In the last
decade, shrimp production was below the maximum recorded, and a neg-
ative tendency has been observed for some species (e.g., white P. setiferus,
Fig. 3; and pink P. duorarum shrimps, Fig. 4).

The white shrimp, P. setiferus, is mostly fished in the southwestern
Gulf of Mexico, in the Campeche Sound and the adjacent coastal region,
mainly the Términos Lagoon. This fishery reached its maximum produc-
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Figure 1. Fishing areas of shrimp in the Mexican Gulf of Mexico.

tion levels during the 1970s when catches ranged from 1,200 to 2,200 t
(total weight). After this period, white shrimp catches declined to levels
below 20% of the average maximal production (Fig. 3). According to Gracia
(1989a), the maximum sustainable yield of this species was estimated in
1,630 t with an optimal fishery effort of 33,406 ship days.

Traditionally pink shrimp, P. duorarum, was the most important spe-
cies for shrimp fishery at the Mexican coast of the Gulf of Mexico. Catches
obtained at the Campeche Sound during the 1970s represented between
70% to 90% of the total shrimp catch in the south of the Gulf of Mexico.
After this period, catch and fishing effort decreased, leveling off from
1980 to 1986. Afterward, catches presented an acute negative tendency
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Figure 2. Diagram of catch and effort data of the shrimp fishery in the Gulf of
Mexico (1963-1993).

that correlated with low abundance of the species. Pink shrimp yield re-
corded in one of the most important fishing ports (Carmen City) declined
to almost 20% of the average maximal production reached in the 1970s
(Fig. 4). According to estimations made by several authors (Arreguín-
Sánchez and Chávez 1985, Navarrete and Uribe 1993), maximum sustain-
able yield varies from 4,300 to 11,000 t.

Artisanal fisheries target the three main shrimp species, P. setiferus, P.
duorarum and P. aztecus, and include fishing in lagoons, estuaries, and
coastal areas. These artisanal fisheries affect mainly juvenile stages, al-
though recently a new artisanal fishery with drift nets was developed,
which focuses mainly on the exploitation of the adult white shrimp in
marine waters.

Material and Methods
Statistical data of the shrimp fisheries in the Gulf of Mexico were consid-
ered for the study. Analysis of shrimp industrial fisheries was based on
catch and effort statistics for white and pink shrimp in the main fishing
areas during 1973-1991 and 1973-1990, respectively. This information
was available at government agencies (Fisheries Department of Mexico).
Total catch per each of nine categories (10-15, 16-20...61-70 tails per pound)
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Figure 3. White shrimp fishery trajectory based on catch-effort data of Campeche
Bank from 1973 to 1991 (redrawn from Gracia 1996).

by month were analyzed to estimate indices of shrimp abundances in
open sea waters. Numbers of individuals by size and sex were estimated
by the procedure of Gracia (1989a, 1991), based on sex ratio and the mean
tail weight for each market category. Numbers were calculated by using a
computer spreadsheet and assuming a normal distribution. Information
of artisanal fishery total catch was also compiled (1985-1990), when avail-
able, from government statistics. Size composition and monthly shrimp
abundance indices of the artisanal fishery were obtained from periodic
samplings carried out in these fisheries (Gracia 1989a, 1991, 1995, 1996).

Population and fishery parameters were obtained from the literature
or were estimated from the available statistics (Table 1). Size was convert-
ed to age according to the von Bertalanffy growth curve for each species.
Age-specific fishing mortality was obtained through age-based virtual
population analysis for white shrimp and pseudocohort analysis for pink
shrimp of the composition of monthly shrimp catches (Sims 1985, Mesnil
1988). A mean life span of 16 months for the shrimp was considered based
on size population structure and shrimp growth curves.

Analysis of the interaction among the diverse fisheries was based on
a yield per recruit (Y/R) age-structured Thompson and Bell type model.
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Figure 4. Pink shrimp fishery trajectory based on catch-effort data of Campeche
Bank (1973-1990).

This model provides a simple description of non-steady state situations
and has been used for sequential shrimp fisheries earlier by Willmann and
García (1985). Basic equations used in the model are as follows:

Zi = M + Fi

N(ti + dt) = N(ti)exp(–Zidt)

Ci = [N(ti) – N(ti + dt)]Fi/Zi

Yi = Ciwi

Bi = Yi/[Fidt]

Where Zi is instantaneous coefficient of total mortality at age i, M is instan-
taneous natural mortality rate (monthly), Fi is instantaneous fishing mor-
tality rate at age i, Ni is shrimp population size at the end of the age i, Ci is
catch in numbers at age i, wi is average shrimp weight, Yi is yield, Bi is
biomass, i is the age in months, t is time and dt is the time spent in the
interval.
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Table 1. White and pink shrimp parameters.

White shrimpa Pink shrimpb

Growth parameters

Lα 209 mm 203 mm

Wα 72 g 68 g

K 0.2016 0.2167

t0 0.3267 0.466

Estuarine natural 0.6 0.7
mortality

Offshore natural 0.25 0.27
mortality

Marine fishing mortality

Age F F

4 0.012 0.018

5 0.063 0.053

6 0.090 0.089

7 0.178 0.125

8 0.245 0.225

9 0.492 0.338

10 0.355 0.388

11 0.409 0.393

12 0.412 0.445

13 0.386 0.464

14 0.454 0.306

15 0.364 0.366

16 0.330 0.315

Source: aGracia 1989a, bthis study.
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For simplicity, it was assumed that recruitment, growth, and fishing
pattern was constant during the life span of shrimps and were known
without error. An average single-cohort, age-structured model was built
for each species and was assumed that, at equilibrium, this yield was
equivalent to that one resulting from all the cohorts present in the fishery
during the year. To analyze the effect of inshore artisanal fisheries on the
offshore industrial fishery different levels of artisanal mortality were used
while maintaining offshore fishing rates constant. Simulation results were
compared and expressed as percent change of the shrimp total yield.

Results and Discussion
White Shrimp
The proportion of white shrimp in inshore artisanal fisheries varies with
the geographic location of the lagoons. According to fishery statistics, the
white shrimp represents from 5% to 15% of the total artisanal shrimp catch
in the coastal lagoons of the northeastern Gulf of Mexico. Juveniles are
highly concentrated in Términos Lagoon in Campeche Sound (Gracia 1989a).
This fact led to the development of fishery activities in this region during
the 1970s. At present, this activity is prohibited but is performed clandes-
tinely. Due to the illegal character of this activity, there are no formal
statistical records of the effort and catch rates of white shrimp by the
artisanal fishery; nonetheless, the available information allows analysis
of the main aspects of its relationship to industrial fishery (Gracia 1989a).

Size composition of artisanal catch obtained using otter trawls ranges
from 3.5 to 14.0 cm total length (TL), corresponding to 2- to 4-month-old
organisms. However, the highest proportion is represented by organisms
aged under 3 months with an average monthly size of 7.0 to 10.0 cm TL
(Fig. 5) corresponding to a market category of over 70 tails per pound.

Artisanal catches vary with seasonal fluctuations in shrimp abundance
in the nursery areas. According to Gracia (1989a), in Términos Lagoon
they have high and low abundance periods. In general, the high abun-
dance period goes from the end of spring to the fall (rainy season) and, on
average, the maximal abundance of juveniles occurs between June and
July. The lowest abundance usually occurs from December to March. The
artisanal fishery adjusts to these variations; therefore the invested effort
depicts proportional fluctuations to the availability of white shrimp in the
nursery areas. These seasonal fluctuations in the abundance of juveniles
and migrating sizes was taken into account for the simulation of interac-
tions among white shrimp sequential fisheries based on the yield per re-
cruitment model.

Analysis of the interaction among sequential fisheries in the Térmi-
nos Lagoon–Campeche Sound area (illegal inshore–industrial offshore)
based on population parameters, estimated for all stages of P. setiferus
indicates that the decline in total production due to the illegal artisanal
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Figure 5. White shrimp size composition obtained by the inshore
artisanal fishery using otter trawls.

fleet—estimated in 1984 to range from 30 to 300 boats (Smith 1985)—
could be close to 20%. Based on this data, the estimated artisanal catch
could only contribute between 3% to 6% of the total catch, resulting in a
net reduction of shrimp production offshore. Although the lack of avail-
able statistics of artisanal fishing effort does not allow precise estimates,
it is appreciated that the effect on total shrimp catch is directly related.

If the fishing effort in Términos Lagoon is increased to levels causing
a monthly fishing mortality of 0.44-0.5, equivalent to using fixed fishing
gears (Gracia and Soto 1986), the increase in artisanal catch would corre-
spond to 14% of the total biomass, and the industrial fishery would de-
cline 40% (Fig. 6). The effect is even more noticeable if it is analyzed in
terms of the gross value of the catch, since the artisanal fishery catches
smaller sizes of less market value. In this case gross value of the catch will
reduce about 40% and the artisanal catch value will only represent about
2% of the total.

Interaction between growth rates and natural mortality, and even fish-
ing mortality, results in a larger biomass of P. setiferus after migration,
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once they escaped artisanal exploitation in the coastal lagoon environ-
ment. Each kilogram of white shrimp caught in the estuary decreases marine
catch in a 1:2.8 proportion. The cumulative residual loss due to artisanal
exploitation leads to a global reduction in the catch that correlates with
increasing fishing effort.

Therefore, the magnitude of the impact caused by inshore artisanal
fisheries on the catch levels of the following fisheries is directly propor-
tional to the fishing effort exerted on the estuarine populations and has a
negative exponential relationship with marine catch in terms of biomass
(Fig. 11). If the number of organisms is considered this relationship is
linear and directly proportional to the fishing effort.

Pink Shrimp
The greatest artisanal exploitation of pink shrimp is being taken in the
protected coastal waters of the states of Campeche and Yucatán, which
are the most important nursery areas of the pink shrimp in Mexican wa-
ters of the Gulf of Mexico.

Figure 6. Impact of inshore artisanal fishery on the total yield of white shrimp.
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Artisanal fishery of pink shrimp in the coastal areas of Campeche is
accomplished through the use of different types of fishing gears (Alarcón-
Fuentes and Arreguín-Sánchez 1992). Two of them are fixed gears placed
in the channels to catch shrimps during their migration to the sea. The
other two are mobile and are operated manually in shallow waters near
the coastline. Catches are basically made up of pink shrimp (more than
96%), although some palemonid shrimps have also been recorded in small
proportion (4%).

The size range caught by this artisanal exploitation corresponds to
very small shrimps, and although sizes go from 1.2 to 11.5 cm TL, the
mode of the catch corresponds to 3.0-4.0 cm TL (Fig. 7). Most (85%) of the
organisms caught through this artisanal fishery are only 25 to 60 days old
(Fig. 7).

According to information gathered in the Campeche area, artisanal
fishing of juvenile pink shrimp has been going on for more than 20 years,
but exploitation used to be on a small scale just for household subsis-
tence, i.e., catches were small and not recorded. At the beginning of the
1980s, exploitation increased to commercial levels and the first data of

Figure 7. Pink shrimp size composition exploited by inshore artisanal fishery.
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juvenile pink shrimp catches along the coast of Campeche was recorded.
It is worthwhile mentioning that these records are variable and do not
necessarily reflect the level of artisanal exploitation. The recorded catch-
es of this juvenile stage revealed a steady increase from the first years of
data recording until this activity was prohibited in 1992.

The average artisanal exploitation, according to the available statisti-
cal data, reveals a constant activity year-round with monthly variations
that could coincide with abundance fluctuations of juveniles. The avail-
able records show that the maximum average catch was obtained in the
months of March, May, September, and October, which agrees with peri-
ods of high abundance of juveniles in the area (Gracia and Soto 1990).
However, it should be noted that no knowledge exists on the fluctuations
in artisanal fishing effort that might introduce bias in the relationship of
abundance-catch levels; for example, in the months of January and Febru-
ary, when shrimp abundance is low and juvenile catches do not follow
this pattern (Gracia 1995).

 The effect of artisanal fishery of juvenile pink shrimp on the industri-
al fishery is also directly related to the extracted volume (Fig. 8). The

Figure 8. Impact of artisanal fishery on the pink shrimp total yield.
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relationship is similar to that of the white shrimp, except that for the pink
shrimp the impact is even greater on the total production. The loss of
total biomass is greater since shrimp caught by the artisanal fishery are
smaller. The exploitation of juvenile P. duorarum of such small sizes re-
sults in a waste of global biomass of 9 kg for each kilogram of juvenile
organisms extracted from the nursery areas. In terms of commercial val-
ue, this proportion increases to an average of 28:1, since the value per
unit weight increases with shrimp size.

 The effect on the adult population, estimated through simulation
models, indicates that a fishery activity similar to the one recorded could
cause a 10%-20% decline in offshore production. The effect could be even
greater if we consider that records of an artisanal fishery are usually in-
complete. The annual production of artisanal pink shrimp catches in the
nursery area of Yucatán state from 1985 to 1990 show fluctuations from
25 to 230 tons. Inclusion of precise catches in the model could account
for most of the decline in pink shrimp production.

 Other factors have been pointed out as causing the decline in pink
shrimp production (Gracia 1995). Among them are (a) decrease in the fish-
ing effort due to deterioration of the fishing fleet, (b) loss of fishing areas
due to the expansion of the oil industry, (c) deterioration of the nursery
areas, and (d) expansion of the artisanal fishery during the earlier stages
of the pink shrimp. However, according to the results, the artisanal fish-
ery seems to be the most important factor responsible for the decline in
production. None of the other factors seem to be critical for the decline,
since fishing effort has recovered in some cases without improving pro-
duction, and the relationship between deterioration of nursery areas and
decline in catches has not been proven.

Exploitation of Shrimp Postlarvae
At present there is no extraction of postlarval organisms to be used as
“seeds” for shrimp culture in the Gulf of Mexico, since there is no aquacul-
ture development with native species in the area. However, due to the
problems posed by some diseases and the potential risk of exotic viruses
transmitted by foreign species (NMFS 1997), culture of native species seems
to be a good option for increasing shrimp production. Considering the
potential involved in aquaculture, a postlarval fishery could be started
with native species of the Gulf of Mexico. Nonetheless, this analysis could
also be a reference point for other species, such as P. vannamei from the
Pacific, where postlarvae are already being exploited.

 Literature regarding the effect of postlarval extraction on shrimp
population is scarce. Gracia (1989b) assessed such an activity for the white
shrimp P. setiferus, a potential aquaculture species that occupies the third
place in pond productivity after P. vannamei and P. stylirostris (Lawrence
1984). The impact varies according to the age of juveniles caught. The
impact is lower when the postlarval organisms are caught before entering
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the coastal lagoons and increases exponentially with increasing age of the
shrimp (Fig. 9). Indeed, catching of already settled postlarval-juvenile or-
ganisms in nursery areas is a variant of juvenile artisanal fishing as de-
scribed for the pink and white shrimps with similar effects.

 The impact on shrimp production increases proportionally with the
exploitation level on postlarvae (Fig. 10). However, there is a marked
difference if the catch is performed before the settlement of postlarval
organisms in the estuarine benthos, or if the catch includes already estab-
lished stages. This difference is due to the fact that postlarval settlement
in nursery areas represents a critical point in the life history of the shrimp
and in the regulation of the population size. The carrying capacity of the
nursery areas, determined by diverse environmental factors (type of bot-
tom, nutrients, salinity, depth, vegetation, etc.), is to a great extent re-
sponsible for the recruitment level in marine populations (García 1989).
This explains why the curve slope elevation of postlarval exploitation-
production impact is greater when organisms that have already surpassed
this critical stage are exploited.

Figure 9. Impact of postlarvae exploitation of different ages on total white shrimp
yield.
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Relationship among the Different Life Cycle Stages
White shrimp and pink shrimp have a similar life history. Both of them
have an estuarine-dependent stage. Differences lie in the time they spend
in the nursery areas. Pink shrimp tend to migrate out of the lagoons soon-
er than white shrimp. However, similarities allow common management
strategies for both.

 According to the performed analyses and the recorded data in the
literature (Gracia 1989a, 1989b, 1991, 1997) it can be assumed that the
relationships among the different stages of one shrimp generation sub-
jected to a potential fishery vary between potential and linear, as shown in
Fig. 11. In the presented model, it is assumed that there is a linear rela-
tionship between the number of spawners and the number of produced
larvae. However, when relating spawners to settled postlarvae two weeks
later (8-12 mm total length), a potential relationship is expected. Density
dependent mortality mainly occurs during the estuarine stage, therefore
the relationship between larvae and juveniles would be potential. The re-
lationship between the number of resulting juveniles and the number of

Figure 10. Relationship between postlarvae fishing mortality and shrimp yield
decline.
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Figure 11. Relationship among the different shrimp life cycle stages.

recruits to the marine population is linear, although a limit would be ex-
pected for this relationship at very high abundance levels of juveniles in
the nursery areas. The duration of this stage varies between an average of
2-3 months (6.5-8.5 cm TL) for pink shrimp and 3-4 months (8.5-9.5 cm
TL) for white shrimp. In the marine environment the relationship between
the number of recruits (3-4 months old) and spawners would have a po-
tential form due to density-dependent factors. A stock-recruitment rela-
tionship of this type has been established for white shrimp by Gracia (1991).

 These relationships can be affected by environmental changes, and
could be represented by diverse levels on the curves limiting an area where
different abundance values for each stage can be encountered. These val-
ues are influenced by the fishing mortality derived from the fishery over
the different stages of the life cycle, and its impact is reflected on the
subsequent stages, and eventually on the total production of shrimp.
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General Discussion
Along the history of shrimp fisheries, small-scale artisanal fisheries were
conducted before the industrial fishery developed, since exploiting this
resource in coastal regions was easy. Profitability of the industrial fishery
caused a shift of fishing efforts toward offshore fishing. During the 1980s,
artisanal fishery efforts on several species of the Gulf of Mexico strongly
increased, which in some instances even inverted the relationship of arti-
sanal versus industrial fishing effort.

 This increase in artisanal fishery effort directed to early shrimp stages
of those species of greater market value caused overfishing at this growth
stage, since exploitation occurs before the optimal biomass per organism
is achieved. On the other hand, increases in artisanal fishery with drift
nets has caused a recruitment overfishing of white shrimp (Gracia 1992a,b,
1996). Both factors led to a decline in total available biomass of the three
species, affecting the optimal profitability of the resource and the repro-
ductive potential of the species.

 The critical problem in defining precisely the impact of artisanal fish-
eries on the exploitation of the main shrimp species and to differentiate
this impact from other factors (such as environmental effects or deteriora-
tion of the nursery areas) is the lack of adequate records on artisanal
fishing effort. Despite their importance, artisanal fishing effort is not giv-
en their due weight in assessing shrimp populations in the Gulf of Mexico.
Information available at this moment suggests that most of the deteriora-
tion in shrimp populations is due to the uncontrolled increase in artisanal
fisheries plus the already existing industrial fishery effort, which has al-
ready reached maximum allowable levels.

 Fishing mortality in the juvenile and pre-adult stages must be added
to the fishing mortality caused by industrial fishing, on which evaluations
of shrimp stocks have traditionally been based. As a result, we now have
total fishing efforts that had never been reached before in the history of
shrimp exploitation. Disregard of the artisanal effort also hinders evalua-
tion of the total accumulated fishing efforts in each of the exploitation
stages, and impairs taking adequate measures to insure a healthy man-
agement of this resource.

 The main characteristic of the artisanal fishery is in providing in-
come to a relatively large number of fishermen with low-cost investments.
This makes this activity quite attractive and fostered an uncontrolled in-
crease in fishing effort. To a certain point, Mexican artisanal fisheries in
the Gulf of Mexico are almost freely accessed without any control adverse-
ly affecting the resource. The established objective for shrimp fishing in
the area are (1) that there must be a healthy balance between artisanal and
industrial fisheries to allow for optimal exploitation of the resource with-
out negatively affecting the reproductive population, and (2) to generate a
global benefit. In this sense, it is necessary to limit the artisanal effort.
This is particularly important for the present conditions of the resource,
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where (1) there is no possibility to increase catches of natural populations
above the already reached levels, (2) global fishing effort have increased
markedly, and (3) world aquaculture is in an expansion stage, which will
increase supply of small shrimps competing with the shrimp obtained by
artisanal fisheries.

 An important point to be considered is the impact caused by all fish-
eries on the reproductive potential. According to the analyses made, the
recruitment level can be affected, which in turn will affect the reproduc-
tive biomass. Garcia and Van Zalinge (1982) and Garcia (1989) emphasize
that fecundity per recruit at a given exploitation level can be increased by
protecting the juvenile population. Accumulation of fishing efforts on dif-
ferent stages of the shrimp’s life cycle can exert an opposite effect and
eventually lead to recruitment overfishing.

 In most worldwide fisheries, recruitment overfishing has been ques-
tioned, since stock-recruitment (S-R) relationships are not apparent for
most penaeid shrimps. However, these S-R relationships have been dem-
onstrated in some penaeid species (Penn and Caputi 1986, Gracia 1991)
and recruitment overfishing has been documented in some species (e.g.,
in P. setiferus resulting from the additional artisanal effort on reproduc-
tive populations, Gracia 1996).

 Traditional management to prevent recruitment overfishing consists
of maintaining a healthy relationship between the spawner stock and the
recruitment produced by this stock, considering the different stages of
the shrimp’s life cycle as a black box. Such is the case for the white and
pink shrimp in the Gulf of Mexico, although some protection is aimed to
the juvenile stage. According to Hilborn and Walters (1992) the reasons to
group the different life stages are (1) the spawning stock is the one that
can be managed and not the other stages of the life cycle, and (2) it is
important to have direct measurements of the consequences of this con-
trol. Although management through such a general relationship can be
very useful, in the case of penaeid shrimps the multiple fishery condi-
tions can lead to recurrent stock reductions, shortening of the fishing
season, and/or depletion of the fishery. An increasing effort in artisanal
fishery would tend to decrease the spawning stock independently of the
protection measures taken at this stage. Reducing fishing effort only on
spawners would affect mainly the offshore industrial fishery, which is at
the end of the exploitation chain, and the results would not be very tangible.
Eventually, the fishery could reach levels of smaller production due to
growth overfishing and, if the fishing effort is excessive, become unprof-
itable at the marine stage.

 To avoid damage to the fishery, it is necessary to implement ade-
quate management strategies based on escape levels in each stage. Gracia
(1996), based on a study in white shrimp, suggests some practical refer-
ence points for the management of the fishery in relation to the critical
levels of the reproductive stock. In this case management strategies can
be directed especially to the main annual cohorts. Based on the analysis of
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the S-R relation of the main P. setiferus cohorts, Gracia (1996) suggests
that to preserve the population lying on the flat section of the stock-
recruitment curve, the stock must be maintained at 25%-30% of the high-
est reproductive biomass value recorded in the fishery. This means that
the spawning stock must be kept at levels higher than 17%-20% of virgin
biomass.

 These reference points can be linked with information on the differ-
ent stages (Fig. 12) of the shrimp’s life cycle through a multiple stage
model as proposed by Paulik (1973). To design management strategies
based on this type of models, it is necessary to have information on re-
cruitment both in the growth areas and in the marine environment, and
on effort levels in the artisanal and industrial fisheries, as well as to have
critical reference points on the stock-recruitment relationship. Basically,
escape of organisms in the different stages can be insured through catch-

Figure 12. Base diagram to analyze the trajectory of one shrimp generation sub-
jected to exploitation in its different life cycle stages. Shadow area repre-
sents the risk area for population renewal, H and L are “good” and “bad”
environmental conditions. Arrows represent hypothetical population tra-
jectories along varying conditions.
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ing quotas, reducing fishing effort by setting spatial and temporal clo-
sures, or monitoring catch per effort unit in the diverse fisheries. This
should aim to leave a sufficient number of migrating organisms to allow
for an adequate level of spawners and, thus, avoid deterioration or col-
lapse of recruitment. Such a management strategy could be applied not
only to penaeid shrimp of the Gulf of Mexico, but to the those which are
subjected to similar exploitation levels. Establishing an escapement-based
management strategy may, in first instance, increase total shrimp yield
and gross fishery value by reducing growth overfishing, which would
mainly benefit offshore fishery. An example of this can be found in the
brown shrimp seasonal closure of the Gulf of Mexico directed to reduce
growth overfishing which enhanced cohort yield by more than 300% (Gracia
1997). Benefits to the artisanal fisheries could be expected in the long
term by increasing shrimp spawning potential and increasing average
shrimp size in the nursery areas. However, the most important point will
be that this strategy could allow the coexistence of the different fisheries
while assuring high profitability in their exploitation.
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Abstract
One of the main purposes of stock assessment is to evaluate the spawning
stock size. Spawning stock biomass (SSB) has been generally used as an
indicator of spawning stock size. However, SSB is a short-term indicator of
spawning stock size, which represents the magnitude of the spawning in
the coming spawning season. Because SSB cannot account for the long-
term reproductive ability of the stock, fisheries management based on
SSB may result in overfishing in the future. Katsukawa (1997) suggested
the use of total reproductive value of the standing stock as an indicator of
spawning stock size. We call this the reproductive potential. The repro-
ductive potential can be used to evaluate the long-term reproductive abil-
ity of the standing stock, considering the biological parameters and the
age composition. In this study, we have examined the performance of a
fisheries management strategy based on reproductive potential. We com-
pared the performance of constant reproductive potential strategy and
that of constant SSB strategy. By deterministic analysis, we showed that
fisheries management based on reproductive potential is more robust to
the errors in the stock size than that based on SSB. A stochastic computer
simulation also supports this result.

Introduction
One of the main purposes of fisheries management is to avoid recruit-
ment overfishing. Spawning stock biomass (SSB) has been generally used
as an indicator of the spawning stock size. Many reference points in fish-
eries management are based on SSB. For example, a level of 20% virgin or
unexploited biomass has historically been adopted as a threshold for re-
cruitment overfishing (Beddington and Cooke 1983). Myers et al. (1994)
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and Zheng et al. (1993) examined a variety of methods for estimating the
spawning stock biomass level as a threshold for recruitment overfishing.

Although a large number of studies has been done on the level of SSB
needed to avoid recruitment overfishing, SSB presents some problems as
an indicator of spawning stock size, especially for long-lived species. SSB
is an indicator of short-term reproductive ability, representing only the
magnitude of spawning in the coming spawning season. For long-lived
species, the standing stock must sustain not only the next spawning but
also the spawning of subsequent years. Ensuring sufficient SSB may be
useful for avoiding recruitment overfishing in the coming spawning sea-
son. However, as SSB cannot account for spawning beyond the upcoming
spawning season, a fisheries management strategy based on SSB may re-
sult in overfishing in the future. For example, immature fish have some
potential value due to their future reproduction, which is not accounted
for when using SSB.

In order to ensure the potential spawning ability of the stock, we must
take into account the value of future spawning. Katsukawa (1997) devel-
oped an indicator of long-term spawning ability of the standing stock,
called reproductive potential (RP ). The objective of this paper is to exam-
ine the effectiveness of reproductive potential as an reference point of
fisheries management. We examined the difference between reproductive
potential and SSB by using an example of chub mackerel. We also com-
pared the performance of fisheries management strategies based on RP
(constant RP ) and SSB (constant SSB).

Methods
Fisher’s Reproductive Value
We could use the concept of Fisher’s reproductive value (RV ) for effective-
ly evaluating the long-term productivity of the individual (Fisher 1930).
RV can be expressed as follows:
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where RVt is reproductive value of the individual at age t (just after the
spawning season of age-t), Ei is fecundity of the individual at age i, Ai is
survival rate till the spawning season at age i, Fj is the coefficient of fish-
ing mortality at age j, and Mj is the coefficient of natural mortality at age j,
and r is the instantaneous growth rate of the population size.

The instantaneous growth rate r is important when the stock size is
exponentially increasing or decreasing. For example, when we think about
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a stock rebuilding program, spawning of this year is more valuable than
that of the next year. In this paper, we will discuss the management strat-
egy to fix stock size at one level. Therefore, we assumed r = 1. In this case,
RV of an age-t individual is the expected spawning of that individual from
age t until the end of the individual’s life.

Comparison between Reproductive Value and Body
Weight
In order to examine if we can use body weight as an approximation of RV,
we compared the reproductive value (RV ) and the body weight of chub
mackerel (Scomber japonicus). The population parameters for chub mack-
erel were described by Wada et al. (1996) and they are summarized in
Table 1. We assumed the natural mortality (M) = 0.4. The fishing mortality
at age i (Fi) is expressed as the product of the selectivity at age i (qi) and
fishing effort (f ) [Fi = qif ]. The fecundity at age i (Ei) is expressed as the
product of the rate of the maturity at age i (mi) and the weight at age i (wi)
[Ei = miwi].

When f = 0, RV and the body weight increase with age. As the increase
in RV is much slower than that of the body weight, younger individuals
have higher RV per body weight than older ones. This implies that young
fish have higher future productivity than old fish with the same weight. If
there is no fishing mortality, 1 kg of one-year-old chub mackerel will, with
respect to long-term spawning, have an equal contribution as a 2.2 kg
seven-year-old chub mackerel. Therefore, the reproductive ability of young
fish is underestimated if we use biomass as an indicator of spawning stock
size.

Table 1. Estimation of body weight (g), rate of maturity, selectivity, re-
productive value (RV ) (g), RV per weight by age, and stock num-
ber-at-age in 1970 (105 individuals) of chub mackerel as
summarized from Wada et al. (1996).

Body Rate of Number-
weight maturity Selectivity RV RV per weight at-age

Age (wi) (mi) (qi) f = 0 f = 1.73 f = 0 f = 1.73 in 1970

1 252 0.0 0.25 1,120 147 4.29 0.583 52,766

2 434 0.2 0.44 1,584 251 3.55 0.578 31,833

3 610 1.0 0.62 1,753 191 2.80 0.313 14,411

4 672 1.0 0.79 1,944 160 2.83 0.238 5,370

5 811 1.0 1.00 2,089 126 2.53 0.155 3,328

6 912 1.0 1.00 2,204 146 2.37 0.160 2,560

7+ 1,084 1.0 1.00 2,204 146 2.00 0.135 838
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In Table 1, we show the RV corresponding to the average fishing effort
between 1980-1989 (f = 1.73). An increase in fishing effort leads to a de-
crease in RV. The decreasing rate of RV is different for different ages. Be-
cause the selectivity of old individuals is higher than that of young ones,
old individuals are generally more vulnerable to fishing pressure than
young ones. One-year-old individuals are the only exception. Only 20% of
two-year-olds are mature, and one-year-olds therefore take yet another
year to fully mature. If the fishing pressure is high, the one-year-olds hardly
survive next two years. Although one-year-olds have higher growth rate
and lower fishing mortality than two-year-olds, they are more sensitive to
fishing pressure. One-year-old individuals are as sensitive as three-year-
old individuals.

Because the future production of the individual is affected by the age
and fishing pressure, body weight is not a sufficient indicator to evaluate
the future production of the individual. If we have enough biological in-
formation, the future production of an individual should be estimated by
RV.

Reproductive Potential
Katsukawa (1997) suggested to use total RV of the standing stock as an
indicator of spawning stock size. We have called this the reproductive
potential (RP ). RP can be expressed as follows:
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where Ni is stock number of age i, qk is selectivity at age k, and f is fishing
effort. The reproductive potential can be used to evaluate the future pro-
duction of the standing stock, considering the biological parameters and
the age-composition of the stock.

We can use reproductive potential not only as an indicator for stock
assessment but also as a reference point for fisheries management. If the
number-at-age (Ni), fecundity (Ej), selectivity (qk), and natural mortality
(Mk) are estimated, reproductive potential (RP ) can be expressed as a mono-
tonic decreasing function of fishing effort (f ). Therefore, we can change
the value of RP by adjusting f. The maximum Reproductive potential is
obtained when f = 0. As f increases, RP decreases toward zero. Conse-
quently, we can obtain any RP value between RPf=0 (the maximum RP ) and
zero by controlling f. Therefore, targeting a certain RP level will show us
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the f value needed to obtain that RP level. If the target level is higher than
RPf=0, no yield can be allowed because stock size is too low to achieve the
target level. Otherwise, we can calculate the unique f needed to obtain the
target reproductive potential level from equation (2). When the RP thresh-
old is set, the f needed to obtain that threshold can be considered as the
maximum acceptable f.

Let us think about the constant reproductive potential strategy (CRP).
We used chub mackerel population as an example. We fixed the age-distri-
bution as that in 1970. The stock size (α) is expressed relative to the stock
size in 1970. Namely number-at-age i (Ni,t) equals αNi,1970.  We employed
relative stock size of α = 1 (stock size in 1970) as the minimum stock size
needed to reach the target level. In this case, fishing effort (f ) is deter-
mined from the RP of the standing stock equal to the target level (RPf=0,1970

= 1.55 × 107 t).
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where Ni,t is the number of age-i individuals in year t, α is the relative stock
size Ni,t/Ni,1970, Ni,1970 is the number of age-i individuals in 1970. Figure 1
shows the relationship between f and relative stock size (α).

Figure 1 also contains f determined by the constant escapement strat-
egy based on SSB (CSB). The target level of SSB is determined as the stock
size in 1970 (α = 1). The f of the CSB is determined as the SSB equals to the
target level.
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No fishing is allowed when α ≤ 1, because stock size is too low to
achieve the target stock size. On the other hand, when α > 1, we can obtain
an unique f that reaches the target level. The higher f is allowed as the
stock size increases. When the relative stock sizes (α) is the same between
CSB and CRP, the f of CSB is always higher than that of CRP. This is due to
the difference in the time scale of the indicators. For the calculation of RP,
we use the f value in the subsequent years. RP is calculated on the as-
sumption that the stock will be exploited under the same fishing pressure
throughout the remainder of its lifetime. By this assumption, we can de-
termine the fishing pressure (f ) that considers the future spawning of the
standing stock. On the other hand, CSB allows exploitation of all surplus
stock by the next spawning season. Let us think about a stock with low
natural mortality. If the stock size is double of the target, CSB allows ex-
ploiting almost half of standing stock within one year. This exploitation
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Figure 1. The fishing effort (f) determined by constant reproductive potential strat-
egy and constant SSB strategy, for chub mackerel. We fixed age composi-
tion as that in 1970. Stock size (α) is expressed as the ratio to the stock
size in 1970. We employed relative stock size of α = 1 (stock size in 1970)
as the minimum stock size needed to reach the target level.

rate will decrease the stock size one forth in two years and one eighth in
three years. Therefore, the future spawning of the standing stock is de-
creased to less than half. The f determined by CSB is not allowable from
the viewpoint of long term productivity.

Simulation
By using a computer simulation, we compared the performances of the
constant reproductive potential strategy (CRP) and the constant SSB strat-
egy (CSB). We used chub mackerel for our simulation. This population is
known to have considerable recruitment variation. Therefore, age compo-
sition is unstable. We can consider the age composition in light of repro-
ductive potential. Since this stock is important for the Japanese fishing
industry, the information needed for the calculation of RP is available.

We used a Beverton-Holt stock-recruitment relationship. The parame-
ters of the Beverton-Holt curve were estimated from the stock-recruitment
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relationship during the period 1970-1991, by the maximum likelihood
estimation to give
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 where R is the number recruits (105 individuals), S is SSB (tons), and N (0,
1.01) is the normal distribution, with mean 0 and standard deviation 1.01.

We used the number-at-age in 1970 as the initial stock size of the
simulation. We used the same target levels as the deterministic analysis
above. If the estimated stock size is lower than that in 1970, no fishing is
allowed. We used a normal distribution with mean 1 and standard devia-
tion 0.5 for the estimation error of the number-at-age. We assumed inde-
pendent estimation error for each age class. Namely, not only the total
stock size, but also the age composition were estimated with error. When
an estimated number-at-age become negative, we used zero for the esti-
mated number-at-age. We used the same target level of reproductive po-
tential (RPTarget = 1.55 × 107 t) as the deterministic analysis above. The fishing
effort (f ) under CRP is determined as the RP of the standing stock equals
to the target level of RP :
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where εj is the estimation error of the number-at-age j, Wj is weight at age
j, and mj is proportion mature at age j. Fecundity at age j (Ej) is expressed
as the product of body weight at age j (Wj) and maturity at age j (mj). If the
estimated stock size is too low to reach RPTarget, we cannot satisfy equation
(5). Therefore, in that case, f is set at zero.

The fishing pressure of CSB is determined as the SSB of the standing
stock equals to the target level:
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In this simulation, we updated f annually by the equations (6) and (7),
using newly estimated number-at-age. The simulated time is 50 years. We
repeated this simulation 100 times.

Results
The performance criteria of constant reproductive potential (CRP) and
constant SSB (CSB) are presented in Table 2. Figure 2 shows fishing effort,
SSB, and yield of one realization of the hundred replications.
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The average of fishing effort (f ) of CSB was slightly higher than that of
CRP, but the variance of f of CSB was almost four times bigger than that of
CRP. Figure 2a shows one realization of fishing effort over time. As we
used the same time series of estimation error and recruitment variation,
the trends of fishing effort of both strategies were similar. But the peaks
of CSB were sharper and higher than that of CRP. The f-curve for CSB is
steeper than that for CRP (Fig. 1). This implies that the value of f deter-
mined by CSB suffer higher fluctuation by the error of stock size estima-
tion than that determined by CRP. Numbers of the moratorium years were
significantly different. The moratorium years of CSB was more than 25%
of the simulated time. Such frequent moratorium is not desirable for the
fishing industry.

Figure 2b shows the time series of SSB. SSB level of CRP was higher
and more variable than that of CSB. As we used a highly variable stock-
recruitment curve, there were some years with high recruitment. CSB ex-
ploit all of the surplus production within one season. Therefore, SSB level
of CSB fluctuated near the target level. On the other hand, as CRP exploit-
ed the abundant cohort gradually, SSB level of CRP increased after recruit-
ment success. This is the reason why SSB level of CRP was higher and
more variable than that of CSB. The average minimum RP was higher than
the target level. If the stock is productive enough, the target level of RP
works as the lower limit. CRP may be effective for conservation of the
stock.

More than half of the simulated time, CSB decreased SSB level below
the target.

Table 2. Performance criteria of the constant repro-
ductive potential (CRP) and constant SSB
(CSB).

Performance criteria CRP CSB

Target level (106 t) 15.5 3.00

Mean yield (106 t) 4.36 2.17

Variance in yield (1013 t2) 4.08 1.18

Mean fishing effort (f ) 0.76 0.82

Variance in fishing effort (f ) 0.42 0.93

Mean RP level (107 t) 5.56 2.70

Mean SSB level(106 t) 6.20 2.99

Minimum RP (107 t) 1.69 0.96

Minimum SSB (106 t) 2.93 1.71

Overfishing years 0.69 29.96

Moratorium years 2.31 13.14

All criteria are expressed by the average of the 100 replications.
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Figure 2. The time series of fishing effort, SSB and yield for constant
reproductive potential and constant SSB. This represents one
of the 100 replications.
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As we used a stock with high productivity, the newly recruited cohort
often compensated the overfishing. This is the reason why there was a
moratorium on fishing only 13 years while overfishing occurred more
than 30 years. The minimum SSB level of CSB is about half of the target
level. For a stock with low productivity, such overfishing may result in
long successive moratorium.

We examined the robustness of two strategies by a deterministic anal-
ysis. We assumed the same estimation error (ε) for all age classes. In this
case, f is determined by the biased relative stock size (εα) instead of true
relative stock size (α). Figure 3a shows the stock size after one year ex-
ploitation at f determined by CRP. Here we expressed the stock size as the
maximum future spawning of survived stock, which is attained by the
moratorium starting from the next year. The darker area indicates the
smaller stock size. The areas surrounded by the dotted line indicates over-
fishing. In this area, the standing stock cannot achieve the target lifetime
spawning (target RP ), even if the standing stock will not be exploited from
next year. Otherwise, we can continue exploitation and achieve RPTarget by
tuning f. Under CRP, overestimating the stock size results in a fishing plan
that leads to overfishing. But, we exploit only a part of surplus yield with-
in one fishing season. Even when the stock size has been overestimated,
we may still reach the target RP by decreasing f the next year.

Figure 3b shows the SSB after one year of exploitation at f determined
by CSB. Because CSB exploits all surplus stock within a year, overestimat-
ing the stock number inevitably results in overfishing. The darkest areas
indicates severe overfishing. In these areas, the escapement size is less
than 75% of the target level. The darkest area of CSB is wider than that of
CRP. Consequently, by applying CRP, we can reduce not only the probabil-
ity of overfishing but also the intensity of overfishing.

By setting SSB at the most productive level, we can achieve the maxi-
mum sustainable yield (Reed 1979). As the recruitment of the next year
relates to SSB, the fisheries management based on SSB has an advantage in
terms of the maximizing recruitment. In this simulation, yield of CRP is
about the double of CSB. This is mainly due to the difference in the bio-
mass level. As the variance of SSB level is smaller for CSB, CSB may maxi-
mize yield if the target level is properly set. On the other hand, as RP
represents the long-term productivity of the stock, the fisheries manage-
ment based on RP is effective for the conservation of the stock.

The fisheries management based on RP and that based on SSB have
different strengths depending on the nature of the indicators. Therefore,
it is essential to clarify the objective of the fisheries management and to
choose the appropriate indicator in view of that objective. SSB should be
used for the maximizing yield, while RP should used for the conservation
of the stock. We can use the advantage of both SSB and RP by setting the
target level of SSB and the threshold level of SP at the same time. If the
stock level is low, we can protect the stock by using the RP indicator.
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Figure 3. The distribution of escapement stock numbers after one year’s
exploitation under the constant escapement strategy based on
the reproductive potential (a) and that based on SSB (b). The areas
below the curved line in both diagrams represents the areas of
moratorium on fishing. The area surrounded by the dotted line
indicates overfishing.
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Conversely, if the stock level is high enough, we can maximize the num-
ber recruits by using the SSB indicator.

Discussion
Feedback Management
In Rosenberg et al. (1994), 67% of the overfishing definitions are fishing
mortality rate–based. The remaining 33% of the definitions are based on
SSB. Although fishing mortality based management is widely used, sus-
tainable fishing mortality rate is usually uncertain. Feedback from stock
size is effective to avoid the risk from this uncertainty. Even if sustainable
fishing mortality rate is overestimated, fishing mortality rate is automat-
ically decreased by the feedback from stock decline. Feedback process
works even when we don’t have enough knowledge about the mechanism
of the population dynamics.

Although theoretically appealing, constant escapement strategy is not
widely used, because of highly vulnerability to the stock estimation error.
Instead of CES, SSB threshold policy is commonly used (Sigler and Fujioka
1993, Ianelli and Heifetz 1995). Under threshold policy, harvesting occurs
at a constant rate but reduced or ceased when stock size drops below a
threshold. The objective of threshold policy is mainly conservation of the
stock. Then RP is an appropriate indicator for threshold policy, because
RP has advantages to evaluate long-term spawning ability. Furthermore,
as we have seen, we can decrease risk of overfishing due to stock size
estimation error by using a RP indicator.

Comparison between Reproductive Potential and
Spawning per Recruit
The calculation method of reproductive value (RV ) is similar to that of
spawning per recruit, which is often used in fisheries management (Gabri-
el et al. 1989, Clark 1993, Goodyear 1993, Mace and Sissenwine 1993).
Spawning per recruit is equivalent to the RV of an individual that has just
been recruited. Although the basic equation of SPR and reproductive po-
tential is related, the management concept of both are completely differ-
ent. The objective of SPR analysis is to obtain the exploitation rate that
will lead the stock to the sustainable equilibrium. SPR analysis is a tool for
the constant harvesting rate strategy, under which the fishing rate is de-
termined independent of the stock size. On the other hand, the objective
of the management based on RP is directly escaping enough spawning
stock. We can use RP as the target level or threshold level of the stock size.
In this case, fishing pressure is determined by the estimated stock size.

Alee Effect
Alee (1931) pointed out that a population may fail to recover if the stock
decreases below a certain threshold level. Some stocks have been suggest-
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ed to exhibit such behavior, in the sense of experiencing a severe decline
and subsequently failing to recover despite a reduction in the fishing
mortality rate (Thompson 1993). In this study, CRP always led to a higher
minimum stock level than CSB. Thus, fisheries management based on re-
productive potential (RP ) may effectively prevent the stock from falling
below an undesirable point of no return.

Acknowledgments
This work owes much to the thoughtful and helpful comments of Drs.
Yasushi Harada, Jonathan Heifetz, Kazuhiko Hiramatsu, Kjartan G. Mag-
nusson, Hiroyuki Matsuda, and Shuhei Ohnishi. Anonymous reviewers
helped to improve the manuscript. This research was supported by a Re-
search Fellowship of the Japan Society for the Promotion of Science for
Young Scientists.

References
Allee, W.C. 1931. Animal aggregations. University of Chicago Press, Chicago. 431 pp.

Beddington, J.R., and J.G. Cooke. 1983. The potential yield of fish stocks. FAO Fish.
Tech. Pap. 242. 50 pp.

Clark, W.G. 1993. The effect of recruitment variability on the choice of a target
level of spawning biomass per recruit. In: G. Kruse, D.M. Eggers, R.J. Marasco,
C. Pautzke, and T.J. Quinn II (eds.), Proceedings of the International Sympo-
sium on Management Strategies for Exploited Fish Populations. University of
Alaska Sea Grant, AK-SG-93-02, Fairbanks, pp. 233-246.

Fisher, R.A. 1930. The genetic theory of natural selection. Oxford, U.K. 291 pp.

Gabriel, W.L., M.P. Sissenwine, and W.J. Overholtz. 1989. Analysis of spawning stock
biomass per recruit: An example for Georges Bank haddock. N. Am. J. Fish.
Manage. 9:383-391.

Goodyear, C.P. 1993. Spawning stock biomass per recruit in fisheries management:
Foundation and current use. In: S.J. Smith, J.J. Hunt, and D. Rivard (eds.), Risk
evaluation and biological reference points for fisheries management. Can. Spec.
Publ. Fish. Aquat. Sci. 120:67-81.

Ianelli, J.N., and J. Heifetz 1995. Decision analysis of alternative harvest policies
for the Gulf of Alaska Pacific Ocean Perch Fishery. Fish. Res. 24:35-63.

Katsukawa, T. 1997. Introduction of spawning potential: Improvement in the thresh-
old management theory. Rev. Fish Biol. Fish. 7:285-289.

Mace, P.M., and M.P. Sissenwine. 1993. How much spawning per recruit is enough?
In: S.J. Smith, J.J. Hunt, and D. Rivard (eds.), Risk evaluation and biological
reference points for fisheries management. Can. Spec. Publ. Fish. Aquat. Sci.
120:101-118.

Myers, R.A., A.A. Rosenberg, P.M. Mace, N. Barrowman, and V.R. Restrepo. 1994. In
search of thresholds for recruitment overfishing. ICES J. Mar. Sci. 51:191-205.



1012 Katsukawa & Matsumiya — Reproductive Potential

Reed, W.J. 1979. Optimal escapement levels in stochastic and deterministic har-
vesting models. J. Environ. Econ. Manage. 6:350-363.

Rosenberg, A., P. Mace, G. Thompson, G. Darcy, W. Clark, J. Collie, W. Gabriel, A.
MacCall, R. Methot, J. Powers, V. Restrepo, T. Wainwright, L. Botsford, J. Hoen-
ing, and K. Stokes. 1994. Scientific review of definitions of overfishing in U.S.
fishery management plans. NOAA Tech. Mem. NMFS-F/SPO-17.

Sigler, M.F., and J.T. Fujioka. 1993. A comparison of policies for harvesting sable-
fish, Anoplopoma fimbria, in the Gulf of Alaska. In: G. Kruse, D.M. Eggers, R.J.
Marasco, C. Pautzke, and T.J. Quinn II (eds.), Proceedings of the International
Symposium on Management Strategies for Exploited Fish Populations. Univer-
sity of Alaska Sea Grant, AK-SG-93-02, Fairbanks, pp. 7-19.

Thompson, G.G. 1993. A proposal for a threshold stock size and maximum fishing
mortality rate. In: S.J. Smith, J.J. Hunt and D. Rivard (eds.), Risk evaluation and
biological reference points for fisheries management. Can. Spec. Publ. Fish.
Aquat. Sci. 120:303-320.

Wada, T., C. Sato, and Y. Matsumiya. 1996. Fisheries management for the Pacific
stock of chub mackerel, Scomber japonicus, based on spawning per recruit
analysis. Bull. Jpn. Soc. Fish. Oceanogr. 60:363-371. (In Japanese.)

Zheng, J., T.J. Quinn II, and G.H. Kruse. 1993. Comparison and evaluation of thresh-
old estimation methods for exploited fish populations. In: G. Kruse, D.M. Egg-
ers, R.J. Marasco, C. Pautzke, and T.J. Quinn II (eds.), Proceedings of the
International Symposium on Management Strategies for Exploited Fish Popu-
lations. University of Alaska Sea Grant, AK-SG-93-02, Fairbanks, pp. 267-289.



Symposium on Fishery Stock Assessment Models 1013

Participants
Adkison, Milo
University of Alaska Fairbanks
SFOS
11120 Glacier Highway
Juneau AK 99801
Ph: 907/465-6251; Fax: 907/465-6447
ffmda@uaf.edu

Anderson, Jim
University of Washington
School of Fisheries
Box 358218
Seattle WA 98195
Ph: 206/543-4772
jim@fish.washington.edu

Applegate, Andrew
New England Fishery Mgmt. Council
5 Broadway
Saugus MA 01906
Ph: 781/231-0422
aapplegate@nefmc.org

Aubone, Anibal
Inst. National de Invest. y
Desarrollo Pesquero (INIDEP)
Larrea 631
Mar del Plata Buenos Aires 7600
ARGENTINA
Ph: +54 23 673575
aaubone@mdp.edu.ar

Baleña, Rex
Ocean-Weather Laboratory
PO Box 249
Iloilo City 5000
PHILIPPINES
Ph: 63 3331 58378; Fax: 63 33 3158441

Bechtol, Bill
Alaska Dept. of Fish and Game
3298 Douglas St.
Homer AK 99603-7942
Ph: 907/235-8191; Fax: 907/235-2448
billb@fishgame.state.ak.us

Bernard, Dave
Alaska Dept. of Fish and Game
333 Raspberry Rd.
Anchorage AK 99518-1599
Ph: 907/267-2380
davidbe@fishgame.state.ak.us

Bingham, Allen
Alaska Dept. of Fish and Game
333 Raspberry Rd.
Anchorage AK 99518-1599
Ph: 907/267-2327
AllenB@fishgame.state.ak.us

Björnsson, Höskuldur
Marine Research Institute
PO Box 1390
Skulagata 4
101 Reykjavik
ICELAND
Fax: 354-5623790

Booth, Tony
Rhodes University
Dept. of Ichthyology & Fisheries
PO Box 94
Grahamstown 6140
SOUTH AFRICA
Ph: 27 461 318420; Fax: 27 461 24827
t.booth@ru.ac.za

Brannian, Linda
Alaska Dept. of Fish and Game
333 Raspberry Rd.
Anchorage AK 99518-1599
Ph: 907/267-2118
lindab@fishgame.state.ak.us

Brodziak, Jon
NOAA/NMFS/NWFSC
2030 SE. Marine Science Dr.
Newport OR 97365-5296
Ph: 541/867-0243; Fax: 541/867-0389
Jon.Brodziak@noaa.gov

Bromaghin, Jeff
Alaska Dept. of Fish and Game
333 Raspberry Rd.
Anchorage AK 99518
Ph: 907/267-2379; Fax: 907/267-2442
jeffbr@fishgame.state.ak.us



1014 Participants

Brown, Evelyn
University of Alaska Fairbanks
Institute of Marine Science
PO Box 757220
Fairbanks AK 99775-7220
Ph: 907/474-5801
ebrown@ims.alaska.edu

Bruden, Dana
Alaska Dept. of Fish and Game
PO Box 240603
Anchorage AK 99524
Ph: 907/267-2440; Fax: 907/267-2442
danab@fishgame.state.ak.us

Bue, Fred
Alaska Dept. of Fish and Game
Box 1215
Nome AK 99762
Ph: 907/443-5167
fbue@fishgame.state.ak.us

Byrne, Larry
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
Ph: 907/486-1875; Fax: 907/486-1824
lbyrne@fishgame.state.ak.us

Campbell, Robert
CSIRO Division of Marine Research
PO Box 1538
Hobart Tasmania 7001
AUSTRALIA
Robert.Campbell@marine.csiro.au

Carlile, David
Alaska Dept. of Fish and Game
PO Box 25526
Juneau AK 99802
Ph: 908/465-4216
davec@fishgame.state.ak.us

Clark, John
Alaska Dept. of Fish and Game
PO Box 240020
Douglas AK 99824-0020

Coggins, Lew
Alaska Biological Science Center
1101 E. Tudor Rd.
Anchorage AK 99503
Ph: 907/786-3576
Lewis_Coggins@usgs.gov

Conser, Ramon
NOAA/NMFS/NWFSC
2030 SE Marine Science Dr.
Newport OR 97365
Ph: 541/867-0196; Fax: 541/867-0389
rconser@sable.nwfsc-hc.noaa.gov

Correia, Steven
MA Division of Marine Fisheries
50A Portside Dr.
Pocasset MA 02559
Ph: 617/727-4809 x111
steven.correia@state.ma.us

Cox, Sean
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
scox@fisheries.com

Crone, Paul
NOAA/NMFS/NWFSC
2030 SE Marine Science Dr.
Newport OR 97365
Ph: 541/867-0307; Fax: 541/867-0389
pcrone@nwfsc-hc.noaa.gov

Cummings, Nancie
NOAA/NMFS/SEFSC
75 Virginia Beach Dr.
Miami FL 33149
Ph: 305/361-4234; Fax: 305/361-4419
nancie.cumings@noaa.gov

Davies, Nick
National Inst. of Water and
Atmospheric Research Ltd (NIWA)
PO Box 1043
Whangarei
NEW ZEALAND
Ph: (09) 438 6578; Fax: (90) 438 0185
n.davies@niwa.cri.nz

De Oliveira, José
Sea Fisheries Research Institute
Private Bag X2
Rogge Bay 8012
Cape Town
SOUTH AFRICA
JDOLIVEI@sfri.wcape.gov.za

DiCosimo, Jane
North Pacific Fishery Mgmt. Council
605 W 4th Ave.
Anchorage AK 99501
Ph: 907/271-2809; Fax: 907/271-2817
Jane.DiCosimo@noaa.gov



Symposium on Fishery Stock Assessment Models 1015

Dorval, Emmanis
Old Dominion University (AMRL)
1034 W 45th St.
Norfolk VA 23529
Ph: 757/683-4195; Fax: 757/683-5293
dorval@estuary.amrl.odu.edu

Dressel, Sherri
University of Alaska Fairbanks
Institute of Marine Science
PO Box 757220
Fairbanks AK 99775-7220
Ph: 907/474-7918
dressel@ims.alaska.edu

Evenson, Matt
Alaska Dept. of Fish and Game
1300 College Rd.
Fairbanks AK 99701
Ph: 97/459-7207
mevenson@fishgame.state.ak.us

Fair, Lowell
Alaska Dept. of Fish and Game
Comm. Fisheries Mgmt. & Dev. Div.
333 Raspberry Rd.
Anchorage AK 99518-1599
LowellF@fishgame.state.ak.us

Fletcher, Rick
NSW Fisheries Research Institute
PO Box 21
Cronulla NSW 2230
AUSTRALIA
fletcher@fisheries.nsw.gov.au

Folmer, Ole
Greenland Inst. of Natural Res.
Box 570
Nuuk 3900
GREENLAND
Ph: 299 2 10 95
folmer@natur.gl

Fontenelle, Guy
Ecole Nationale Superieure
Agronomique de Rennes
65 Rue de St Brieuc
35042 Rennes cdx
FRANCE
Ph: 33 02 99 28 75 33; Fax: 33 02 99 28
75 35
fontenel@roazhon.inra.fr

Foster, Matt
University of Alaska Fairbanks
Fisheries Division
11450 Glacier Highway
Juneau AK 99801
ffmbf@uaf.edu

Fournier, David
Otter Consulting Ltd.
PO Box 265, Station A
Nanaimo BC V9R 5K9
CANADA
Ph: 604/756-0956; Fax: 604/756-0956
otter@island.net

Francis, Chris
National Institute of Water and
Atmospheric Research (NIWA)
PO Box 14901
Wellington
NEW ZEALAND
Ph: 64 4 386 0300; Fax: 64 4 386 0572
c.francis@niwa.cri.nz

Fu, Caihong
University of Alaska Fairbanks
SFOS
11120 Glacier Highway
Juneau AK 99801
Ph: 907/465-6372; Fax: 907/465-6320
ftcf@uaf.edu

Fujioka, Jeff
NOAA/NMFS Auke Bay Lab
11305 Glacier Highway
Juneau AK 99801-8626
Ph: 907/789-6026
Jeff.Fujioka@noaa.gov

Funk, Fritz
Alaska Dept. of Fish and Game
PO Box 25526
Juneau AK 99802
Ph: 907/465-6113; Fax: 907/465-6204
FritzF@fishgame.state.ak.us

Gallaway, Benny
LGL Alaska Research Associates
1410 Cavitt
Bryan TX 77801
Ph: 409/775-2000; Fax: 409/775-2002
cole_john@mns.com

Gasalla, Maria
Instituto de Pesca
Divisao de Pesca Maritima
Av. Bartolomeu de Gusmao, 192
Santos SP CEP: 11030-906
BRASIL
Ph: (013)227-5995; Fax: (013)236-1900
ipescapm@eu.ansp.br



1016 Participants

Gavaris, Stratis
Dept. of Fisheries and Oceans
Biological Station
St. Andrews NB E0G 2X0
CANADA
Ph: 506/529-5912; Fax: 506/529-5862
GavarisS@mar.dfo-mpo.gc.ca

Gislason, Henrik
Danish Inst. for Fisheries Research
Charlottenlund Castle
Copenhagen DK 2920
DENMARK
Ph: 33963361
hg@dfu.min.dk

Gracia, Adolfo
Instituo de Ciencias del Mar y
Limnologia
Apartado Postal 70-305
Mexico D.F. 04510
MEXICO
Ph: 52 5 622 5779; Fax: 52 5 616 0748
gracia@mar.icmyl.unam.mx

Gudmundsson, Gudmundur
Central Bank of Iceland
Economics Department
Kalkofnsvegur 1
Reykjavik 150
ICELAND
Ph: 354 5699683; Fax: 354 5699608
gudmg@centbk.is

Gunnari, Gerald
Coos Bay Trawlers Assoc.
PO Box 5435
Charleston OR 97420
Ph: 541/888-8012
ctrawl@mail.coos.or.us

Gustafson, Richard
Alaska Dept. of Fish and Game
3298 Douglas St.
Homer AK 99603

Hagen, Peter
Alaska Dept. of Fish and Game
PO Box 25526
Juneau AK 99802-5526
Ph: 907/465-3054; Fax: 907/465-2765
peterh@fishgame.state.ak.us

Haist, Vivian
Dept. of Fisheries and Oceans
Pacific Biological Station
Hammond Bay Rd.
Nanaimo BC V9R 5K6
CANADA
Ph: 250/756-7205; Fax: 250/756-7138
haistv@pbs.dfo.ca

Hale, Jim
NOAA/NMFS
PO Box 21668
Juneau AK 99802
Ph: 907/586-7228
jhale@ptialaska.net

Hall, Norm
Western Australian Marine Research
Laboratories, Fisheries Department
Perth West. Aust.
AUSTRALIA
Ph: 618 9246 8441; Fax: 618 9447 3062
nhall@fish.wa.gov.au

Hamner, Helen
Alaska Dept. of Fish and Game
333 Raspberry Rd.
Anchorage AK 99518
Ph: 907/267-2120
HelenH@fishgame.state.ak.us

Hanchet, Stuart
National Inst. of Water and
Atmospheric Research (NIWA)
PO Box 893
Nelson
NEW ZEALAND
Ph: 03 548 1715; Fax: 03 548 1716
s.hanchet@niwa.cri.nz

Hankin, David
Humboldt State University
Dept. of Fisheries
Arcata CA 95521
Ph: 707/826-3683; Fax: 707/826-3682
dgh1@axe.humboldt.edu

Heifetz, Jonathan
NOAA/NMFS Auke Bay Lab
11305 Glacier Highway
Juneau AK 99801
Ph: 907/789-6054; Fax: 907/789-6094
jon.heifetz@noaa.gov

Hicks, Alan
PO Box 448
Avila Beach CA 93424
 Fax: 707/825-7780
ach1@axe.humboldt.edu



Symposium on Fishery Stock Assessment Models 1017

Hill, Ryan
Triton Environmental Consultants
120-13511 Commerce Parkway
Richmond BC V6V 2L1
CANADA
Ph: 604/279-2093; Fax: 604/279-2047
rhill@triton-env.com

Hills, Sue
University of Alaska Fairbanks
Institute of Marine Science
PO Box 757220
Fairbanks AK 99775-7220
Ph: 907/474-5106; Fax: 907/474-5177
shills@ims.uaf.edu

Hiramatsu, Kazuhiko
Nat’l Research Inst. of Far Seas
Fisheries
5-7-1 Orido
Shimazu 424
JAPAN
Ph: 81-543-36-6014; Fax: 81-543-35-9642
hira@enyo.affrc.go.jp

Holland, Ken
Minerals Management Service
949 E 36th Ave., Rm. 308
Anchorage AK 99508-4302
Ph: 907/271-6684

Hosie, Mike
Coos Bay Trawlers Assoc.
PO Box 5050
Charleston OR 97420
Ph: 541/888-8012
ctrawl@mail.coos.or.us

Huiskes, Mark
Wageningen Agricultural University
Dept. of Mathematics
Dreijenlaan 4
Wageningen 6703 HA
THE NETHERLANDS
Ph: +31 317 482385; Fax: +31 317
483554
Mark.Huiskes@ztw.wk.wau.nl

Ianelli, Jim
NOAA/NMFS/AFSC
7600 Sand Point Way NE
Building 4
Seattle WA 98115
Ph: 206/526-6510; Fax: 206/526-6723
jim.ianelli@noaa.gov

Isaac, Victoria
Museu Paraense Emilio Goeldi
Dpto de Zoologia
C.P. 399
Belem-PA 66017-970
BRAZIL
Ph: 0055 91 2282897; Fax: 0055 91
2261615
victoria@amazon.com.br

Jakobsen, Tore
Inst. of Marine Research
PO Box 1870
N-5024 Bergen Nordnes
NORWAY
Ph: +47 55 23 8500; Fax: +47 55 23 8687
Tore.Jakobsen@imr.no

Jones, Christopher
University of Miami-RSMAS
4600 Rickenbacker Causeway
Miami FL 33149
Ph: 305/361-4288; Fax: 305/361-4499
cjones@rsmas.miami.edu

Jones, Cynthia
Old Dominion University
Appl. Marine Res. Lab.
1034 W 45th St.
Norfolk VA 23529-0456
Ph: 757/683-4497; Fax: 757/683-5293
jones@estuary.amrl.odu.edu

Katsukawa, Toshio
University of Tokyo
Ocean Research Institute
1-15-1, Nakano-ku
Tokyo 164
JAPAN
Ph: +81 3 5351 6495; Fax: +81 3 5351
6492
katukawa@ori.u-tokyo.ac.jp

Kirchner-Frankle, Carola
Ministry of Fisheries and Marine
Resources
Box 912
Swakopmund
NAMIBIA
Ph: 064 405744; Fax: 064 404385
carola@mail.fisheries.gov.na

Klaer, Neil
CSIRO Division of Marine Research
GPO Box 1538
Hobart Tasmania 7004
AUSTRALIA
Ph: +61 3 62 325465
neil.klaer@marine.csiro.au



1018 Participants

Kline, Tom
Prince William Sound Science Center
PO Box 705
Cordova AK 99574
Ph: 907/424-5800; Fax: 907/424-5820
tkline@grizzly.pwssc.gen.ak.us

Knudsen, Eric
Alaska Biological Science Center
1011 East Tudor Rd.
Anchorage AK 99503
Ph: 907/786-3842; Fax: 907/786-3636
Eric_Knudsen@usgs.gov

Kraft, Cliff
University of Wisconsin
Sea Grant Institute
2420 Nicolet Dr. ES-105
Green Bay WI 54311-7001
Ph: 920/465-2795
kraftc@uwgb.edu

Kruse, Gordon
Alaska Dept. of Fish and Game
Comm. Fisheries Mgmt. & Dev. Div.
PO Box 25526
Juneau AK 99802
Ph: 907/465-6106; Fax: 907/465-2604
GordonK@fishgame.state.ak.us

Kvist, Trine
Technical University of Denmark
Bygning 321, DTU
Lyngby DK-2800
DENMARK
Ph: 4525 2525
tk@imm.dtu.dk

Lai, Han-lin
NOAA/NMFS/NEFSC
166 Water St.
Woods Hole MA 02543
Ph: 508/495-2238; Fax: 508/495-2393
Han-Lin.Lai@noaa.gov

Lane, Dan
University of Ottawa
Faculty of Administration
136 Jean-Jacques Lussier Privee
Ottawa ON K1N 6N5
CANADA
Ph: 613/562-5800 x479; Fax: 613/562-
5164
dlane@uottawa.ca

Livingston, Patricia
NOAA/NMFS/AFSC
7600 Sand Point Way NE
Building 4
Seattle WA 98115
Ph: 206/526-4242; Fax: 206/526-6723
pliving@afsc.noaa.gov

Lloyd, Denby
Aleutians East Borough
211 4th St., # 314
Juneau AK 99801
Ph: 907/586-6655; Fax: 907/586-6644
denbyaeb@alaska.net

Lunsford, Chris
NOAA/NMFS Auke Bay Lab
11305 Glacier Highway
Juneau AK 99801
Ph: 907/789-6008
Chris.Lunsford@noaa.gov

Mackinson, Steven
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
Ph: 604/822-1864; Fax: 604/822-8934
smackin@fisheries.com

March, Douglas
Canadian Groundfish Research
and Conservation Society
#300 15225 104th Ave.
Surrey BC V3R 6Y8
CANADA
Ph: 604/588-8585; Fax: 604/588-6708
SBCOCGA@aol.com

Marshall, Bob
Alaska Dept. of Fish and Game
PO Box 240020
Douglas AK 99824-0020
Ph: 907/465-4303
BobM@fishgame.state.ak.us

Masuda, Michele
NOAA/NMFS Auke Bay Lab
11305 Glacier Highway
Juneau AK 99801-8626
Michele.Masuda@noaa.gov

Mathisen, Ole
University of Alaska Fairbanks
SFOS
11120 Glacier Highway
Juneau AK 99801
ffoam@uaf.edu



Symposium on Fishery Stock Assessment Models 1019

Matsuishi, Takashi
Hokkaido University
Faculty of Fisheries
3-1-1 Minato-cho
Hakodate Hokkaido 041-8611
JAPAN
Ph: +81 138 40 8857; Fax: +81 138 40
8827
matuisi@fish.hokudai.ac.jp

Matsumiya, Yoshiharu
University of Tokyo
Ocean Research Institute
Minamidai 1-15-1, Nakano-ku
Tokyo 164
JAPAN
Ph: +81 3 5351 6495; Fax: +81 3 5351
6492
matumiya@ori.u-tokyo.ac.jp

Maunder, Mark
University of Washington
School of Fisheries/FRI
Box 357980
Seattle WA 98195-7980
Ph: 206/543-4744; Fax: 206/685-7471
mark@fish.washington.edu

McClure, Marianne
Columbia River Inter-Tribal Fish
Commission
PO Box 82812
Portland OR 97282
Ph: 503/731-1254
marianne@pisces.fish.washington.edu

McComish, Tom
Ball State University
Dept. of Biology
Aquatic Biology and Fisheries
Muncie IN 47306
Ph: 765/285-8845
tmccomis@bsu.edu

Merritt, Peggy
Alaska Dept. of Fish and Game
1300 College Rd.
Fairbanks AK 99701
Ph: 907/459-7296
pmerritt@fishgame.state.ak.us

Methot, Rick
NOAA/NMFS/FAM
2725 Montlake Blvd. E
Seattle WA 98112
Richard.Methot@noaa.gov

Moffitt, Robert
NOAA/NMFS Honolulu Laboratory
2570 Dole St.
Honolulu HI 96822-2396
Ph: 808/943-1244
rmoffitt@honlab.nmfs.hawaii.edu

Moore, Holly
Alaska Dept. of Fish and Game
Box 920587
Dutch Harbor AK 99692-1239
Ph: 907/581-1239; Fax: 907/581-1572
hollymo@fishgame.state.ak.us

Müter, Franz
University of Alaska Fairbanks
Institute of Marine Science
Fairbanks AK 99775
Ph: 907/474-7839
mueter@ims.alaska.edu

Murawski, Steven
NOAA/NMFS/NEFSC
Woods Hole Lab, 166 Water St.
Woods Hole MA 02543
Ph: 508/548-5123; Fax: 508/548-1158
smurawsk@whsun1.wh.whoi.edu

Murphy, Mike
FL Dept. of Environmental Protection
Florida Marine Research Institute
100 Eighth Ave. SE
St. Petersburg FL 33701-5095
Fax: 813/823-0166

Murphy, Peggy
Alaska Dept. of Fish and Game
PO Box 25526
Juneau AK 99802
Ph: 907/465-6107; Fax: 907/465-2604
PeggyM@fishgame.state.ak.us

Nakashima, Brian
Dept. of Fisheries and Oceans
NW Atlantic Fisheries Centre
PO Box 5667
St. John’s NFLD A1C 5X1
CANADA
Ph: 709/772-4925; Fax: 709/772-4105
nakashima@athena.nwafc.nf.ca

Nelson, Patricia
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
Ph: 907/486-1855



1020 Participants

Newman, Ken
University of Idaho
Division of Statistics
Moscow ID 83843-1104
Ph: 208/885-6861; Fax: 208/885-5843
newman@uidaho.edu

Nottestad, Leif
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
notten@ifm.uib.no

Okey, Tom
Center for Marine Conservation
580 Market St. #550
San Francisco CA 94104
Ph: 415/391-6204
tom@cenmarine.com

Olivares, Jorge Flores
Centro de Investigacion y
Graduados del mar
No 219-3 Centro
Mazatlan Sinaloa
MEXICO
cigmar@red2000.com.mx

Otis, Ted
Alaska Dept. of Fish and Game
3298 Douglas St.
Homer AK 99603-8027
Ph: 907/235-8191; Fax: 907/235-2448
tedo@fishgame.state.ak.us

Paine, Brent
United Catcher Boats
1711 W. Nickerson # B
Seattle WA 98119
Ph: 206/282-2599; Fax: 206/282-2414
ucb@eskimo.com

Parma, Ana
Int’l Pacific Halibut Commission
PO Box 95009
Seattle WA 98145-2009
Ph: 206/634-1838 x229
Ana@iphc.washington.edu

Parrack, Michael
NOAA/NMFS/SEFSC
75 Virginia Beach Dr.
Miami FL 33149
Ph: 305/361-4283

Pauly, Daniel
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
Ph: 604/822-1201; Fax: 604/822-8934
pauly@fisheries.com

Pella, Jerry
NOAA/NMFS Auke Bay Lab
11305 Glacier Highway
Juneau AK 99801-8626
Ph: 907/789-6027; Fax: 907/789-6094
jpella@noaa.gov

Pengilly, Doug
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
Ph: 907/486-2431; Fax: 907/486-1841
dougp@fishgame.state.ak.us

Perez, Marcelo
Inst. National de Invest. y
Desarrollo Pesquero (INIDEP)
Larrea 631
Mar del Plata Buenos Aires 7600
ARGENTINA
Ph: +54 23 897472
maperez@mdp.edu.ar

Pitcher, Tony
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
Ph: 604/822-2731; Fax: 604/822-8934
TPitcher@fisheries.com

Porch, Clay
NOAA/NMFS/SEFSC
75 Virginia Beach Dr.
Miami FL 33149
Ph: 305/361-4232; Fax: 305/361-4499
clay.porch@noaa.gov

Powers, Joseph
NOAA/NMFS/SEFSC
75 Virginia Beach Dr.
Miami FL 33149
Ph: 305/361-4487; Fax: 907/361-4478
Joseph.Powers@noaa.gov



Symposium on Fishery Stock Assessment Models 1021

Preece, Ann
CSIRO Division of Marine Research
PO Box 1538
Hobart Tasmania 7001
AUSTRALIA
Ph: +61 3 6232 5336; Fax: +61 3 6232
5000
Ann.Preece@marine.csiro.au

Preikshot, Dave
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
Ph: 604/822-0618; Fax: 604/822-8934
preikshot@fisheries.com

Quinn, Terry
University of Alaska Fairbanks
SFOS
11120 Glacier Highway
Juneau AK 99801
Ph: 907/465-5389; Fax: 907/465-6320
fftjq@aurora.alaska.edu

Radchenko, Vladimir
TINRO
4 Savchenko Alley
Vladivostock 690600
RUSSIA
Ph: 7 4232 25 95 04

Restrepo, Victor
Univesity of Miami-RSMAS
4600 Rickenbacker Causeway
Miami FL 33149
Ph: 305/361-4022; Fax: 305/361-4457
vrestrepo@rsmas.miami.edu

Richards, Laura
Dept. of Fisheries and Oceans
Pacific Biological Station
3190 Hammon Bay Rd.
Nanaimo BC V9R 5K6
CANADA
Ph: 250/756-7177; Fax: 250/756-7053
richardsl@pbs.dfo.ca

Roach, Don
Alaska Dept. of Fish and Game
1300 College Rd.
Fairbanks AK 99701
Ph: 907/459-7229
droach@fishgame.state.ak.us

Rosenkranz, Gregg
University of Alaska Fairbanks
SFOS
245 O’Neill Building
Fairbanks AK 99775-7220
Ph: 907/474-7594
fsger@uaf.edu

Rosing, Micheal
University of Washington
QERM, FRI
Box 357980
Seattle WA 98195-7980
Ph: 206/616-9420
rosing@cqs.washington.edu

Saelens, Mark
Oregon Dept. of Fish & Wildlife
2040 SE Marine Science Dr.
Newport OR 97365
Ph: 503/867-0300 x251
saelensm@ccmail.orst.edu

Sagalkin, Nick
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
Ph: 907/486-1858
nsagalki@fishgame.state.ak.us

Saila, Saul
University of Rhode Island
Narragansett Bay Campus
Narragansett RI 02882-1197
Ph: 401/874-6211; Fax: 401/874-6486
ssaila@gsosun1.gso.uri.edu

Sainsbury, Keith
CSIRO Division of Marine Research
GPO Box 1538
Hobart Tasmania 7001
AUSTRALIA
Ph: 03 6232 5369; Fax: 06 6232 5199
Keith.Sainsbury@ml.csiro.au

Sampson, David
Oregon State University
Coastal OR Marine Experiment Sta. &
Dept. of Fisheries & Wildlife
Newport OR 97365
Ph: 541-867-0204; Fax: 503/867-0105
dsampson@slugo.hmsc.orst.edu

Sands, Norma Jean
Alaska Dept. of Fish and Game
PO Box 25526
Juneau AK 99802-5526
Ph: 907/465-4256; Fax: 907/465-2332
normas@fishgame.state.ak.us



1022 Participants

Schirripa, Michael
NOAA/NMFS/SEFSC
Miami Laboratory
4600 Rickenbacker Causeway
Miami FL 33149-1099
Ph: 305/361-4221
michael.schirripa@noaa.gov

Schmidt, Graham
Canadian Groundfish Research and
Conservation Society
#300 15225 104th Ave.
Surrey BC V3R 6Y8
CANADA
Ph: 604/588-8585; Fax: 604/588-6708
SBCOCGA@aol.com

Schnute, Jon
Dept. of Fisheries and Oceans
Pacific Biological Station
3190 Hammon Bay Rd.
Nanaimo BC V9R 5K6
CANADA
Ph: 250/756-7146; Fax: 250/756-7053
schnutej@pbs.dfo.ca

Schweigert, Jake
Dept. of Fisheries and Oceans
Pacific Biological Station
3190 Hammond Bay Rd.
Nanaimo BC V9R 5K6
CANADA
Ph: 250/756-7203
schweigertj@pbs.dfo.ca

Scott, Jason
Kalispel Tribe of Indians
PO Box 39
Usk WA 99180
Ph: 509/445-1147

Seifert-Ethier, Konstanze
CDS
100 International Dr.
Mount Olive NJ 07828
Ph: 973/691-3654
seifert@cdsusa.com

Shroyer, Steve
Ball State University
Dept. of Biology
Muncie IN 47306-0440
Ph: 765/285-8820; Fax: 765/285-8804
sshroyer@bsu.edu

Sigler, Michael
NOAA/NMFS Auke Bay Lab
11305 Glacier Highway
Juneau AK 99801
Ph: 907/789-6037; Fax: 907/789-6094
mike.sigler@noaa.gov

Smith, Tony
CSIRO Division of Fisheries
Castray Esplanade
GPO Box 1538
Hobart Tasmania 7001
AUSTRALIA
Ph: +61 3 6232-5372; Fax: +61 3 6232
5199
tony.smith@marine.csiro.au

Soiseth, Chad
National Park Service
PO Box 140
Gustavus AK 99826
Ph: 907/697-2230
chad_soiseth@nps.gov

Starr, Paul
NZ Seafood Industry Council
Private Bag 24901
Wellington
NEW ZEALAND
Ph: 001 644 3854005
paul@seafood.co.nz

Stefansson, Gunnar
Marine Research Institute
PO Box 1390
121 Reykjavik
ICELAND
Ph: +354-552-0240; Fax: +354-562-3790
gunnar@hafro.is

Su, Zhenming
University of Alaska Fairbanks
SFOS
11320 Glacier Highway
Juneau AK 99801
ftzs@uaf.eud

Sullivan, Kevin
Ministry of Fisheries
PO Box 1020
Wellington
NEW ZEALAND
Ph: 04 470 2692; Fax: 04 470 2686
SULLIVAK@fish.govt.nz



Symposium on Fishery Stock Assessment Models 1023

Sullivan, Patrick
Int’l Pacific Halibut Commission
PO Box 95009
Seattle WA 98145
Ph: 206/634-1838 x 22; Fax: 206/632-
2983
pat@iphc.washington.edu

Swanton, Charles
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
Ph: 908/486-1852
Swantonc@fishgame.state.ak.us

Tallman, Ross
Dept. of Fisheries and Oceans
Arctic Fish Stock Assessment
501 University Crescent
Winnipeg MB R3T 2N6
CANADA
Ph: 204/983-3362; Fax: 204/984-2403
TallmanR@DFO-MPO.GC.CA

Thera, Trevor
Alberta Conservation Association
Bag 900-26 Provincial Building
Peace River AB T8S 1T4
CANADA
Ph: 403/624-6405
tthera@env.gov.ab.ca

Tracy, Donn
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
Ph: 907/486-1822
donnt@fishgame.state.ak.us

Tsuji, Sachiko
Nat’l Research Inst. of Far Seas
Fisheries
5-7-1 Orido
Shimizu 424
JAPAN
Ph: 81 543 36 6042; Fax: 81 543 35 9642
tsuji@enyo.affrc.go.jp

Turnbull, Clive
Dept. of Primary Industries, Qnslnd
Northern Fisheries Centre
PO Box 5396
Cairns QLD 4870
AUSTRALIA
Ph: 61 70 529 888; Fax: 61 70 351 401
turnbuc@ensis.nth.dpi.qld.gov.au

Vasconcellos, Marcelo
University of British Columbia
Fisheries Centre
2204 Main Mall
Vancouver BC V6T 1Z4
CANADA
Ph: 604/822-1864
marcello@fisheries. com

Vaughan, Douglas
NOAA/NMFS Beaufort Laboratory
101 Pivers Island Rd.
Beaufort NC 28516-9722
Ph: 919/728-8761; Fax: 919/728-8784
dvaughan@hatteras.bea.nmfs.gov

Vining, Ivan
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
IVANV@fishgame.state.ak.us

Wilcock, John
Alaska Dept. of Fish and Game
PO Box 669
Cordova AK 99574
Ph: 907/424-3212; Fax: 907/424-3235
johnwi@state.ak.us

Williams, Erik
University of Alaska Fairbanks
SFOS
11120 Glacier Highway
Juneau AK 99801
Ph: 907/465-5389; Fax: 907/465-6320
ftehw@aurora.alaska.edu

Witherell, Dave
North Pacific Fishery Mgmt. Council
605 W 4th Ave.
Anchorage AK 99501
Ph: 907/271-2809; Fax: 907/271-2817
David.Witherell@noaa.gov

Witzig, John
NOAA/NMFS F/ST2
1315 East-West Highway
Silver Spring MD 20910
Ph: 301/713-2363; Fax: 301/713-2313
john.witzig@noaa.gov

Woodby, Douglas
Alaska Dept. of Fish and Game
P.O Box 240020
Douglas AK 99824-0020
dougw@fishgame.state.ak.us



1024 Participants

Xue, Qian-Li
The Johns Hopkins University
615 N. Wolfe St.
Baltimore MD 21205
Ph: 410/732-3865
qxue@athena.jhsph.edu

Yin, Yanshui
Oregon State University
Coastal OR Marine Experiment Sta. &
Dept. of Fisheries & Wildlife
Newport OR 97365
Ph: 541/737-4012; Fax: 503/867-0105
yiny@ucs.orst.edu

Zhan, Bing-Yi
Shanghai Fisheries University
334 Jungong Rd.
Shanghai 200090
CHINA
Ph: 86 21 65431090x38

Zhao, Boxian
SC Dept. of Natural Resources
217 Fort Johnson Rd.
Charleston SC 29412
Ph: 803/762-5653; Fax: 803/762-5110
zhaob@mrd.dnr.state.sc.us

Zheng, Jie
Alaska Dept. of Fish and Game
PO Box 25526
Juneau AK 99802-5526
Ph: 907/465-6102; Fax: 907/465-2604
jiez@fishgame.state.ak.us



Symposium on Fishery Stock Assessment Models 1025

Index

Alaska (continued)

Bering Sea

assessment information for managing
flatfish and groundfish stocks in,
841-851

CPUE estimates based on observer data
for crab fisheries, 61-73

eastern, predators of walleye pollock in,
663-678

Gyre System, 15N/14N data of, used in mass-
balance model for trophic level esti-
mates, 693-702

Gulkana River, effects of aging error and
sample size on sustained yield esti-
mates of Arctic grayling, 962-966

Kamishak Bay, stock assessment strategies
for Pacific herring in, 557-573

Norton Sound

length-based stock synthesis using mul-
tiple data sets for red king crab in,
591-612

parametric bootstrap of, using Dirichlet
distribution, 376-382

Prince William Sound

Bayesian methods used to study sea
otters in, 495, 501-506

effect of Exxon Valdez oil spill on food
web of, 696-697, 700

trophic level estimates of, from mass-
balance model using 15N/14N data,
693-702

St. Matthew Island, abundance estimation
of blue king crabs using survey and
catch and effort data, 575-589

Southeast

assessment of pink salmon abundance
based on catch and effort and sex
ratio data, 511-512

chinook salmon troll fishery, forecast
methods for inseason management
of, 287-314

Aleutian Islands (Alaska)

assessment information for managing flat-
fish and groundfish stocks in, 841-851

CPUE estimates based on observer data for
crab fisheries, 61-73

Amazon region, Middle (Brazil), fisheries
management in, 889-902

Anchovy

appraising fishery status using multivariate,
multidisciplinary ordination, 759-782

new assessment paradigms for, 32

(South Africa), management procedures
for, 513, 514, 515-521, 526, 528

A
Abalone (Japan), length-based population

analysis applied to, 661

Abundance

assessment of pink salmon (Southeast
Alaska), based on catch and effort and
sex ratio data, 511-512

and distribution patterns, spatial analysis
of, using GIS, 719-740

estimation of blue king crabs (St. Matthew
Island, Alaska) using survey and catch
and effort data, 575-589

index for inseason management of chinook
salmon troll fishery (Southeast Alaska),
287, 295-306, 309-312

ADAPT

age-structured assessment model, making
short-term stochastic projections from,
933-954

framework used in assessing southern
bluefin tuna stocks, 613-637

Adjoint method for virtual population analy-
sis, 639-657

Adkison, Milo D., 495

Age/Aging

composition estimates, sampling error in
stock assessment models using, 355-
370

-by-region model, for migratory fish popu-
lation, 219-244

error and sample size, effects of, on sus-
tained yield estimates, 955-975

-structured

production model (ASPM), stochastic im-
plementation of, 435-450

stock assessment models, catch-age
analysis with auxiliary information,
957, 960-961

Agulhas Bank (South Africa), spatial analysis
of fish distribution and abundance pat-
terns using GIS, 719-740

Akita Prefecture (Japan), length-based popula-
tion analysis applied to abalone in, 661

Alaska

Aleutian Islands

assessment information for managing
flatfish and groundfish stocks in,
841-851

CPUE estimates based on observer data
for crab fisheries, 61-73

assessment information for managing
Pacific cod in, 841-851
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Anoplopoma fimbria

(Alaska), assessment information for man-
aging, 841-851

(North Pacific Ocean), age-by-region model
for, 219-244

Arctic grayling (Gulkana River, Alaska), ef-
fects of aging error and sample size on
sustained yield estimates of, 962-966

Artisanal fisheries, effects of, on penaeid
shrimp stocks (Gulf of Mexico), 977-998

Atlantic bluefin tuna, stochastic implementa-
tion of age-structured production model
for, 435, 441-448

Atlantic mackerel, fuzzy regression used for,
352

Atlantic Ocean

evaluation of multiple survey indices in as-
sessment of black sea bass in, 121-136

stock production models of blue and white
marlin in, 99-119

Australia

delay in management action for shark and
southern bluefin tuna, 9

eastern, stock assessment of gemfish in,
using maximum likelihood and Bayesian
methods, 245-286

effort dynamics for longline fishing of
southern bluefin tuna in, 82-86

length-based population model applied to
Torres Strait, 531, 539-555

B
Baleña, Rex, 783

Ballachey, Brenda, 495

Bayesian

approach for simulating Pacific salmon
population dynamics, 873-887

calibration for inseason management, of
chinook salmon troll fishery (Southeast
Alaska), 287, 291-293, 312

methods for stock assessment of gemfish
(eastern Australia), 245, 263-272

to integrate ecosystem studies, 495-509

Bechtol, William R., 557

Bering Sea (Alaska)

assessment information for managing flat-
fish and groundfish stocks in, 841-851

CPUE estimates based on observer data for
crab fisheries, 61-73

eastern, predators of walleye pollock in,
663-678

Betlehem, Andrew, 137, 613

Biomass analysis model in Philippine archi-
pelago, 783-802

Biseau, A., 917

Björnsson, Höskuldur, 703

Black sea bass (Blackfish) (Atlantic Ocean),
evaluation of multiple survey indices in
assessment of, 121-136

Blue king crab (St. Matthew Island, Alaska),
using survey and commercial catch and
effort data, 575-589

Blue marlin (Atlantic Ocean), stock produc-
tion models of, 99-119

Bluefin tuna

Atlantic, stochastic implementation of age-
structured production model for, 435,
441-448

southern

(Australia), delay in management action
for, 9

CPUE analysis with uncertain stock and
effort dynamics for longline fishing
of, 75-97

data and model uncertainties in assess-
ing stocks of, 613-637

index for weighting results in catch-at-
age models for, 137-154

(Japan), effort dynamics for longline
fishing of, 82-86

Blue whiting, southern (New Zealand), inte-
grated assessment of, using separable se-
quential population analysis, 155-169

Bocaccio (California), length composition data
for, 451-468

Bodkin, James, 495

Booth, Anthony J., 719

BORMICON (BoReal MIgration and CONsump-
tion model)

calculating capelin consumption by Icelan-
dic cod using, 703-718, 743-748, 754,
755

comparing information sources using, 741-
758

Brachyplatystoma sp. (Middle Amazon region,
Brazil), management of, 889-902

Brazil

Middle Amazon region, fisheries manage-
ment in, 889-902

southeastern, São Paulo, data collection
and stock assessment problems in, 41-
60
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British Columbia (Canada)

data bias and model misspecification in as-
sessment of Pacific herring (Prince Ru-
pert) in, 413-433

catch-age mark-recapture model applied to
sablefish in, 469-494

Brodziak, Jon, 933

Bucher, Wesley A., 557

Butterworth, Douglas S., 513

Byrne, Laurence C., 61

C
California, length composition data for bocac-

cio in, 451-468

Callorhinus ursinus, as predator of walleye
pollock (eastern Bering Sea, Alaska), 663-
678

Campbell, Robert, 75

Canada

British Columbia

data bias and model misspecification in
assessment of Pacific herring (Prince
Rupert) in, 413-433

catch-age mark-recapture model applied
to sablefish in, 469-494

Fraser River, Bayesian approach for simu-
lating population dynamics of sockeye
salmon in, 873-887

Gulf of St. Lawrence, risk analysis related
to assessment uncertainty in, 903-916

Queen Charlotte Sound, southern, stock as-
sessment of Pacific Ocean perch in, 188-
196

Canary rockfish (Oregon), sampling error
with estimates of age composition in as-
sessment models for, 359-360, 362, 364

Canonical correlation (CC), of small-scale
tropical fisheries, 805, 807

Capelin, calculating consumption of, by Ice-
landic cod, 703-718, 743- 748, 754, 755

Catch-age/Catch-at-age

compositions, parametric bootstrap of, us-
ing Dirichlet distribution, 371-384

and CPUE data, joint time series analysis
of, 199-217

mark-recapture model, integrated, applied
to sablefish (British Columbia, Canada),
469-494

models, index for weighting results of,
based on diagnostic tests for lack of fit,
137-154

Catch per unit effort (CPUE)/Catch and effort

analysis with uncertain stock and effort
dynamics in longline fishing, for south-
ern bluefin tuna, 75-97

in assessing southern bluefin tuna stocks,
613-637

and catch-at-age data, joint time series
analysis of, 199-217

estimates based on observer data for crab
fisheries (Bering Sea and Aleutian Is-
lands, Alaska), 61-73

for estimating abundance of blue king crab
(St. Matthew Island, Alaska), 575-589

and sex ratio data for abundance assess-
ment of pink salmon (Southeast Alaska),
511-512

Catfish, migratory (Middle Amazon region,
Brazil), management of, 889-902

Centropristis striata (Atlantic Ocean), evalua-
tion of multiple survey indices in assess-
ment of, 121-136

Chen, D.G., 287

Chinook salmon

fuzzy regression used for, 341, 345, 347

troll fishery (Southeast Alaska), forecast
methods for inseason management of,
287-314

Chionoecetes opilio (Bering Sea and Aleutian
Islands, Alaska), CPUE estimates based on
observer data of, 61-73

Chub mackerel, reproductive potential of,
999-1012

Clupea pallasi

(Kamishak Bay, Alaska), stock assessment
strategies for, 557-573

(Norton Sound, Alaska), parametric boot-
strap of, using Dirichlet distribution,
376-382

Cluster analysis (CA) of small-scale tropical
fisheries, 805, 807, 809

Cod

Gulf of St. Lawrence (Canada), risk analysis
related to assessment uncertainty in,
903-916

Icelandic

calculating capelin consumption by,
703-718, 743-748, 764, 755

new assessment paradigms for, 32

stock statistics, 201, 208

Coggins Jr., Lewis G., 955

Cole, J.G., 817

Collins, Mark R., 121
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Composite rejection rule based on goodness-
of-fit tests, 151-154

Conser, Ramon, 933

Copepod, herbivorous (Prince William Sound,
Alaska), estimating trophic levels of, 693,
696, 698

Crab

(Bering Sea and Aleutian Islands, Alaska),
CPUE estimates based on observer data
of, 61-73

blue king (St. Matthew Island, Alaska),
using survey and commercial catch and
effort data, 575-589

red king (Norton Sound, Alaska), length-
based stock synthesis using multiple
data sets for, 591-612

Crone, Paul R., 355

D
Dalsgaard, Johanne, 815

Data

assessment, for managing flatfish and
groundfish stocks (Alaska), 841-851

bias and model misspecification in assess-
ment of Pacific herring (Prince Rupert,
Canada), 413-433

catch and effort

for estimating abundance of blue king
crab (St. Matthew Island, Alaska), 575-
589

and sex ratio, for abundance assessment
of pink salmon (Southeast Alaska),
511-512

collection and stock assessment problems
in São Paulo (southeastern Brazil), 41-60

comparing sources of, using BORMICON,
741-758

and model uncertainties, treatment of, in
assessment of southern bluefin tuna
stocks, 613-637

observer, for CPUE estimates for crab fish-
eries (Bering Sea and Aleutian Islands,
Alaska), 61-73

sets

large and diverse, modeling and statisti-
cal methods to assimilate, 25-28

multiple, for length-based stock synthe-
sis of red king crab (Norton Sound,
Alaska), 591-612

sources, comparing, in multispecies mod-
el, 741-758

survey, and commercial catch and effort,
for estimating abundance of blue king
crab (St. Matthew Island, Alaska), 575-
589

de los Angeles Gasalla, Maria, 41

De Oliveira, José A.A., 513

DiCosimo, Jane, 841

Distribution

Dirichlet, parametric bootstrap of catch-
age compositions using, 371-384

and abundance patterns, spatial analysis
of, using GIS, 719-740

Dover sole (Oregon), sampling error with esti-
mates of age composition in assessment
models for, 359-360, 362, 364, 366

E
Ecosystem models

in estimating trophic levels, 694-696

mass-balance food web, as alternative ap-
proach for combining multiple informa-
tion sources in fisheries, 815

integrating, using Bayesian methods, 495-
509

Effort dynamics and uncertain stock in
longline fishing for southern bluefin tuna,
75-97

English sole (Oregon), sampling error with
estimates of age composition in assess-
ment models for, 359-360, 362, 364

Engraulis capensis (South Africa), manage-
ment procedures for, 513, 514, 515-521,
528

Environmental-based recruitment index from
assessment of New Zealand snapper, 679-
692

Error

structure of, in stock assessment models
using sample age composition esti-
mates, 355-370

systematic, diagnosing, in reported fishery
catch, 399-412

Etrumeus whiteheadi (South Africa), manage-
ment procedures for, 513, 514, 515-521,
526, 528

European fish stocks, assessment and fisher-
ies management evaluation for, 917-931

Evaluation assessment

management system, lack of, 18-23

and fisheries management for European
fish stocks, 917-931

Exxon Valdez oil spill (Prince William Sound,
Alaska)

and food web of, 696-697, 700

using Bayesian methods to study sea
otters after, 495, 501-505
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F
Fair, Lowell, 591

Farber, Mark I., 99

Feedback strategies for management systems,
28-36

Ferson, Scott, 339

Flatfish (Alaska), assessment information for
managing, 841-851

Flounder, Georges Bank yellowtail, making
short-term stochastic projections of, 933-
954

Fontenelle, G., 917

Forecast methods for inseason management
of chinook salmon troll fishery (Southeast
Alaska), 287-314

Fournier, Dave, 155

Fraser River sockeye salmon (Canada),
Bayesian approach for simulating popula-
tion dynamics of, 873-887

Fu, Caihong, 531

Funka Bay (Japan), length-based population
analysis applied to walleye pollock in, 659,
661

Fur seals, northern, as predator of walleye
pollock (eastern Bering Sea, Alaska), 663-
678

G
Gadus macrocephalus

assessment information for managing
Alaskan stocks of, 841-851

as predator of walleye pollock (eastern Ber-
ing Sea, Alaska), 663-678

Gallaway, B.J., 817

Gascuel, D., 917

Gavaris, Stratis, 399, 903

Gemfish (Australia)

new assessment paradigms for, 32

stock assessment of, using maximum like-
lihood and Bayesian methods, 245-286

Generalized additive modeling, in spatial
analysis of fish distribution and abun-
dance patterns using GIS, 719-740

Geographical Information System (GIS), spa-
tial analysis of fish distribution and abun-
dance patterns, 719-740

Georges Bank

haddock

diagnosing systematic errors in report-
ed catch of, 399-412

eastern (Atlantic Canada), risk analysis
related to assessment uncertainty in,
903-916

yellowtail flounder, making short-term sto-
chastic projections of, 933-954

Gomes Tomás, Acácio Ribeiro, 41

Gracia, Adolfo, 977

Groundfish stocks (Alaska), assessment infor-
mation for managing, 841-851

Gudmundsson, Gudmundur, 199

Gulf of Mexico

effects of artisanal fisheries on penaeid
shrimp stocks in, 977-998

shrimp trawl bycatch estimates of red
snapper in, 817-839

Gulf of St. Lawrence cod (Canada), risk analy-
sis related to assessment uncertainty in,
903-916

Gulkana River (Alaska), effects of aging error
and sample size on sustained yield esti-
mates of Arctic grayling at, 962-966

H
Haddock, eastern Georges Bank (Canada), risk

analysis related to assessment uncertainty
in, 903-916

Haddock, Georges Bank, diagnosing system-
atic errors in reported catch of, 399-412

Haist, Vivian, 155, 469

Hake

Cape (South Africa), management proce-
dures for, 513, 514, 521- 523, 528

(South Africa), new assessment paradigms
for, 32

Hanchet, Stuart, 155

Harvest control of schooling fish stocks un-
der cyclic oceanographic regimes, 853-872

Haskard, K.A., 137

Heifetz, Jonathan, 219

Herring

Atlantic, appraising fishery status using
multivariate, multidisciplinary ordina-
tion, 759-782

Pacific

appraising fishery status using multi-
variate, multidisciplinary ordination,
759-782
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Herring, Pacific (continued)

(Norton Sound, Alaska), parametric
bootstrap of, using Dirichlet distribu-
tion, 376-382

(Prince Rupert, Canada), model mis-
specification or data bias in assess-
ment of, 413-433

round (South Africa) , management proce-
dures for, 513, 514, 515-521, 526, 528

Hill, Ryan A., 873

Hippoglossoides

sp. (Alaska), assessment information for
managing, 841-851

stenolepis, adjoint method for virtual pop-
ulation analysis applied to, 649-655

Holland-Bartels, Leslie, 495

Huiskes, N.J., 639

I
Ianelli, James N., 451

Icelandic cod

calculating capelin consumption by, using
spatially disaggregated simulation
model, 703-718, 743-748, 754, 755

new assessment paradigms for, 32

stock statistics, 201, 208

Index/Indices

environmental-based recruitment, for
assessment of New Zealand snapper,
679-692

multiple survey, evaluation of, in assess-
ment of black sea bass (Atlantic Ocean),
121-136

for weighting results in catch-at-age mod-
els based on diagnostic tests for lack of
fit, 137-154

Information. See Data.

Integrated

assessment of southern blue whiting (New
Zealand), using separable sequential
population analysis, 155-169

modeling framework using limit reference
points, 185-198

Invertebrates, hard-to-age, length-based pop-
ulation model for, 531-556

Isaac, Victoria J., 889

Iteroparous salmonid, estimating trophic lev-
els of, 698, 700

J
Japan

effort dynamics for longline fishing of
southern bluefin tuna by, 82-86

length-based population analysis applied
to fish in, 659-662

Jasus lalandii (South Africa), management
procedures for, 513, 514, 523-526, 527,
528

Johnston, Susan J., 513

Jones, Christopher D., 99

K
Kamishak Bay (Alaska), stock assessment

strategies for Pacific herring in, 557-573

Katsukawa, Toshio, 999

King crab

(Bering Sea and Aleutian Islands, Alaska),
CPUE estimates based on observer data
for, 61-73

red (Norton Sound, Alaska), length-based
stock synthesis using multiple data sets
for, 591-612

Klaer, Neil, 137, 613

Kline Jr., Thomas C., 693

Korean hair crab (Bering Sea and Aleutian Is-
lands, Alaska), CPUE estimates based on
observer data for, 61-73

Kruse, Gordon H., 575, 591

L
Legault, Christopher M., 435

Length-based

composition data for bocaccio (California),
451-468

population analysis (LPA), 659-662

stock synthesis using multiple data sets
for red king crab (Bering Sea and Aleu-
tian Islands, Alaska), 591-612

Likelihood function for stock assessment of
gemfish (eastern Australia), 245, 248, 250-
251, 256-263, 281-283

Livingston, Patricia A., 663

Lobster, west coast rock (South Africa), man-
agement procedures for, 513, 514, 523-
526, 527, 528

Longline fishing of southern bluefin tuna,

CPUE analysis with uncertain stock and
effort dynamics, 75-97

effort dynamics and uncertain stock in, 82-
86
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Longnecker, M., 817

Lutjanus campechanus (Gulf of Mexico),
shrimp trawl bycatch estimates of, 817-
839

M
McGovern, John C., 121

McGrath, David, 889

Mackerel

Atka (Alaska), assessment information for
managing, 841-851

Atlantic, fuzzy regression used for, 252

chub, reproductive potential of, 999-1012

Mackinson, Steven, 759

Maguer, C., 917

Makaira nigricans (Atlantic Ocean), stock pro-
duction models of, 99-119

Malthusian overfishing of small-scale tropical
fisheries, 804-805, 808, 810, 812

Management

based on reproductive potential, 999-1012

of flatfish and groundfish (Alaska), assess-
ment information for, 841-851

evaluation and assessment for European
fish stocks, 917-931

inseason, forecast methods for, of chinook
salmon troll fishery (Southeast Alaska),
287-314

procedures

in Middle Amazon region, Brazil, 889-
902

in South African fisheries, 513-530

response to uncertainty, 13-18

systems

lack of assessment evaluation in, 18-23

feedback strategies for, 28-36

Marine resources

living, assessment of future, 1-40

monitoring, assessment, and prediction
(MARMAP) of, in assessment of black sea
bass (Atlantic Ocean), 121-127, 128

Mark-recapture model, integrated catch-age,
applied to sablefish (British Columbia,
Canada), 469-494

Marlin, blue and white (Atlantic Ocean), stock
production models of, 99-119

MARMAP (Monitoring, Assessment, and Pre-
diction), in assessment of black sea bass
(Atlantic Ocean), 121-127, 128

Mass-balance model

for food web ecosystem, 815

trophic level estimates using l5N/14N data
of Alaska Gyre System, 693-702

of Prince William Sound, Alaska, 693-702

Mass continuity model (MCM) in Philippine
archipelago, 783-802

Masuda, Michele M., 287

Mathisen, Ole A., 511

Matsuishi, Takashi, 659

Matsumiya, Yoshiharu, 999

Maunder, Mark N., 679

Maximum likelihood analysis for stock as-
sessment of gemfish (eastern Australia),
245, 248, 250-251, 256-263, 281-283

Meister, H. Scott, 121

Merluccius

capensis/paradoxus (South Africa), man-
agement procedures for, 513, 514, 521-
523, 528

endeavouri (Australia/Papua New Guinea),
length-based population model applied
to, 531, 539-555

Methot, Richard D., 663

Meyer, R.M., 817

Micromesistius australis (New Zealand), inte-
grated assessment of, using separable se-
quential population analysis, 155-169

Microstomus pacificus (Oregon), sampling er-
ror with estimates of age composition in
assessment models for, 359-360, 362, 364,
366

Migratory fish population, dynamics of, 219-
244

Modeling and statistical methods to assimi-
late large and diverse data sets, 25-28

Monte Carlo simulation model

for evaluating stock synthesis assessment
program, 315-338

for making short-term stochastic projec-
tions from age-structured fisheries as-
sessment model, 933-954

in studying effects of aging error and sam-
ple size on sustained yield estimates,
955-975

Multidimensional scaling (MDS), of small-
scale tropical fisheries, 805-812

Multispecies model

comparing information sources in, 741-
758

for spatially disaggregated simulation,
703-718, 743-748, 754, 755



1032 Index

Multivariate

interdisciplinary assessment of small-scale
tropical fisheries, 803-814

multidisciplinary ordination in appraising
fishery status of pelagics, 759-782

Murphy, M.C., 575

N
Neocalanus cristatus (Prince William Sound,

Alaska), estimating trophic levels of, 693,
696, 698

New Zealand

assessment of snapper using environmen-
tal-based recruitment index in, 679-692

integrated assessment of southern blue
whiting using separable sequential pop-
ulation analysis in, 155-169

New Zealand snapper, assessment of, using
environmental-based recruitment index,
679-692

Norton Sound (Alaska)

length-based stock synthesis using multi-
ple data sets for red king crab in, 591-
612

parametric bootstrap of, using Dirichlet
distribution, 376-382

Nøttestad, Leif, 759

O
Okey, Thomas A., 815

Olsen, Norm, 171, 185

Omnivory. See Trophic level estimates.

Oncorhynchus gorbuscha (Southeast Alaska)

assessment of abundance based on catch
and effort and sex ratio data, 511-512

kisutch/mykiss (Prince William Sound, Alas-
ka), estimating trophic levels of, 698,
700

sp. (Canada), Bayesian approach for simu-
lating population dynamics of, 873-887

Orange roughy (Australia), new assessment
paradigms for, 32

Ordinations

multidimensional, of small-scale tropical
fisheries, 805-812

multivariate and multidisciplinary, ap-
praising fishery status of pelagics using,
759-782

Oregon, sampling error with estimates of age
composition in assessment models for fish
in, 359-360, 362, 364, 365, 366

Otis, Edward O., 557

Otters, sea (Prince William Sound, Alaska),
using Bayesian methods to study, 495,
501-505

P
Pacific cod

(Alaska), assessment information for man-
aging, 841-851

(eastern Bering Sea, Alaska) as predator of
walleye pollock, 663-678

Pacific halibut, adjoint method for virtual
population analysis applied to, 649-655

Pacific herring

(Kamishak Bay, Alaska), stock assessment
strategies for, 557-573

(Norton Sound, Alaska), parametric boot-
strap of, using Dirichlet distribution,
376-382

Pacific Ocean, North

age-by-region model for migratory sable-
fish in, 219-244

assessment information for managing flat-
fish and groundfish stocks in, 841-851

cyclic oceanographic regimes in, harvest
control of schooling fish stock under,
853-872

Pacific Ocean perch (southern Queen Char-
lotte Sound, Canada), stock assessment of,
using integrated modeling framework,
188-196

Pacific salmon (Canada), Bayesian approach
for simulating population dynamics of,
873-887

Pagrus auratus, assessment of, using envi-
ronmental-based recruitment index, 679-
692

Panga, in spatial analysis of fish distribution
and abundance patterns using GIS, 719-
740

Papua New Guinea (Torres Strait), length-
based population model applied to, 531,
539-555

Paralithodes

camtschaticus (Norton Sound, Alaska),
length-based stock synthesis using mul-
tiple data sets for, 591-612

 platypus

(Bering Sea and Aleutian Islands, Alas-
ka), CPUE estimates based on observ-
er data for, 61-73

(St. Matthew Island, Alaska), using sur-
vey and commercial catch and effort
data for, 575-589

Pauly, Daniel, 693, 803, 815
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Pelagics

appraising fishery status of, using multi-
variate, multidisciplinary ordination,
759-782

harvest control of, under cyclic oceano-
graphic regimes, 853-872

Pella, Jerome J., 287

Penaeus

esculentus (Australia/Papua New Guinea),
length-based population model applied
to, 531, 539-555

sp. (Gulf of Mexico), effects of artisanal
fisheries on stocks of, 977-998

Pengilly, Douglas, 61

Philippine archipelago, mass continuity mod-
el (MCM) in, 783-802

Pimm, Stuart, 815

Pink salmon (Southeast Alaska), assessment
of abundance based on catch and effort
and sex ratio data for, 511-512

Pitcher, Tony, 759, 853

Pleurogrammus monopterygius (Alaska), as-
sessment information for managing, 841-
851

Pleuronectes

 ferrugineus, making short-term stochastic
projections of, 933-954

sp. (Alaska), assessment information for
managing, 841-851

vetulus (Oregon), sampling error with esti-
mates of age composition in assessment
models for, 359-360, 362, 364

Polacheck, Tom, 137, 613

Population analysis

length-based, 659-662

separable sequential, used for integrated
assessment of southern blue whiting
(New Zealand), 155-169

Population assessment model

length-based, for hard-to-age inverte-
brates, 531-556

of walleye pollock (eastern Bering Sea,
Alaska), 663-678

Population dynamics model

Bayesian approach for simulating, for Pa-
cific salmon (Canada), 873-887

for migratory fish, 219-244

for stock assessment of gemfish (eastern
Australia), 245, 247-248, 275-280

Porch, Clay E., 385

Powell, Robert, 815

Prawn, Torres Strait (Australia/Papua New
Guinea), length-based population model
applied to, 531, 539-555

Preece, Ann, 137, 613

Preikshot, David, 759, 803

Prince, Eric D., 99

Prince William Sound (Alaska)

Bayesian methods used to study sea otters
in, 495, 501-505

effect of Exxon Valdez oil spill on food web
in, 696-697, 700

trophic level estimates of, from mass-bal-
ance model using l5N/14N data, 693-702

Pseudoplatystoma sp., management of, in
Middle Amazon, Brazil, 889-902

Pterogymnus laniarius, in spatial analysis of
fish distribution and abundance patterns
using GIS, 719-740

Punt, André E., 245

Pyper, Brian J., 873

Q
Queen Charlotte Sound, southern (Canada),

stock assessment of Pacific Ocean perch
in, 188-196

Quinn II, Terrance J., 219, 371, 531, 955

R
Rago, Paul, 933

Ralston, Stephen, 451

Recruitment

index, environmental-based, from assess-
ment of New Zealand snapper, 679-692

model, Ricker stock, and Bayesian ap-
proach for simulating population dy-
namics of Pacific salmon, 873-887

Red king crab (Norton Sound, Alaska), length-
based stock synthesis using multiple data
sets for, 591-612

Red snapper (Gulf of Mexico), shrimp trawl
bycatch estimates of, 817-839

Reference points, limit, statistical framework
for analysis of, 185-198

Regression, fuzzy, methods and applications
of, 339-354

Reproductive potential

as basis of fisheries management, 999-
1012

strategy, compared to spawning stock bio-
mass (CSSB), 999-1012

Restrepo, Victor R., 435
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Rexea solandri (eastern Australia), stock as-
sessment of, using maximum likelihood
and Bayesian methods, 245-286

Richards, Laura J., 171, 185

Ricker stock recruitment model, and Bayesian
approach for simulating population dy-
namics of Pacific salmon, 873-887

Risk analysis for management actions related
to assessment uncertainty for Gulf of St.
Lawrence cod (Canada), 903-916

Rock lobster, west coast (South Africa), man-
agement procedures for, 513, 514, 523-
526, 527, 528

Rockfish

(California), length composition data for,
451-468

(Oregon), sampling error with estimates of
age composition in assessment models
for, 359-360, 362, 364, 365

Ruffino, Mauro L., 889

S
Sablefish

(Alaska), assessment information for man-
aging, 841-851

(British Columbia, Canada), catch-age
mark-recapture model applied to, 469-
494

(North Pacific Ocean), age-by-region model
for, 219-244

Saila, Saul B., 339

Sainsbury, Keith, 1

Salmon

chinook

fuzzy regression used for, 341, 345, 347

troll fishery (Southeast Alaska), forecast
methods for inseason management
of, 287-314

Fraser River sockeye salmon (Canada),
Bayesian approach for simulating popu-
lation dynamics of, 873-887

Pacific (Canada), Bayesian approach for
simulating population dynamics of, 873-
887

pink (Southeast Alaska), assessment of
abundance based on catch and effort
and sex ratio data for, 511-512

Salvelinus malma (Prince William Sound, Alas-
ka), estimating trophic levels of, 698, 700

Sampson, David B., 315, 355

São Paulo (southeastern Brazil), data collec-
tion and stock assessment problems in,
41-60

Sardine (Sardinops sagax)

appraising fishery status using multivari-
ate, multidisciplinary ordination, 759-
782

(South Africa), management procedures
for, 513, 514, 515-521, 526, 528

Scaling, multidimensional (MDS), of small-
scale tropical fisheries, 805-812

Schnute, Jon T., xii, 171, 185

Schooling fish stocks, harvest control of, un-
der cyclic oceanographic regimes, 853-872

Schweigert, Jacob F., 413

Scomber japonicus, reproductive potential of,
999-1012

Scott, Gerald P., 99

Sea bass, black (Atlantic Ocean), evaluation of
multiple survey indices in assessment of,
121-136

Sea otters (Prince William Sound, Alaska), us-
ing Bayesian methods to study, 495, 501-
505

Sebastes

alutus (southern Queen Charlotte Sound,
Canada), stock assessment of, using in-
tegrated modeling framework, 188-196

paucispinis (California), length composi-
tion data for, 451-468

sp. (Oregon), sampling error with esti-
mates of age composition in assessment
models for, 359-360, 362, 364, 365

Separable sequential population analysis,
used for integrated assessment of south-
ern blue whiting, (New Zealand), 155-169

Sex ratio and catch and effort data, for abun-
dance assessment of pink salmon (South-
east Alaska), 511-512

Shark (Australia), delay in management action
for, 9

Shrimp

effects of artisanal fisheries on stocks of,
977-998

length-based population model for, 531-
556

trawl bycatch estimates of red snapper
(Gulf of Mexico), 817-839

Simulation model, spatially disaggregated,
calculating capelin consumption by Icelan-
dic cod using, 703-718, 743-748, 754, 755

Sinclair, Alan, 903

Size and aging error, effects of, on sustained
yield estimates, 955-975

Smith, Anthony D.M., 245
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Snapper

New Zealand, assessment of, using envi-
ronmental-based recruitment index,
679-692

red (Gulf of Mexico), shrimp trawl bycatch
estimates of, 817-839

Snow crab (Bering Sea and Aleutian Islands,
Alaska), CPUE estimates based on observer
data, 61-73

Software, for stock assessment, 171-172, 178-
181, 182-183

Sole (Oregon), sampling error with estimates
of age composition in assessment models
for, 359-360, 362, 364, 366

South Africa

(Agulhas Bank), spatial analysis of fish dis-
tribution and abundance patterns using
GIS, 719-740

management procedures in, 513-530

new assessment paradigms for hake in, 32

South African hake, new assessment para-
digms for, 32

Southern blue whiting (New Zealand), inte-
grated assessment of, using separable se-
quential population analysis, 155-169

Southern bluefin tuna

(Australia), delay in management action
for, 9

CPUE analysis with uncertain stock and ef-
fort dynamics for longline fishing of,
75-97

data and model uncertainties in assessing
stocks of, 613-637

index for weighting results in catch-at-age
models for, 137-154

(Japan), effort dynamics for longline fish-
ing of, 82-86

Sparid fish, in spatial analysis of fish distri-
bution and abundance patterns using GIS,
719-740

Spatially disaggregated simulation model

calculating capelin consumption by Icelan-
dic cod using, 703-718, 743-748, 754,
755

comparing information sources using, 741-
758

Spawning stock biomass (CSSB), compared to
reproductive potential strategy, 999-1012

Squid (sub-Antarctic), food web for, 25-27

State space models for stock assessment,
174-175

Statistics/Statistical

framework for analysis of limit reference
points, 185-198

and modeling methods to assimilate large
and diverse data sets, 25-28

for stock assessment, 171-172, 175-178,
181-182

Steelhead (Prince William Sound, Alaska), esti-
mating trophic levels of, 698, 700

Stefánsson, Gunnar, 741

Stochastic

implementation of age-structure produc-
tion model (ASPM), 435-450

projections, short-term, from age-structure
assessment model, 933-954

Stock assessment/estimates

aerial, of Pacific herring in Kamishak Bay,
557, 561-562, 564-570

approaches, future paradigm shifts in, 6-
10, 23-36

circumstances and expectations of future,
2-5

with data and model uncertainties, of
southern bluefin tuna stocks, 613-637

and data collection problems in São Paulo
(southeastern Brazil), 41-60

evaluation, lack of, in management system,
18-23

evaluation of fisheries management for Eu-
ropean stock, 917-931

of future living marine resources, 1-40

information for managing flatfish and
groundfish stocks (Alaska), 841-851

likelihood principle in, 741-758

multivariate interdisciplinary, of small-
scale tropical fisheries, 803-814

statistics and software for, 171-184

synthesis program for, Monte Carlo evalua-
tion of, 315-338

uncertainty, risk analysis for management
actions related to, 903-916

See also specific types.

Stock assessment model(s)

age-structured, making short-term stochas-
tic projections from, 933-954

intrinsic limitations of sample variances
in, 385-398

lack of identifying, and estimating parame-
ters, 11-13

lack of real world representation, 10-11

misspecification or data bias in, for Pacific
herring (Prince Rupert, Canada), 413-
433

for production of blue and white marlin
(Atlantic Ocean), 99-119
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Stock assessment model(s) (continued)

reasons for failure of, 10-23

sampling error with estimates of age com-
position in, 355-370

state space, 174-175

See also specific models.

Survey

data, for estimating abundance of blue
king crabs, 575-589

indices, multiple, evaluation of, in assess-
ment of black sea bass (Atlantic Ocean),
121-136

T
Tanner crab (Bering Sea and Aleutian Islands,

Alaska), CPUE estimates based on observer
data, 61-73

Tetrapturus albidus (Atlantic Ocean), stock
production models of, 99-119

Theragra chalcogramma

(Alaska), assessment information for man-
aging Alaska stocks of, 841-851

(eastern Bering Sea, Alaska), incorporation
of predation into population assessment

model of, 663-678

(Japan), length-based population analysis
applied to, 659, 661

Thymallus arcticus, effects of aging error and
sample size on sustained yield estimates
of, 962-966

Time series analysis of catch-at-age and CPUE
data, 199-217

Toothfish (sub-Antarctic), food web for, 25-27

Torres Strait prawn (Australia/Papua New
Guinea), length-based population model
applied to, 531, 539-555

Trophic level estimates

from mass-balance model using l5N/14N
data of Alaska Gyre System, 697, 698-
699, 700

of Prince William Sound, Alaska, 693-702

Tropical fisheries

small-scale, multivariate interdisciplinary
assessment of, 803-814

trawl (Australia), new assessment para-
digms for, 32

Tuna

Atlantic bluefin, stochastic implementation
of age-structured production model for,
435, 441-448

southern bluefin

(Australia), delay in management action
for, 9

CPUE analysis with uncertain stock and
effort dynamics in longline fishing
of, 75-97

data and model uncertainties in assess-
ing stocks of, 613-637

index for weighting results in catch-at-
age models for, 137-154

(Japan), effort dynamics for longline
fishing of, 82-86

Turnbull, Clive T., 531

U
Uncertainty

assessment, risk analysis related to, for
Gulf of St. Lawrence (Canada), 903-916

data and model, in assessing southern
bluefin tuna stocks, 613-637

lack of recognition of, 13-18

stock, and effort dynamics for CPUE in lon-
gline fishing, for southern bluefin tuna,
75-97

treatment of, 23-24

Gulf of St. Lawrence (Canada), risk analysis
related to assessment uncertainty in,
903-916

V
Van Eeckhaute, Lutgarde, 399

Variances, sample, intrinsic limitations of, in
stock assessment models, 385-398

Vasconcellos, Marcelo, 759, 853

Vaughan, Douglas, 5, 121

Vázquez Bader, Ana Rosa, 977

Virtual population analysis (VPA)

used in assessing black sea bass (Atlantic
Ocean), 121, 127, 129-133

used in assessing southern bluefin tuna
stocks, 137-154, 613-637

using adjoint method, 639-657

W
Walleye pollock

(Alaska), assessment information for man-
aging, 841-851

(eastern Bering Sea, Alaska), incorporation
of predation into population assessment
model of, 663-678

(Japan), length-based population analysis
applied to, 659, 661
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White marlin (Atlantic Ocean), stock produc-
tion models of, 99-119

Whiting, southern blue (New Zealand), inte-
grated assessment of, using separable se-
quential population analysis, 155-169

Widow rockfish (Oregon), sampling error with
estimates of age composition in assess-
ment models for, 359-360, 362, 364

Williams, Erik H., 371

Y
Yellowtail rockfish (Oregon), sampling error

with estimates of age composition in as-
sessment models for, 359-360, 362, 364,
365

Yield estimates, sustained effects of aging er-
ror and sample size on, 955-975

Yin, Yanshui, 315

Z
Zhao, Boxian, 121

Zheng, Jie, 511, 575, 591




